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A Three-Node Packet Radio Network
MOSHE SIDI AND ADRIAN SEGALL

Abstract—A two-hop packet radio network consisting of three nodes is
considered. The three nodes have infinite buffers and share a common
radio channel for transmitting their packets. Two of the nodes forward
their packets to a third node that acts as a source of data as well as a relay
that forwards all the packets entering the network to a main station. We
assume that two of the nodes are granted full rights in accessing the
channel while the third node uses a random access scheme. For this
network we derive the condition for steady state and the generating
function of the joint queue length distribution at the nodes in steady state.
We also give several numerical examples and compare the performance of
the network with and without a relay node.

[. INTRODUCTION

The purpose of this paper is to analyze the three-node
packet-radio network with a configuration depicted in Fig. 1.
This two-hop network is an extension of the one-hop network
considered in {1} (Fig. 2), where two radio nodes transmit
their data directly to a common receiver. The three nodes of
our system are assumed to have infinite buffers and use a
common radio channel to transmit their packets. Time is
divided into slots corresponding to the transmission time of a
packet and a node may start packet transmissions only at the
beginning of a slot.

In the network of Fig. 1, nodes 2 and 3 send their packets
to node 1, which forwards all packets to a main station. One
important aspect of this paper is that it enables us to ana-
lytically evaluate the performance degradation due to the ad-
dition of a relay to the network.

We assume here that the transmissions of node 1 do not in-
terfere with the transmissions of the other nodes, i.e., the sta-
tion is out of the transmission range of nodes 2 and 3. When
nodes 2 or 3 transmit, only node | can hear them. When they
both transmit a packet at the same time, a collision occurs and
the transmitted packets are not received at node 1. In addi-
tion we assume that node 1 is not able to transmit and receive
a packet (transmitted by other nodes) at the same time. All
nodes share a common channel and their channel access
schemes will be specified in Section II. In Section III we briefly
summarize the steady-state analysis (for details the interested
reader is referred to [2]). The performance of the systems
with and without a relay node (the present paper versus {1])
is compared in Section IV for independent Bernoulli arrival
processes.

1. THE MODEL

Packets arrive at the three nodes (Fig. 1) that have infinite
buffers from the outside of the system, and in general the ar-
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Fig. 1. A three-node packet-radio network.
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Fig. 2. The two-node network considered in [1].

rival processes may be correlated. Let 4;(z), 1 < i < 3 be the
number of packets entering node { from its corresponding
source (outside of the system) in the time interval (z, ¢ + 1].
The input process {A4,(¢)}2.; is assumed to be a sequence of
independent ‘and identically distributed random vectors with
integer-valued elements. Let :

Flz3, 29,2y )= E{z343(0zpA2(0)z 410} (1)

During each slot that their queues are not empty, nodes 1
and 2 transmit the packet at the head of their queues. The
transmissions of node 3 are randomized, so that during each
slot that its queue is not empty, it transmits the packet at the
head of its queue with probability p. The transmissions of
nodes 2 and 3 might be unsuccessful either because they
transmit simultaneously or because node 1 is transmitting at
the same time and, therefore, is not able to receive packets
transmitted by nodes 2 or 3. We assume that nodes 2 and 3
are able to detect at the end of the slot if their transmissions
were successful. In case of uasuccessful transmission at any
node, the unsuccessfully transmitted packet remains at the
head of the queue and must be retransmitted by the node ac-
cording to the schemes presented above.
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II1. STEADY-STATE ANALYSIS

Let L;(z), 1 < i< 3, be the number of packets at node i
at time ¢ and let

Gizz, z9,2;) = lim E{z3£3(z,L2(07, L1(D}

t— oo

(2)

be the steady-state generating function of the joint queue
length probability distribution at the nodes. Then, using a
standard technique, it can be shown that (here p = 1 — p)

G(z3,29,21)
=F(z3, 27,21 ){G(0, 0, 0) + [G(0, 2;, 0)
~ G(0,0,0)]z,7 1z, + [G(z3,0,0) - G(0, 0, 0)]
“(pz37lz; +py+ [G(z3, 23, 0) - G(0, 25, 0)
— G(z3,0,0)+ G(0,0, 0)) (pzy—tz; + r)

t [G(z3,22,21) - G(z3,22,0) 2z, 1] (3)

In (3) we encounter a phenomenon common to interfering
queues [1], as well as to other queueing systems with depend-
ent queues [3], [4], that the joint generating function is ex-
pressed in terms of several boundary terms. Here to determine
G(z3, 24,z ) westill have to determine the boundary functions
G(0, z4, 0), G(z3, 0, 0), G(z3, z5, 0) and the boundary con-
stant G(0, 0, 0). The detailed derivation of these boundary
‘terms may be found in [2]. Here we give a brief summary of
the results.

Let o be the unique solution of the equation o = F(0, 02, 0)
in the unit circle [o] <1 and for |z, | < 1 let fy(z,) be the
unique solution of the equation f3(z,) = f(0, z,, fo(z,)) in the
unit circle | fo(z,) | < 1, The existence and uniqueness of these
solutions follow from Rouche’s theorem [6]. Then,

p(p—ry)~prs — pp(ry T rytr3)
6(0,0,0) = 2 : (4)
p{lp

1—fo(1) +fo(1)(o~ ! - 1)/o
fom (1) = fo(1)

where
0F(z5,24,2
aZ[ Z3=22=21=1
and
G(0, z;, 0)
_G(0,0,0)(1 - 2,7 fo(22)) + 0fo(22)G3'(0, 0, 0) )
fo~Hz2) — 227 1 o(22)
where
o= -
G5'(0, 0, 0) =——— G(0, 0, 0). (7)
po

Let 2,(z;) £ pz,2/(1 — zyp). For | 23| <1 let fy(z3) be
the unique solution of fy(z3) = F(z3, z2(f1(23)), f1(23)) in
the unit circle | f1(z3)| < 1. Then,
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the unit circle | f5(z3, z2) | < 1. Then,

Hy(z3,2,)
G(z3,22,0) =———
Ho(z3,27)

(9

where
Hy(z3,22) = G(0,0,0)[1 - z371f2]p + [G(0, 25, 0)
~G(0,0 0)J(zo7 1, = Dp
+ G(z3,0,0)[(pz3 =1 = pzy 1), + 1 = 2p]

and (10a)

Hy(z3,29)=fa ' = p— D271/, (10b)

Notice that the condition for steady state is G(0, 0, 0) > 0.

The average number of packets at node { (1 < i < 3) in
steady state is given by

- 0G(z3,24,2;)

Li=—— 1<i<3. (1D
aZ[ z3=z9=21%1

In addition, by applying Little’s law [5] to each node in the

network, we can also derive the average time delays at the

nodes. These quantities are given by

Zl . Zi .
T,=——» T;=— i=2,3. (12)
rptrytrs i
Finally, the total average delay in the network is given by
L+ L,+Ls
T= — (13)
r + I‘2 + }'3

IV. INDEPENDENT BERNOULLI ARRIVAL PROCESSES

Although the analysis in the previous section has been done
for general arrival processes, some of the expressions become
simpler for independent Bernoulli arrival processes, i.e., for

F(z3,29,21) = (2373 + 13)(22r2 T 72)(21r + 1),

The expressions for Zi, i=1, 2,3, are too complicated to be
given here and the interested reader can find them in [2]. The
condition for steady state in the network is

(14)

(15)

Equation (15) can be explained intuitively as follows. Assume
heavy traffic conditions, i.e., node 3 almost always has packets
for transmission. It is clear that r{ + ry + r3 is the fraction of
time node 1 holds the channel and r,/p is the fraction of time
node 2 holds the channel. Only when both nodes 1 and 2 do
not hold the channel, node 3 may succeed in its transmission.
Since it tries to transmit with probability p, packets may leave
it with a rate of at most p(1 —r; — ry — r3 — ro/p). Since the
arrival rate to any node must be less than the departure rate
from that node, we obtain (10).

As expected, we have found that the average time delay at
node 1 is unaffected by the value of p—the transmission proba-

p(l —ry —ryg —r3 = ra/D)>r3.

6(07 O’ 0)[1 _23_1f1] + [0(0522(f1)> O)M 0(01 O> O)] [22_1(f1)f1 - 1]

G(z3,0,0)=p —
& ) [Pz, 1(f1)

Finally, for |z, | <1,|z5]<1,let f,(z3, z,) be the unique
solution of the equation f5(z3, z3) = F(z3, 22, [2(23, 22)) in

—pz37 Sy -1+ 2p

(8)

bility at node 3, since it cannot interfere with the transmissions
of node 1. In Figs. 3-5 we plot T,, T3, and T, respectively
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Fig. 3. Average delay at node 2 versus the transmission probability at
node 3.
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Fig. 4. Average delay at node 3 versus the transmission probability at

node 3.

versus p—the transmission probability at node 3, forr; = 0.01,
r3 = 0.1, and r, ranging from 0.01 to 0.2. As expected, the
average delay at node 2 increases when p increases, since then
its transmissions collide more frequently with transmissions
from node 3. More interesting is the behavior of the average
delay at node 3. Here p has some value for which T’y is mini-
mized (for given ry, ry, and r3). When p either increases or de-
creases from this value, T3 increases. The reason is that when p
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Fig. 5. Total average delay versus the transmission probability at node 3.
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Fig. 6. Minimal total average delay versus the total throughput.

becomes small, node 3 attempts to transmit relatively rarely,
so its queue increases. When p becomes large, then node 3 at-
tempts to transmit more frequently, thus interfering with the
transmissions of node 2, and the queue lengths at both nodes
are large. As we see from Fig. 5, the parameter p is a very critical
design parameter of this system, and for given values forry, r,,
and ry, there exists an optimal p that minimizes the total aver-
age delay in the network.

In order to understand the effect of adding the intermediate
node (node 1) in the network of Fig. 1 compared with the net-
work of Fig. 2, we shall assume that r; = 0, i.e., no packets
arrive at node 1 from its corresponding source and it serves
only as a relay node. In this case, from (15) we see that when
r, = ry = r, the total throughput of the network ¥ (y = 2r)
should be less than 1/3 in the network with the relay node
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(Fig. 1) while 7y < 1/2 [1] without such a node (Fig. 2). Con-
sequently, the addition of a relay node decreases the maximal
throughput by 33 percent in this case.

In Fig. 6, the minimal average waiting time of packets in
the network is plotted versus the throughput for equal arrival
rates at nodes 2 and 3 for the network with and without the
relay node. This minimal average waiting time is obtained from
the minimal average delay time minus one unit for the net-
work of Fig. 2, and minus two units for the network of Fig. 1.
As is seen from Fig. 6, the addition of a relay node significantly
deteriorates the performance of the network.
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