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TDM Policies in Multistation Packet Radio
Networks

ZV1 ROSBERG AnND MOSHE SIDI, SENIOR MEMBER, 1EEE

Abstract—In this paper, we study a multistation packet radio network
with m stations and a finite number of nodes r, that are using a conflict-
free protocol to access the backbone network of stations through a shared
channel. The goal is to derive an atlocation of the channel time slots
(TDM cycle), so that all transmissions will be conflict-free and some
measure of performance (e.g., the expected total weighted throughput,
the expected weighted holding cost) will be optimized.

The methodology that is used is to bound the performance and to
allocate the slots according to the golden ratio policy.

1. INTRODUCTION

Anew multistation network model for hierarchical packet
radio network has been recently introduced in [3], [4].
The model consists of a set of nodes that generate data packets
and use a shared channel to transmit them to one of several
stations which are connected by a backbone network.

The nodes represent the users which are geographically
distributed and have a limited transmission range. The stations
serve as concentrators and each of them concentrates the
transmission activities of a different subset of nodes. The
packets which are being originated by a given node might be
destined to its corresponding station or to another node or
station. In the latter, the stations act as repeaters. .

There are three communication mediums in a multistation
network.

1) The node-to-station medium (a common radio channel
shared by all the nodes).

2) The station-to-station backbone network (another radio
channel, wires, or fiber links).

3) The station-to-node medium (other radio channels with
different bands to different stations).

A packet that is generated at a node and destined to another
node is first transmitted to a station that concentrates the
source node activities. This is done through medium 1) by
employing some access algorithm. This station then, forwards
the packet to a station that concentrates, the destination node
activities. This is done through medium 2). Finally, the packet
is transmitted to the destination node through medium 3).
When a packet is destined to a station; only medium 1) or
mediums 1) and 2) are used.

In this study, we solely focus on the access algorithm in
medium 1), and assume that the communication in the other
two mediums is done independently and does not interfere
with the access algorithm under investigation.

Various access protocols for medium 1) have been studied
before. In [4], the regions of feasible node-to-station through-
puts have been derived under the slotted ALOHA protocol. In
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[2], a two-station network under the CSMA and the BTMA
has been studied. In [1], another class of multiaccess proto-
cols—the collision resolution algorithms has been studied. In
all the studies above, it has been assumed that the number of
nodes in the network is infinite.

In this paper, we study a multistation packet-radio network
with 171 stations and a finite number of nodes n, that are using a
conflict-free access protocol to medium 1). We assume that the
shared radio channel is slotted and all nodes are synchronized.
Furthermore, all packet transmission times are exactly one slot
and within the slot boundaries. Every node can be heard by at
least one station; however, due to the broadcast nature of the
transmissions, some of the nodes can be heard by more than
one station. ‘

Let H; be the set of all nodes that can be heard by station j, 1
< j < m. Since all nodes use the same radio channel, a packet
transmitted by node i € H; during an arbitrary time slot is
successfully heard by station j, if and only if node i is the only
node in set Hj that transmits during that time slot.

For every node i, let T(i) be a preassigned set of stations
responsible for concentrating the traffic from node P(T@)is
obviously a subset of the stations that can hear node ). We
define a transmission of node i to be conflict-free if all stations
in T(i) can hear the transmission successfully. Thus, our
definition for conflict-free transmissions depends on how the
set T'(i) is chosen. For instance, one may distinguish between
broadcast conflict-free transmissions, in which every set
T(i) consists of all the stations that can hear node i; and single
conflict-free transmissions, in which every T'(i) consists of a
single station.

As an example, consider the network in Fig. 1. If broadcast
conflict-free transmissions are required, then the simultaneous
transmissions by nodes 5 and 11 are conflict-free—no other
nodes can transmit at the same time without violating the
broadcast conflict-free requirement [see Fig. 1(a)]. If single
conflict-free transmissions are required and T7(5) = {1} and
T(9) = {3}, then the simuitaneous transmissions of nodes 5
and 9 are single conflict-free {see Fig. 1(b)].

The goal of this study is to derive an efficient allocation of
the channel time slots among the nodes of a multistation
network, so that all transmissions will be conflict-free in the
sense defined above. In a network with a single station, the
problem has been solved in [7] and [6). In this study, we
employ a similar methodology and show that the golden-ratio
TDM policy provides an efficient allocation also in a
multistation network. A similar problem; for a multihop
network, has been addressed in [9] where spatial TDMA
protocol has been introduced.

The rest of the paper is organized as follows. In Section II,
we define general TDM policies and introduce two perform-
ance measures, the weighted expected throughput and the
weighted expected holding cost, that are used to compare
different TDM allocations. In Section III, we derive an upper
bound for the expected weighted throughput and a lower
bound for the expected weighted holding cost, under an
arbitrary TDM policy. In Section IV, we introduce a TDM
allocation that is generated by the golden-ratio policy [7], and
compare its performance to the bounds in Section V.
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Fig. 1. A three-station network. (a) Broadcast conﬂict-free. (b) Single
conflict-free.

1I. A GeNERAL TIME DIVISION MULTIPLEXING (TDM) PoLicY

In this section, we introduce-some potations from which we
can easily define a general time division multiplexing (TDM)
policy in a multistation network. Also, we define two
performance measures (cost functions) associated with an
arbitrdry access protocol that we attempt to minimize.

A. Preliminaries

To define a general TDM policy we need the following
notions. Let {1, 2, - - -, n} be the set of nodes and {S;,1=J
< s} be a set of disjoint and inclusive subsets of {1, 2, - -,
n} that has the following property. ““For each j, every two
nodes in S; can be heard by the same set of stations, as well as
being concentrated by the same set of stations.”” A set S; is
referred to as a node group. For example, in Fig. 1(a)
(broadcast conflict-free) the node groups are Sy = {1, 2, 3},
S, = {4,5},S; = {6,7,8}, 54 = {9, 10}, and S5 = {11, 12,
13}. In the network in Fig. 1(b) [single conflict-free], node 4
is concentrated by station 2, node 5 by station 1, node 9 by
station 3, and node 10 by station 2. This yields the following
node groups: S; = {1,2,3}, S, = {4}, S, = {6,7, 8},S: =
{9}, Ss = {11, 12, 13}, S = {10}, and S; = {5}. Itis clear
that a simultaneous transmission of two or more nodes from
the same node group is not conflict-free. Note that for
broadcast conflict-free transmissions, s < 2" — 1, and for
single conflict-free transmissions, s = m2m-1 where m is the
number of stations in the network.

Furthermore, let {A%, 1 < k < a} be a set of subsets of
{S;, 1 < j =< s} with the following property. “‘For each k, ifa
single arbitrary node is selected from every S, S € Ak to
transmit during the same time slot, then all transmissions are
conflict-free.”” A set AX is referred to as a transmission
group and the set {A%, 1 = k =< a} as a transmission
partition. A transmission group A¥ is maximal, if no other
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node outside A* can transmit without interference during. the
same slot with any node in A*. A transmission partition is
maximal if every transmission group in the partition is
maximal. In Fig. 1(a) [broadcast conflict-free], Al = {S,, S;,
Ss}; A2 = {8y, Sa}; A% = {5y, Ss}isa maximal transmission
partition. In Fig. 1(b) [single conflict-free] the maximal
transmission partition is: A' = {S), S3, Ss}; A? = {S,, Si}s
AY = {8y, Sg}; A* = {5y, S5}; AS = {84, S1}; A = {Ss,
S7}. i :

Finding a (maximal) transmission partition is the same as
finding a (maximal) clique (completely connected subgraph,
[5]) in an undirected graph, [9]. Indeed, let G = (V, E) be the
undirected graph whose vertices correspond to the node
groups S;. Furthermore, a pair of vertices v; and v; are
connected by an edge if and only if the simultaneous
transmissions of any node in S; and any node in S; is conflict-
free. It is clear that a transmission group corresponds to a
clique in this graph. Hence, finding a transmission partition is
equivalent to finding the cliques, and finding a maximal
transmission partition is equivalent to finding all maximal
cliques. Construction of all maximal cliques in a graph is
straightforward. In a graph with s vertices, there are up to 2°
maximal cliques. If the degree of every vertex in the graph is
bounded by d, then the number of maximal cliques is bounded
by s-d!. In practice, the number of maximal cliques is
significantly smaller than the bounds above (e.g., in the
network of Fig. 1(a), we have only three maximal cliques).
~ To summarize, we note that the construction of a maximal
transmission partition for a given multistation network is
always feasible and the number of the transmission groups a is
usually not too large. .

The notions above will be used in Section II-B to define a
general TDM policy.

Let (Vi(f); t = 1,2, --*), 1 =< I n, be the arrival
processes of packets at node i during successive time slots. We
assume that for every node i, the process (V;(f), t = 1,2,-°°)
forms a sequence of i.i.d. r.v.’s with finite expectation A, and
finite variance £;. We will see below, that without loss of
generality, we may assume that \; < 1,1 = i = n. Note that
£ = 0, N < | and the fact that (Vi(?), ¢t = 1,2, +-°) are
i.i:d., imply that \; = 0. Hence, we may assume that & > 0.
We further assume that arrivals at distinct nodes are mutually
independent. Each node has a given buffer capacity (finite or
infinite) and all packets arriving during a slot, join the buffer at
the slot end, if space is available.

B. The TDM Policies

Recall that all nodes of the network share the same access
channel (e.g., frequency). However, they are distributed in a
manner which allow several nodes (depending on their
location) to transmit during the same slot without violating the
conflict-free transmission requirement. The goal is to effi-
ciently multiplex the channel time among the nodes, so that
riodes will transmit their packets in a conflict-free manner (see
Section I). i ]

A general TDM policy can be defined by constructing a
transmission partition {4, 1 < k = a} and multiplexing the-
time slots among the transmission groups. Within the time
slots belonging to each transmission group A%, the slots are
multiplexed among the nodes of each node group § € A¥,
independently of the multiplexing at other node groups. Note
that we do not require a periodic TDM policy, nor that all
nodes share the channel time equally.

For almost every practical cost structure (see below), it is
suboptimal not to use a maximal transmission partition.
Furthermore, whenever a slot is allocated to a transmission
group A, it is suboptimal not to allocate the same slot to a
single node in every node group S € A*. Suboptimal policies
of this kind are excluded from our discussion.

Observe that every TDM policy can be defined with the

-
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single maximal transmission partition. Hereinafter, we con-
sider only a maximal transmission partition.

C. The Performance Measures

A TDM policy = is determined by n disjoint sequences of
slot numbers (¢}, j = 1,2, ---), 1 < i < n, where tiis the
number of the jth slot allocated to node i.

Let (d;'.,j = 1,2, ---), 1 < i = n be the interallocation
times. That is, d = ti and d} = ¢! — ;_, forj = 2.

For definiteness, we assume that the system is empty at the
beginning of slot number one. Since we will consider only
policies under which the underlying Markov process is
ergodic, the initial condition plays no role on the long-run
average cost.

We consider two general types of performance measures
(hereinafter—cost functions). The first one measures the long-
run average weighted throughput of a system in which every
node has a single buffer. The second one measures the long-
run average weighted holding cost of a packet in a system
where every node has an unlimited buffer capacity.

1) The Weighted Throughput: Here we assume that each
node has a single buffer and a packet is lost if it arrives at a
node whose buffer is full. Without loss of generality, we may
assume that at most one packet can arrive at node i during a
slot. Hence, N, is the probability that a packet arrives during
one slot.

For every node i, let S(i) be the node group that contains
node i, and let W(S(i)) be the system gain of every packet that
is transmitted by node /. The motivation for introducing
different gains to different node groups is to have more general
results and to allow flexibility in the way slots are allocated to
different node groups (we elaborate on this in Section V).
Using gains that are defined on a per node group basis (and not
on a per node basis, for instance) is mainly done for
mathematical tractability.

For every policy = and integer K, let V§(m) be the total
expected gain of the system during the first K slots using
policy w. Define the long-run weighted throughput of the
system (under policy m)

va(m) & liminf — V3 (7).
K- K X

We are looking for a policy w that maximizes the long-run
weighted throughput, V().

This problem has been studied in [7] for a single station
network (a network with a single node group S). Using a
Markov decision process formulation as in [7], it can be shown
by the same proofs (mutatis mutandis) that in a multistation
network the optimal policy (among all policies—not only
TDM) is a periodic TDM policy with a finite period. That is,
we may restrict our attention to TDM policies that are
determined by n finite sequences (dj., J=1,2,--,N), i =
1, 2, -+ -, n where the period of the TDM cycle is N.

For such policies, F2(m) is (see [7])

~ I"Ni i
=53 S PEOI-0-M49. @D

i=1j=1

To unify our mathematical treatment, we consider the cost
function P 7(x) where

VT(r)y= —~ V()

and attempt to minimize instead of maximize.

2) The Weighted Holding Cost: Here we assume that
each node has a buffer which is capable of storing an unlimited
number of packets. Let X;(f) be the number of packets in the
buffer of node i at the beginning of slot ¢. Let C; be the cost per
unit time of holding a packet in node i, and let Vj(’(w) be the

2.2)
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total expected cost until time K using policy . Define the
long-run average cost

7H(x) < limsup L yam
k~o K K
where by definition

H def X
viim €S E(C, X(t)

=1

(2.3)

with (C, X (1)) = 27_| C:X;(1). The expectation is taken with
respect to the probability measure induced by policy # and the
arrival process.

From (2.3), it follows that under stationary conditions

Pi(n) =3 CXi(n) @.4)

where Xi(7) = limp., 1/T E7_| E,(X;(?)) is the stationary
expected buffer occupancy at node i at an arbitrary slot
beginning. With this cost function we are looking for a TDM
policy that minimizes PH (). Note that for C; = 1/, Little’s
Theorem implies that ¥ (x) is the long-run average holding
time of a packet.

It is easy to show, using the generalized Foster criterion
[10], that the underlying Markov chain of the buffer occu-
pancy at node i is ergodic if and only if N < lim-e &/ Bk, d]
< 1, whenever the limit exists. This explains our restriction A;
< 1. We have to consider only ergodic policies, since under
nonergodic policies the cost is clearly infinite. Thus, the cost
function is indeed given in (2.4).

For a single station network, this problem has been studied
in [6]. Note that under this cost function the optimality of the
set of TDM policies is no longer valid as under the weighted
throughput case. Hence, by considering only TDM policies we
may exclude other good policies.

To summarize, we consider two types of multistation
networks under TDM policies. In the first, every node has a
single buffer and the cost function is given by (2.2). In the
second, every node has an unlimited buffer capacity and the
cost function is given by (2.4). The results of this paper remain
valid for any cost structure which is a convex function of the
costs in (2.2) and (2.4).

III. A Lower BOUND ON THE COST FUNCTION

Finding an optimal policy for n > 2 is known to be a
difficult combinatorial problem, even for a single station
network. Therefore, we adopt the methodology which has
been used in [7] and [6]. Under each cost function, we derive
tight lower bounds to the optimal cost. From this derivation,
we also obtain a desirable allocation proportion 0 < p* =< 1
for every node i. These proportions are optimal in an ideal
system. That is, if we could allocate to each node i a
proportion of p ¥ slots in equal interallocation distances 1/p ¥,
and keeping the conflict-free transmission property, then the
underlying TDM policy would attain the lower bound.

In this section, we derive the lower bounds and the desirable
proportions for both cost functions. In Section IV, we show
that the golden-ratio policy which implements these desirable
proportions (see [7], (6] provides costs which are very close
to the lower bounds.

Observe that under any given TDM policy, the queues at
distinct nodes do not interact and therefore they are indepen-
dent. Hence, the cost functions in (2.2) and (2.4) are the same
functions as in [7] and [6], respectively. Quoting the results
from there (which are derived from the convexity of the cost
function), we have for every TDM policy = whose allocation
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proportions are p;, ! < i < n,

P> -3 WSO -1 -M], 6D
i=1

n . N
2 C, ——é—————] for <p;. (3.2)
j 2(pi-N) 2

The derivations of (3.1) and (3.2) are too lengthy to be
repeated here. The interested reader is referred to the
references above.

For 1/p; integers, the expressions inside the brackets in
(3.1) and (3.2) are the expected throughput and the expected
buffer occupancy, respectively, under stationary conditions,
using a TDM policy which allocates a slot to node i every 1/p;
slot. The lower bound holds also when 1/p; are not integers.

VH(m)

v

A. A Convex Minimization Program

Equations (3.1) and (3.2) provide lower bounds for the cost
of every feasible policy m whose allocation proportions are p;,
1 < i < n. Clearly, not every set of proportions is feasible. In
a single station network ({7], [6]), the proportions have to
satisfy the constraint =7, p; = 1. In our multistation
environment, the constraints on the proportions are more
involved.

Let {A!, A%, -+, A%} be a maximal transmission partition
and let P(A%) denote the proportion of slots allocated to
transmission group 4% under an arbitrary TDM policy. From
Section II, these proportions satisfy

3 P(AN=1, P(4%)=20, l=<k=a.

k=1

3.3)

Furthermore, for every transmission group A ¥ and node group
S € A let p¥, i € S be the proportion of slots that are
allocated to node i from the slots that were allocated to A4F,
under an arbitrary TDM policy. Again from Section I, for
every S € A*and k = 1, 2, -, a, these proportions satisfy

N pi=1, pf=0, 1s<i=sn, l=k=a 3.4

i€s

The total proportion of slots that are allocated to node i, pi,
1 < i < n, and the proportions in (3.3) and (3.4), are related
by

pi=) P(A%)p* (3.5)
k=1

where by convention p¥ = 0, if node / is not in any node group
S, S € Ak

From (3.1)-(3.5), we can bound the cost function from
below, by the solution of the following convex program. To
avoid repetitions, denote by ¥(w) an arbitrary cost function
and by Di(p), | < i = n, arbitrary twice differentiable
strictly convex functions. Furthermore, assume that

7(m)=Y Dip)).

i=1

(3.6)

The weighted throughput and the weighted holding cost
cases are obtained by taking V{(w) as PT(x) or as VH(n),
respectively, and D;( p;), 1 < i < n as the summands in (3.1)
or (3.2), respectively.

Consider now the following convex program:

min 3 Di(pr)

(3.7a)
Paky,pk i
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subject to

pi=3) P(A)p! (3.70)
k=1

2 P(A%¥)=1, P(AY=0, k=1,2,---,a. (370
k=1

2pf=l, pk=0, i€S8, S€ A% k=12, ", a
i€s
(3.7d)

When the buffer capacity is unlimited, we have an additional
constraint

pi>N, 1<i=sn. (3.8)

For the weighted throughput problem, we have to solve the
convex program in (3.7), and for the weighted holding cost the
convex program in (3.7) and (3.8). For the moment, consider
only the convex program in (3.7). Observe that the objective
function in (3.7a) is twice differentiable and strictly convex in
(p:, 1 =i =< n). In addition, we prove in the Appendix that
the feasible region is a closed convex set. Therefore, there is a
unique vector (p;, 1 =< i = n) that solves the convex
program, and we can use the Lagrangian principle and Kuhn-
Tucker conditions to characterize the optimal solution (see
e.g., [8]). Note also, that although the optimal p;’s are unique,
it is not true in general that the optimal P(A4*)’s and p¥’s are
unique.

The convex program in (3.7) can be solved by standard
algorithms such as the gradient projection method, active set
methods-or the primal method, [8]. Note, however, that the
convex program can be quite large, mainly due to the variables
pf=0,i€ 8, S € Ak k= 1,2, -+, a. The goals of the
remainder of this section are to simplify the solution of the
convex program in general, and to provide explicitly the
optimal p¥’s for our two special cases.

Let @, ak, S € A% k = 1,2, -+, a, be the Lagrange
muttipliers corresponding to constraints (3.7¢) and (3.7d),
respectively. The Lagrangian function is

n a
L(P, p, &, @)=, Di(p)+«a [1 -, P(A")]
k=1

i=1

£ T ok [1—217{-‘] (3.9)

k=1 gcqk i€s

where P, p, and « are the vectors of the P(A*ys, p¥’s, and
the ag’s, respectively.

From Kuhn-Tucker conditions and the uniqueness of the
optimal p;'s, every set of P(A*)’s and p}’s that solve the
following equations for some multipliers « and %, is optimal:

ermse s {=a, if P(A9)>0;
Ekép"Di (P) {?.a, if P(A%)=0.
M=¥ L

(k=1,2, ---,a) (3.92)
=ak, if p¥>0;
=ak, if pk=0.

(i€S,S€ A% k=1,2,--+,a) (3.9b)

P(AMD/ (p) {

3 P(af=1. (3.9
k=1

S pk=1,5 € Ak k=1,2, -, a. (3.9

€S
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Here, p; = $9_ P(A*)p} and D/ (-) is the first derivative of
D;( p;) with respect to p;.

Let (P(A4%), k = 1,2, +*+, a), S¢_, P(A%) = 1, be a
feasible set of proportions allocated to the transmission
groups. For every node group S, let P(S) = T h.seak P(A%)
(the total proportion of slots that are aliocated to set S). In the
Appendix, we prove the following Lemma.

Lemma 3.1: For every feasible set (P(A4%), k = 1,2, - -,
a)

a) There exist optimal p*f,i € S, S € A¥ 1 <k < a,of
the form p,.*" = g;(S), that solve the convex program in
(3.72), (3.7b), and (3.7d).

b) For every S such that P(S) = O, the optimal ¢;(S) can
be chosen arbitrarily.

c) For every S such that P(S) > 0, the optimal qi(S) are
the solution to

D/ (P(S)qi(S)=as, i€ S

where «g are some Lagrange multipliers.

From Lemma 3.1, we can partition the convex program
problem in (3.7) into two simpler ones.

Problem I: For every node group S, find the optimal
(gi(S), i € S) for a given set of proportions (P(AM, 1 =k
< a). That is, for every S find

(3.10)

min > Di(P(S)qi(S)) (3.11a)
4i(S) S
subject to
E gi(S)=1, q(S)=0, i€ S. (3.11b)

€8

Note that we have s independent convex programs, one for
each node group S. Furthermore, the solution to (3.11) is
given by a solution to (3.10) and the constraints (3.11bj. For
every node group S, this problem is the same problem as in a
single station network with a single node group S. For our two
special cost functions, the weighted throughput and the
weighted holding cost, we derive in Section III-B closed-form
solutions to Problem 1.

Problem II: Find the optimal (P(A4%), 1 = k = a). That
is, solve

min 3 DP(SW)ZHSE)

(3.123)
paky 15

subject to

E PAK=1, P(A4%)=0, k=1,2, --,a (3.12b)
k=1
where the g*(S)’s are the solution to Problem I, and S(i) is
defined in Section II-C1).

By the Lagrangian principle, any solution to the following
Kuhn-Tucker conditions is optimal.

S S g#(S)D/ (P(S)aH(S)

seak i€s

_ . k .

(s BP0 s g o
i P(AY)=1. (3.13b)
k=1

The convex program in (3.12) can be solved by the standard
methods mentioned earlier. Note that Problem II has a
significantly smaller number of variables (only the variables
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(P(A*%), 1 = k =< a) appear here) than the original program
(3.7) [that contains also the variables pf.‘, i€es, s A k=
1,2, -+, al.

For the weighted throughput and weighted holding cost, the
q}*(8)’s are explicitly given below.

B. The Maximal Weighted Throughput

When the optimality criterion is the expected weighted
throughput, it follows from (3.1) and (3.11) that Problem 1 is:

For every node group S with P(S)>0 find
max 3 W(S)[P(S)g:(S)(1 — (1= N\)VFEiN)]

%S ies
subject to

2 g($=1, q(S)=0, i€ S.

i€s

Kuhn-Tucker condition (3.10) becomes

W(S)(1 -\ VPOUS (1 ~In (1 - \;) VPO

ies.

This optimization problem is the same as in {7], for which the
optimal g¥(S)’s are

=as,

In (1-\)

g*(S)= (3.14)
T ln (1-X)
les

Note that g *(S) is independent of (P(AY), ---, P(A")) and
of W(S). Furthermore,

(1= \)VPS)aF S =K (S) V/PS)

where A(S) = Ies(1 — N\).
From (3.1), (3.12) and (3.15), Problem II becomes

(3.15)

;?ff) J:El W (S)P (S —N(S) PR

subject to

a
2 PAY=1, PA%)=0, k=1,2, -, a.
k=1
Recall that P(S;) = Z¢.5,c 4k P(A*). Kuhn-Tucker condition
(3.13) becomes /

E [S| W(SHA(S) P (1 —In R (S) PO
if P(A%)>0;

seak
=q,
<aq, if P(A¥)=0.

Corollary 3.1: For the maximal expected weighted
throughput problem, we have to solve only Problem II. The
optimal proportions pf are given by g *(S) in (3.14), and they
are independent of (P (A4 D, «++, P(A4%) and of W(S).

C. The Minimal Weighted Holding Cost

When the optimality criterion is the expected weighted
holding cost, it follows from (3.2), (3.8), and (3.11) that
Probiem I is:

For every node group S with P(§)>0 find,
Citi

min E [ E ] s

7 2 | 2P(S)a(S)~N)

(k'—"l, 2,1, 0)
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subject to
3 q(S)=1, (=0, i €S
€5
P(S)q;(S)>)\,-, i €S
Kuhn-Tucker condition (3.10) becomes,
Cik s, i€S.

2P(5)qi(S)—N)?
This optimization problem is the same as in [6], for which the
optimal qr(S)'s are
(CiE)'?
3 (CiE)”2

1€

arS)= [N+ P -S| [PES) (3.16)

where A(S) = Zieshi.

Observe that only allocations with P(S) > A(S) are
feasible, and that g*(S) is dependent on (PAYH, ---,
P(A%) through P(S).

From (3.2), (3.12), and (3.16), Problem II becomes

(CiEN? Y, (CED'2

€S

2(P(S;)—N(Sy))

s
min
P4k ;D1 jes,

subject to
2 P(A")j—-l, P(A"=0, k=1,2,-'-,a.
k=1

Kuhn-Tucker condition (3.13) becomes

<2 (c,z,)'ﬂ)z

=)

% 2(P(S) - M(S)?
if P(A%)>0;

seak
=,
>, if P(A%)=0.

Corollary 3.2: For the minimal expected weighted holding
cost problem, we have to solve only Problem II.

(k=1,2, -, 0

IV. THE GOLDEN RATIO PoLICY

In Section III, we derived a lower bound for the cost
function over all TDM policies, as well as desirable values for
the P(A*)’s and the p¥’s. According to the explapation there,
these values are optimal in an ideal system. In general, the
lower bound cannot be attained since it is impossible to
guarantee a uniform interallocation time for each node.
However, by using the golden ratio policy, [7], we are able to
allocate the slots in the best possible uniform manner. This fact
has been well established in [7] and [6]. In this section, we first
present the golden ratio policy and then show how it is applied
to our problem. Finally, we give some numerical results which
support our assertion regarding its efficiency.

A. Definition

Assume that we have N slots that are to be allocated among /
entities in such a way that no two entities will be allocated the
same slot. Letx; > 0,7 = 1,2, --+, [, 2!_, x; = 1, be the
fraction of slots to be allocated to entity i. Let Nand N;, i = 1,
2, -+, [, be integers such that [x;N| <= N; < [x;Nand Z!_,
N; = N where | x|([x]) is the largest (smallest) integer smaller
(larger) than or equal to x. (Note that limy~. Ni/N = Xx;). Let
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¢~ = (/5 — 1)/2 ~ 0.6180339887 (¢ ' is the golden ratio),
frac(y) = y — | y], @y = frac (jo ') and Ay = {a;lj = 0O,
1, --+, N — 1} (here, the rth smallest point in Ay is
associated with the rth slot).

1) The Golden-Ratio Policy: The golden ratio policy is a
TDM cycle of length N in which slots that correspond to the IV,
points {@;|Zi-1 N, = j < =i _| N,} € Ay are allocated to
entity i.

B. Application of the Golden Ratio Policy

The solution of the convex program in Section I yields the
desirable fraction of slots to be allocated to each transmission
group AX, k = 1,2, -+, a,and toeverynode i € S, S €
A¥, within each transmission group. Recall that the latter
proportions are denoted by p;““, and are given by Lemma
3.1a) and (3.14) for the weighted throughput problem, and by
Lemma 3.1a) and (3.16) for the weighted holding cost.

Once we have the optimal probabilities (P*(A*), and p **, i
€8S, 5S€E A k= 1,2, -+, a), we apply the golden ratio
policy in two phases. In the first phase, the / entities are taken
to be the partition groups A%, k = 1, 2, -+, a, and the
golden ratio is applied by taking X; to be P*(A%). As a result,
we obtain a TDM cycle in which each slot is allocated to
exactly one transmission group. In addition, the proportion of
slots allocated to transmission group A*, approaches P*(A*)
as the cycle length increases. Furthermore, the slots that are
allocated to each transmission group A*, are almost uniformly
distributed over the TDM cycle [7].

In the second phase, we aggregate the slots allocated to
transmission group A in the first phase, and for every S €
A* we take the nodes i € S to be the [ entities, and apply the
golden ratio by taking x, to be p;“" = q@*(S). As aresult, each
slot that has been allocated to transmission group A* in the
first phase, is now allocated to exactly one node i € S, for
every S € A,

Clearly, the golden ratio policy provides a conflict-free
TDM policy with all slots being allocated. Since the interallo-
cation times d ; under the golden ratio policy are well defined,
the weighted throughput is readily obtained from (2.1). As to
the expected weighted holding cost, we need the phase method
in order to evaluate the performance of the golden-ratio
policy. This has been analyzed in [6], and all the necessary
formulae are available there.

V. NUMERICAL EXAMPLES

In this section, we provide some numerical examples for the
performance of the golden ratio policy and compare it to the
upper bound for the weighted throughput problem. We
illustrate the results for two-station and four-station networks.
In all the following examples, the length of the TDM cycle N
is taken to be 1200.

A. A Two-Station Network

In the two-station network with broadcast conflict-free
transmissions, we have three node groups: S, contains all
nodes that are heard only by station 1 (say m; nodes), S,
contains all nodes that are heard only by station 2 (say n;
nodes), and. S; contains all nodes that are heard by both
stations (say 713 nodes). The maximal transmission partition is
Al = {S;} and A% = {S,, S;}. For this network, we consider
five cases with different sets of parameters.

The first three are as follows: (i) 1y = 5; n, = 5; ny = 10;
Gi) ny = 10; np = 10; ny = 20; Qi) ny = 3;mp = 733 = 10
where the arrival rates at all nodes are equal (\; = AV i), as
well as the weights of all sets S;, i = 1, 2, 3. In case (iv), n, =
5;np = 5;713 = 10; )\i = Nfori € S;,Sz, )\,' = 4\fori € S3
and all weights of the sets are equal. The last case, case (v) is
similar to case 1 except for the weights where W(S) =
W (S, = 2W(S3). The results are depicted in Figs. 2-4.

First, refer to Fig. 2 where P(A") is depicted as a function
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of \ [note that here P(4?) = 1 — P(A')]. The interesting
phenomenon here is that for cases (i)-(iv), there exists some
A* such that for A = A*, P(4!') = 0. Note that this holds,
even if the arrival rate at a node in A !'is four times the arrival
rate at a node in A2 [case 4)]. The reason is that by allocating a
slot to transmission group A2, the throughput can be up as
much as two units, while the throughput from an allocation to
group A! is at most one unit. Note also, that A* becomes
smaller as the number of nodes in Sy and §; increases.

The above phenomenon indicates that the total throughput is
not always the best measure of performance. It might result in
an unfair allocation where certain nodes will never transmit.
This is the primary reason for using the weighted throughput
criteria in Section II-C1). By assigning different weights to
‘different node groups [as we do in case (v)], we are able to
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compensate sinall transmission groups by larger weights. Asa
result, we obtain in case (v), P(4') > Oforany 0 < \ < 1,
since the maximum gain by any transmission is at most one
unit (in Fig. 2 the results are depicted only up to X = 0.35).

In Figs. 3 and 4, we depict the upper bound on the expected
weighted throughput along with the expected weighied
throughput obtained by using the TDM cycle that is generated
by the golden ratio policy. We note that the performance of the
golden ratio policy is extremely good; the difference between
the bound (that cannot be attained in most cases) and the
performance of the golden ratio policy is not greater than 2.5
percent. '

B. A Four-Station Network

Here we consider the broadcast conflict-free network
depicted in Fig. 5. Let n; be the number of nodes in node group
S; (see Fig. 5). In this example, we have ny = n; = n3 = ns
= ng = 5; Ny = Ng = Ng = 4; and n; = 3. The maximal
transmission partition is 4! = {Si, 53, Ss, Se}; A% = {51, S5,
Se}s A? = {81, Ss So}; A = {5, Ss, Ss}s AS = {Sh 57};
A8 = {8, Ss, So}; A7 = {Sz2, S¢}. We assume that the
weights of all node groups are equal and we consider two
cases. In the first case, all arrival rates at the nodes are equal,
and in the second case, there is some variability in the N;'s.

First, consider the case where all arrival rates at the nodes
are equal. The optimal probabilities P(A%) that yield the
upper bound on the throughput are depicted in Fig. 6. Notice
that as \ becomes larger, some probabilities are set to zero,
and for A > 0.285, only transmission group A ! (that contains
four node groups) is transmitting. The upper bound on the
throughput, along with the performance of the golden ratio
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policy are depicted in Fig. 7 [case (i)]. We note that for low-
and high-arrival rates the golden ratio has excellent perform-
ance. For medium values of arrival rates the golden ratio is
about 10 percent worse than the bound. Case (ii) that is
depicted in Fig. 7, corresponds to a set of arrival rates of the
form N; = o;A for some set of o; where the «;’s are taken so
that the coefficient of variation of the arrival rates at different
nodes would be significantly high. Again, we observe a very
good performance of the golden ratio policy. Similar results
are obtained for other set of parameters as well.

APPENDIX
A. Proof of Lemma 3.1
a) Let (p¥, 1 =< i = n) be the unique optimal solution to
(3.7a), (3.7b), and (3.7d). For every S, if P(S) > 0 define

p*" =p¥/P(S) = qi(S),i € S;if P(S) = Odeﬁnep*" =
1/|S| = q,(S), i € S where | S| is the number of nodes in set

-

Smce P(S) = 0 implies p¥ 0, i € §, it follows the
p*" ’s above are feasible and yleld the optimal p*’
b) This part is trivial.
c) As in the original convex program (3.7), every solution
(p,,IESSEA"k 1,2, ,a)to(39b)and(39d)
with some multipliers %, are optimal. From part a), there is a
strictly positive optimal solution p ** qi(S), i € S, that
solve (3.9b) and (3.9d). Since p* = P(S)q:(S), a solution
@i(S), i € S)to

P(AYD; (P(S)qi(S)=ak, i € S, 5 € AF (AD

exists and is also optimal.

Now, clearly if P(S) > 0 then every solution to (3.10) is
also a solution to (Al) and, therefore, optimal for the given
proportions (P(A4!), ---, P(A%).

B. Proof that the Feasible Region is Convex

Let 2 be the feasible region as defined by (3.7b)-(3.7d) and
(3.8),and letp = (py, P2; -+, Pn) be a vector in Q. To prove
that Q is convex, we have to show that for every p, § € Q and

0<a<,i¥ap+a-a)pyee.
Fori=1, 2,

, hlet

=Y, P(A"p, pi=Y, P(AMBL.

k=1

Define

P(A*)=aP(A*)+(1-a)P(A¥%), k=1,2,
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1/1S| if P(4*) =

For every S € A¥and i € S let pf
and

, if P(A¥)>0.

L _opEP(AR) + (1~ )PFP(AY)
Pi= B(a%)

Now, it is stral_ghtforward to verify that P =
Furthermore, P(AX), p*, k = 1,2,
(3.7¢) and (3.7d).

Also, it is apparent that if p and p satisfy (3.8), so does p.
This completes the proof that Q is convex.

=4 B(Akp*k.
-, a, satisfy conditions
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