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Tandem Packet-Radio Queueing Systems

MOSHE SIDI

Abstract—Tandem packet-radio systems are considered. The nodes of
the tandem have infinite buffers, they share a common radio channel for
transmisison of data packets and each node transmits whenever it has a
packet ready for transmission.

An approximate analysis is developed for an arbitrary tandem. The
approximation uses the exact results obtained for a four-node tandem and
is based on exploiting the special features of tandem systems. The
approximation is compared with simulation results and very good
agreement is observed.

I. INTRODUCTION

Tandem packet-radio systems have received some attention
in the literature [1]. A schematic figure of such a system is
depicted in Fig. 1. The tandem consists of N nodes having
infinite buffers that transmit data over a common shared radio
channel. Fixed-length data packets enter the system at the
nodes from corresponding sources. It is assumed that time is
divided into slots of size corresponding to the transmission
time of a packet and transmissions are started only at the
beginning of a slot. The nodes of the tandem have radio
transmitters with omnidirectional antennas and their transmis-
sion range is such that a transmission at node i(2 < i < N —
1) can be heard only by nodes (/ — 1) and ( + 1). Nodes 1
and N can be heard at nodes 2 and N — 1, respectively. The
final destination of all packets is a station (Fig. 1) that receives
the packets transmitted by node 1, and packets entering the
system at any node i are forwarded vianodes i — 1, i — 2,
+++, 1 till they finally reach the station. We assume that a node
can transmit only one packet in a given slot. Similar tandem
models but for point-to-point systems have been studied in
[6]-18].

In this paper we consider the statistical behavior analysis of
tandem systems in which each node transmits the packet at the
head of its queue, whenever its queue is nonempty. The
transmission of a node will be successful only if the two nodes
ahead of it in the tandem will be silent, i.e., empty. A packet
whose transmission is not successful (the feedback upon
success or failure is assumed to be instantaneous) remains at
the head of the queue at the respective node.

We start with a tandem where packets arrive only at node N
(the “‘top’’ node). Then we focus on a tandem with four nodes
where packets arrive to all four nodes from their correspond-
ing sources. The motivation for considering a four-node
tandem is twofold. Firstly, it is the simplest tandem where
channel reuse can take place (nodes 1 and 4 can both transmit
successfully if nodes 2 and 3 are silent). Secondly, it will serve
us as a crucial building stone in developing our approximate
analysis of a general tandem. Finally, we introduce the
approximate analysis of an arbitrary tandem. The approxima-
tion uses the exact results obtained for the four-node tandem
and is based on exploiting the special features of tandem
systems. The approximation is presented for independent
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Fig. 1. Tandem system with N nodes.

Bernoulli arrival processes to the nodes. Simulations that were
conducted show very good agreement with the proposed
approximation.

II. N-NODE TANDEM: PACKETS ARRIVE ONLY AT THE TOP
NODE

In this section, we consider an N-node tandem in which
packets arrive only at node N. It is easy to see that the only
node that can have more than one packet at any instant is node
N. All other nodes (1, 2, -, N — 1) can have at most one
packet at a time.

Let a(i) i = 0, 1, 2, - - be the probability that i packets
arrive at node NN during a slot, and let F(z) = Zr, a(i)z’ be
the p.g.f. of this arrival process. Let r = X7 ia(i) be the
arrival rate at node N. Then r is the arrival rate into each node
of the tandem. Let the steady-state p.g.f. of the queue length at
node N be Gn(z). Gn(2) can be obtained by analyzing node N
as a single discrete-time queue with arrival process with p.g.f.
F(z) and a packet leaves the node (if any) every third slot. The
result is:

(1-3rY(1-2)

FX2)-z
and the condition for steady-state is that » < 1/3.

It is clear that the average number of packets at node i(1 < §
=< N — 1)is L; = r and the average time delay at these nodes

is one slot (no queues at the nodes). £y—the average number
of packets at node N is obtained from (1):

6r:+3o
2(1-3r)

Gn(2)=F(2) )

Ly=r+ 2)
where ¢ = (d*F(2)/dz?)|;-\

Applying Little’s law [4] to the whole tandem we obtain the
average time delay in the system — 7.

+6r+30/r 3
2(1-3r) " 3)

The first term in (3) expresses the total time needed for a
packet to traverse the tandem and the second term expresses
the average waiting time at node N.

III. FOUR-NODE TANDEM: GENERAL ARRIVAL PROCESSES

In this section, we consider a four-node tandem when the
arrival processes into the nodes are arbitrary. Let 4;(t)1 < i
=4¢=0,1,2, - be the number of packets entering node i
from its corresponding source in the interval (¢, ¢+ + 1). The
joint input process {A4,(£)}{_, is assumed to be a sequence of
independent and identically distributed random vectors with
integer-valued elements. Notice that we allow the arrivals to
different nodes to be dependent. Let the corresponding joint
p.g.f. of the input arrival processes be F(z) = E{IT}_, z/®}
where 2 = (24, 23, 22, 21)-

A. Steady-State Analysis

Let L{(f) 1 <= i=<d4r=0,1,2, - be the number of
packets at node / at time ¢. Obviously, under our assumptions,
{Li("}%, is a discrete-time discrete-state irreducible and
aperiodic Markov chain. To describe its evolution we need the
following. Let Ui(t) 1 < i =< 4,¢t =0, 1,2, --- be binary
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valued random variables that indicate whether node / has
successfully transmitted a packet during slot ¢ (U;(z) = 1) or
not (U;(t) = 0). Consequently, if for notational convenience,
weset Lo(t) = L_(¢t) = Oforallf, wehaveforl =i =< 4,¢
=0,1,2, ---:

Liy®)=L;_(6)=0, L;(t)>0
otherwise

Uir) = { . )

From the description of tandem systems it is easy to see now
that for ¢t = 0, 1, 2, * - - the system evolves according to the
following equations:

Lit+1)=A0)+ L) - Ui@)+ Uisn(t)  1=i=4 (5)

where Us(¢) = 0. In other words, (5) states that the number of
packets at node / at the end of slot £ + 1 is the sum of the
number of packets at that node at the end of slot ¢ and the
number of packets arriving at the node during slot 7. In
addition, if node i(i + 1) transmits a packet successfully
during slot ¢, then the content of node i is decreased
(increased) by 1.

Consider now the steady-state joint p.g.f. of the queue
lengths G(z) = lim. E{IT}_, zL®O} . Here we assume that
the Markov chain {L;(£)}{_, is ergodxc so that the above limit
exists. In our case this assumption transforms to the condition
that G(2)|y-zp=z3=24=0 > 0.

From (4) and (5), using a standard technique we obtain:

G (24 23, 22> 21) = F (24, 23 22, 20{ G(0, 0, 0, 0)
+[G(z4, 0, 0, 0)— G(0, 0, 0, 0)]z, 'z3
+1G (s 23, 0, 0,) = G(24, 0, 0, 0)]z; ',
+{G(z4, 0, 0, 2)— G(z4, 0, 0, 0)— G(0, 0, 0, ;)
+G(0, 0,0, 0,))(z; 232, ' —z; 1)
+[G(24, 23, 22, 0)— G(24, 23, 0, 0)12; 'z
+[G (24 23, 22, 1) — G (24, 23, 22, Oz '} 6

The implication of each term in (6) should be clear; e.g., G(z4,
0, 0, 0) — G(0, 0, 0, 0) represents the case where nodes 1, 2,
3 are empty and node 4 is nonempty, and in such a case a
packet is moved from node 4 to node 3 as shown in the term
2, 'z3. Other terms in the braces can be mterpreted similarly.
The factor F(zs4, 23, 22, Z1) stands for changes in queue sizes
due to the independent joint arrival process.

The complexity of the problem lies in the fact that in (6)
G(z) is expressed in terms of five boundary functions G(zs, 0,
0; 0)1 G(Z4, 23, 09 0)’ G(z4) 235 22, O)’ G(Z4, 0’ 0’ zl) G(O’ o’ O:
z)) and the constant G(0, 0, 0, 0).The method for determining
these unknown boundary terms is to use the analytic properties
of the p.g.f. G(z) in the polydisk |zi} < 1forl =i =< 4. Due
to space limitations, we omit the cumbersome derivations and
the interested reader is referred to [5]. We would just mention
here that the condition for steady-state for a four-node tan-
dem is r, + 2r, + 33 + 3ry < 1 where r; = 9F(z)/

az,-lz,=12=z3=z4=1.

B. Average Queue Lengths and Time Delays

From the joint p.g.f. G(z) any moment of the queue lengths
at the various nodes can, in principle, be derived. Specifically,
the average number of packets atnode i (1 < i < 4) is L; =
3G(2)/8%;i|7 =zp=23-24=1- In addition, applying Little’s law
{4], we obtain the average time delay at node i(1 < i < 4)
whichis 7; = L;/ T{_, rj, since the total arrival rate at node / is
Z‘ i Fmally, the total average delay in the system is 7 =
2“ , Li/gh,
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IV. N-NODE TANDEM: APPROXIMATE ANALYSIS

The analysis of a four-node network is quite complex
because of the need to determine six boundary terms (five
boundary functions and one boundary constant) in order to
obtain the joint p.g.f. of the queue lengths at the nodes.
Clearly the joint p.g.f. does not possess a product-form,
therefore no decompositions are possible. It is also clear that
the analysis will become much more complex (if possible at
all), as the number of nodes increases, since the number of
boundary terms to be determined will also increase.

To circumvent this difficulty, we propose here an approxi-
mate analysis method for obtaining average quantities such as
queue lengths and time delays in an arbitrary tandem. The
rationale behind the proposed approximation is that for
approximating the behavior of a node in the tandem, it might
suffice to take into account only those nearby nodes that
directly affect that node. The effects of all other nodes of the
tandem might be aggregated in some appropriate manner. To
be more specific, the behavior of a node { in an N-node tandem
system, can be approximated as the behavior of that node in a
four-node tandem (and here is where we use our results from
Section III) consisting of node i/ and its nearby nodes that
directly affect it, namely node / + 1 that feeds it and nodes
i — 1, i — 2 that interfere it. The effects of upstream nodes i
+ 2,i+ 3, , N and downstream nodes 1, 2, ,i— 3
will be aggregated by changing relevant parameters at nodes ¢/
+ 1 and i — 2, respectively.

To formally introduce the approximate method, let us
assume that the arrival processes into the nodes of the tandem
are independent, namely F(z) = Hf; . Fi(z;). In addition, in
order to facilitate the presentation of the approximation, we
further assume that the arrival process to node i is a Bernoulli
process, i.e., Fi(z;)) = zir; + 1 — r;.

Let us now consider a node i(i = 4) in a tandem of N nodes.
We assume that N > 4 as for 4 nodes we obtained exact
results. As explained above, the basic idea of the approxima-
tion is to use the results of Section III by considering nodes
i+ 1,i,i — 1,i — 2 as the four-node tandem and changing
the arrival processes to nodes { + 1 and i — 2 so that the
effects of all other nodes of the tandem on node / are captured.
Specifically, we associate nodes i + 1,7, i — 1,i — 2 with
nodes 4, 3, 2, 1 of Section III, respectively. The arrival
process to node i — 2 should aggregate the effects on node i of
packets traversing nodes 1, 2, -+, i — 3. Accordingly, it is
modified to,

i-1
Fiozi)=]] Foi9zi-2) )
i=1

where 6;(i) = 1; 6,(i) = 2foralli = 4. §;(4) = 1 and for all
i=56_4()=1;6;()) = 33 =< j=i— 2. The reason for (7)
is that packets originated at nodes i, i/ + 1, , N, when
traversing downstream nodes { — 3, i — 4, , 1, do not
affect node /. §;(i) indicates the number of slots used solely by
a packet originated at node j while traversing the downstream
nodes. For instance, 65(4) = 3 because after three slots, a
packet originated at node 6 arrives to node 3 and then, while
the packet is transmitted by node 3, another packet might be
forwarded from node 6 to node 5.

To aggregate the effects of upstream nodes i + 2, i + 3,
-+ -, N, the arrival process to node i + 1 is modified to:

Fii(Zis)=Rin1Zii+1-Riyy ®

where R;,1 = EN_H r.
Remark: It is not too difficult to see that the proposed
approximation coincides with the exact solution if packets

arrive to the “‘top”” node only.
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Fig. 2. Five-node tandem: Approximate analysis and simulation (r; = r
1 < i < §; total throughput = 5r).
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Fig. 3. Eight-node tandem: Approximate analysis and simulation (r; = r

1 = i < 8; total throughput = 8r).

The results calculated by using our approximation are
compared to those obtained from simulations in Fig. 2 for a 5-
node tandem and in Fig. 3 for an 8-node tandem. Each point in
the simulation represents operation of the tandem for 250 000
slots. In the tandems that we simulated we used r; = r for all i.
In the figures we plotted the total average time delay as a
function of v the total throughput of the system. In Fig. 2 v =
Srand in Fig. 3 v = 8r where r is the arrival rate to each node
df the tandem. The figures manifests very good agreement
between our approximation and the conducted simulations for
all throughput values.

REFERENCES

[11 Y. Yemini, ““On channel sharing in discrete time packet-switched
multi-access broadcast communication,”” Ph.D. dissertation, Comput.
Sci. Dep., UCLA, Dec. 1979.

[21 M. Sidi and A. Segall, “‘Structured priority queueing systems with
applications to packet-radio networks,” Performance Evaluation,
vol. 3, pp. 265-275, 1983.

[3] E. T. Copson, Theory of Functions of a Complex Variable.
London, England: Oxford University Press, 1948.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-35, NO. 2, FEBRUARY 1987

[4] 1. D. C. Little, ““A proof for the queueing formula L = AW,”” Oper.
Res., vol. 9, pp. 383-387, 1961.

[5] M. Sidi, ““Tandem packet-radio queueing networks,”” MIT Rep.,
LIDS-P-1375, May 1984.

[6] ©O.J. Boxma, ‘“‘On 4 tandem queueing model with identical service at
both counters,”” Adv. Appl. Prob., vol. 11, pp. 616-643 (part 1), pp.
644-659 (part 2), 1979.

[71 M. Kaplan, ““A two-fold tandem net with deterministic links and source

~interference,” Oper. Res., vol. 28, pp. 512-526, 1980.

[8] M. Shalmon and M. Kaplan, ‘‘A tandem of queues with deterministic

service and intermediate arrivals,”” INRS Rep. 83-15, Apr. 1983.

0090-6778/87/0200-0248$01.00 © 1987 IEEE



