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Abstract

We introduce a new service discipline, called the synchronized gated discipline, for
polling systems. It arises when there are precedence (or synchronization) constraints
between the order that jobs in different queues should be served. These constraints are
described as follows: There are N stations which are "fathers" of (zero or more) synchronized
stations ("children"). Jobs that arrive at synchronized stations have to be processed only
after jobs that arrived prior to them at their corresponding "father” station have been
processed. We analyze the performance of the synchronized gated discipline and obtain
expressions for the first two moments and the Laplace—Stieltjes transform (LST) of the
waiting times in different stations, and expressions for the moments and LST of other
quantities of interest, such as cycle duration and generalized station times. We also
obtain a "pseudo” conservation law for the synchronized gated discipline, and determine
the optimal network topology that minimizes the weighted sum of the mean waiting
times, as defined in the "pseudo"” conservation law. Numerical examples are given for
illustrating the dependence of the performance of the synchronized gated discipline on
different parameters of the network.

Introduction

231

The term polling system often refers in the literature to a system where a single
server serves jobs from different queues (channels) in a predetermined order such as
cyclic order or polling table with generally nonzero switchover times (see e.g.
Takagi [15]). The service disciplines most often studied are the exhaustive, gated and
limited service regimes:
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» Gated discipline: The server serves only those jobs which are waiting at the
station when it is polled. The jobs that arrive during the service time are set
aside to be served after the next polling instant to that station.

» Exhaustive discipline: The server serves all jobs in each queue until it is
empty before moving to the next queue.

» Limited service: At each queue, service is completed if the number of jobs
that have been served equals some threshold or if the queue empties before the
threshold was attained.

We propose a new service discipline that arises when there are precedence (or
synchronization) constraints between the order that jobs in different queues should
be served. These constraints are described as follows: There are N stations which are
"fathers" of (zero or more) synchronized stations ("children"). Jobs that arrive at
synchronized stations have to be served only after jobs that arrived prior to them at
their corresponding "father" station have been processed.

We suggest the following "synchronized gated" service discipline in order to
meet these constraints: The server moves cyclically between the stations. When it
arrives at a "father" station, it serves only those jobs which are waiting at the station
when it is polled, as in the standard gated discipline. In addition, it marks upon
arrival at that "father” station the jobs present in all its "children" stations. When it
arrives at a synchronized station (a "child"), it serves only the jobs that were marked
when the server last arrived at its "father" station. In both cases, jobs that are not
served remain in the queues. Similarly to the standard gated or exhaustive schemes,
the server keeps switching from one queue to the next even when there are no jobs
present in the system.

An additional issue that is crucial for polling systems is the need for a service
scheme that will allow designers to prioritize the different queues and thus affect and
optimize overall system performance. In most polling models, it is common to prioritize
the queues by controlling the amount of service given to each queue during the
server's visit. Common service policies are the gated, exhaustive and limited service
disciplines, each with its advantages and disadvantages. Other schemes are the binomial
gated presented by Levy [11] and the globally gated scheme introduced recently by
Boxma, Levy and Yechiali [7], which possess mechanisms for prioritizing the queues.
Both schemes can be used to optimize the operation of the system at the design stage.
In one sense, the "synchronized gated" scheme is another scheme for prioritizing the
queues and optimize the operation of the system, and either the gated scheme or the
globally gated scheme are both special cases of it. In the standard gated discipline,
there are no synchronized stations. In the globally gated discipline, there is one
selected station (one "father") such that at each polling instant to that station, gates
are closed in all the stations (all other stations are synchronized with this "father").
In all the stations, the jobs that are served are only those that were present at the
polling instant of the selected station. We note that the "synchronized gated" scheme
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is more flexible in prioritizing the queues to achieve a desired performance (see ¢.g.
fig. 10 of numerical example number 3).

Different models for precedence constraints have been developed and studied
in the past years, see e.g. [1—12]. Our paper is the first to analyze several precedence
constraints that may appear in polling systems. These constraints exist when jobs
that arrive at synchronized stations may need data obtained from jobs that arrived
prior to them at their corresponding "father" station in order to be processed. For
example, consider a polling system (say a token ring network) which consists of
N nodes. Packets that arrive at each node belong to two different protocols (A) (say
the TCP) and (B) (say the X.25). The requirements may be to serve packets which
belong to protocol (A) before packets from protocol (B) in the whole network. This
may be due to the large overhead required from the server when it switches from
serving one protocol to the other protocol. That is, packets from protocol (A) have
priority over packets from protocol (B). If we use the gated discipline to serve
packets in the different queues, then this priority can be implemented in the following
way: The service is given in two passes. In the first pass, when the server arrives
at a node it closes a gate in that node and serves only packets from protocol (A)
that were found in that node upon its arrival. In the second pass (the next polling
instant), it serves only packets that belong to protocol (B) that it found when the
gate was closed in the first pass. This scheme gives us the ability to prioritize
sources in a distributed manner. Now, the "synchronized gated" scheme can be used
to analyze such a two-passes system, where we define an equivalent network in
which there are N "fathers" situated in subsequent positions in the network, and N
"children" situated between "father" station N and "father" station 1. For each i,
i=1,2,...,N, the "father" of "child" station N; is "father" station i. The arrival
processes to the "father" and "child" stations are only the arrival processes from
protocols (A) and (B), respectively, to the corresponding stations in the original
system, The above arguments can be extended to any number of priority classes
over the whole network. The above example shows the flexibility and the generality
of the "synchronized gated" scheme over other schemes in describing prioritization
in polling systems.

In section 8, we show that a priority polling system with vacations is a special
case of the "synchronized gated" system. In this system, jobs in each node are
served according to fixed priorities and the server takes vacations between the
service of two subsequent priority classes.

Our main goal is to obtain expressions for the expected waiting times at the
different stations. An efficient method to do so, that proved to be useful for the
standard gated discipline (see e.g. [8,9]), is to first characterize the statistics of the
"station times" (which are the times between the polling instants of two consecutive
stations). This method relies on the fact that the vectors of the station times in the
last cycle form a Markov chain. In our case, we define a "station time" to be the
time between the polling instants of two consecutive "father" stations. The fact that
we may restrict ourselves to these quantities (instead of defining station times for
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all stations) follows from the fact that "gates” are closed only when visiting a
“father" station. This allows us to obtain a reduced number of equations for the
Laplace transforms and for the second moments of the station times, and to obtain
explicit expressions for the first moments. Unlike the standard gated discipline, the
vectors of the station times in the last cycle do not form a Markov chain. We
overcome this problem by enlarging the state vector to include station times of the
last two cycles.

We obtain a "pseudo” conservation law for the "synchronized gated" discipline,
and determine the optimal network topology that minimizes the weighted sum of
the mean waiting times obtained in the "pseudo" conservation law. _

Among other things, we show that for any station the expectation of the
number of jobs present in its queue when the station starts to be served is greater
than (for "child" station) or equal to (for "father" station) the expectation obtained
for the standard gated service discipline.

We faced a nontrivial problem in the notation when trying to enumerate the
different stations in a way that grasps both the (cyclic) order in which they are
served as well as the order according to the precedence constraints. We present an
enumeration that partially meets these goals and yet is simple and convenient for
the subsequent analysis.

The structure of the paper is as follows. In section 2, we describe the model
together with the assumptions and several definitions and notations used throughout
the paper. In section 3, we describe the evolution equations of the system and derive
a recursion equality for the joint generating functions of the station times. In section
4, we derive the first moments of the station times in steady state, and obtain a set
of N(2N - 1) linear equations from which the second moments of the station times
in steady state can be computed. These moments are then used in section 5 to obtain
the average waiting times in the different stations of the network. In section 5, we
derive the Laplace transform and the expectation of the waiting times for jobs in
"father” and in "child" stations. In section 6, we derive a "pseudo" conservation law
for a polling system with synchronization constraints and compare it with the
standard gated discipline. We also determine the optimal network topology with
respect to the conservation law. In section 7, we give three numerical examples of
polling systems with synchronization constraints for illustrating the dependence of
the performance of the "synchronized gated" discipline on the different parameters
of the network. In section 8, we summarize and discuss possible extensions and
applications of our results.

2. The model and notations

The polling system has M stations, of which N are "fathers" and the rest are
"children”. We label some arbitrary father station by 1. We then enumerate the rest
of the father stations according to the (cyclic) order of service between them; they
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are thus given the numbers 2, . .., N. Let m(i) denote the number of child stations
that are situated between (the father) station i and the subsequent father station.
These stations are indexed by the set {i;,j=1, ..., m(i)}; the subscript j is given

according to the order in which they are served Sometimes, for convenience we
shall use i; to denote the father station i. For each station i;, j # 0, we denote by
5(i;) the father of that station, and we set sip) = 1.

The stations are served as follows. The server moves cyclically between the
stations. When it arrives at a father station, it serves only those jobs which are
waiting at the station when it is polled, as in the standard gated discipline. In
addition, it marks upon arrival to that father station the jobs present in all its
children stations. When it arrives at a synchronized station (a child), it serves only
the jobs that were marked when the server last arrived at its father station. In both
cases, jobs that are not served remain in the queues. Similarly to the standard gated
or exhaustive schemes, the server keeps switching from one queue to the next even
when there are no jobs present in the system.

The queue capacity at each station is infinite. The arrival process at each
station i; is independent and Poisson distributed with arrival rate AJ The service
times are all independent; their generating function in the i;th station is denoted by
Bj(s) and first and second moments are denoted by b;, and b, respectively. The
time it takes between the end of service in station j; until the polling instant in the
next station is called the z -th walking time. Let d;, be a random variable (RV) that
stands for this time. We assume that the walking times are mdependent and their
Laplace transform, first and second moments are denoted by Dj(s) d and dfz)
respectively; moreover, these times, the interarrival times and the service durations are
mutually independent. We further assume that for each station i;, 1 <i < N, 0 <j<m(),
its first and second moments of the service times and the walking times are finite.

Let

N m()

ijEij and p 2 zpl,

i=1 j=

Throughout this paper, we make the standard stability assumption, i.e. p<1.

In order to obtain the evolution equations for the system, we look at the
random times 7(k), which represent the kth polling instant of a father station. Thus,
a father station that is polled at 7(k) is also polled at times 7(k + N), T7(k + 2N), and
so on. If station i is polled at time 7(k), we define by 7(k;) the first time that station
i; is polled after time (k). With some abuse of notation, we shall refer to station
k (and k;) as the station that is visited at time 7(k) (7(k; ), respectively). If s(k;) =i,
then s(k ) will denote the largest time index k" < k such that station { is v1s1ted at
time T(k ). The quantity 7(3(k;)) is thus the largest polling time of station s(k;)
before 7(k;). With some abuse of notation, we shall use m(k) to denote the number
of child statlons that are situated between (the father) station visited at 7(k) and the
subsequent father station.
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Generalizing the definitions for the standard gated discipline [8], we define
for any father station k the station time 6, as the (random) time it takes to serve
that station as well as all the subsequent child stations ki,j=1,...,m(k), plus the
overall walking time between the kth and the (k + 1)st statlon

Let d(k) be the RV that represents the total walking time between the father
station k to the next father station. Its generating function is denoted by D} (s). For
agiveni=1,2,...,N, note that d(i + IN), =0, 1,2, ..., are i.i.d. RVs. Let df
(fstands for a father station) denote a generic RV with that distribution. Its generating
function is denoted by D}(s), and the first and second moments are denoted by
d;, and di?, respectively. Note that Di(s) = I17} D,j(s). Let

def N omo — def (2) def 2
d= 3% Yd , d=Eld, d%%= Ed.
i=1j=0

3. The generating functions

3.1.  THE EVOLUTION EQUATIONS

The state of the system at the kth polling instant is the following vector of
2N -1 station times:

Bhe={6_an_2 Ok—v(ZN—?})""’ek—l’Ok}- (D

Comparing this choice of state to the one in the standard gated discipline (see [8]),
we note that whereas in the standard gated discipline only station times from the
previous “cycle" are considered, we need here station times from the two previous
cycles (the number of station times considered may be reduced, as explained later
in section 8). The need for those will become clear in the anaysis to follow. However,
we do not need to define and incorporate station times for all the M stations in order
to obtain the dynamics of the system in father stations.

To describe the evolution of the system at the polling instants, we
need the following definitions. Let T} be an RV that stands for the time
it takes to serve station k; and denote T() % Z . Note that T" is the
time it takes to serve the jobs that arrived at station k durmg the statlon times
Gs(k) N> 9~(k) Nalro--s Bs(k) 1. This fact motivated the incorporation of station
times from more than one cycle into the state of the system. To obtain the
state of the system at the (k + 1)st polling instant, we need to compute the (k + 1)st
station time which is given by the overall service times of the stations which were
visited by the kth polling instant and the (k + 1)st polling instant (given by T(k + 1))
and the overall walking times between these polling instants (given by d(k + 1)).
Then, the state of the system at the (k + 1)st polling instant is:
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Beu1= {6 v 3 Oe_an-ayr -+ -+ Ok_1s O Tk + 1) + d(k + 1)).
Note that the values of 2N — 2 components of ¥, and of ¥, , ; are common.

3.2. THE JOINT GENERATING FUNCTIONS OF THE STATION TIMES

def
For x € {xg, x1,..., Xy _,}, define

. def 2N-2
G, (x) = E exp| — 2 Xj Or-j |,
j=0

where x;, 0 <i<2N -2, are variables having nonnegative real parts. Also define
the following indicator functions:

)

lk(j,n)déf{l* k=St < n<k=-Sk)+N-1,
0

, otherwise,
n=0,1,...,2N =2, j=0,1,...,m(k).

LEMMA 1

The generating functions G,(x), k=1, 2, ... satisfy the following recursion:
Gir1(x) = Dty (x0)Gi (@), (3)

where a &' {ag, ap, ..., 0y _5) is given by:

m(k+1)
Oy =Xppp - 1{n#2N-2}+ Y 1k+1(j,n)}v(k+1),-(I‘sz+1)j(xo))-

j=0

Proof

IN-2
Gie1(x) =E exp|— ), xj9k+1—j:l
L Jj=0

2N-=-2
=E exp(— D> X 0k_jy1 —xo(T(k+ 1)+ d(k + 1))]
ji=1

2N-2

j=1

= FE expl-xod(k + 1)]E{E (exp[— Xj0k_js1—=x0T(k+ 1)]

)

=Dk*+1(xo)E{eXp[— Y % ek_,-H]E(exp[—xoT(H1)]|19k)}.

Jj=1
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Since T(k + 1) &' £V 1#+ 1 and since the summands are independent given ¥,
we obtain:

IN=2 mk+1)
G/:+1(x)=Dk*+1(xo)E{eXp[— Y xj 9k—j+1:| II E(CXP[—XOT}HI]IW)}- “4)
=1 j=0

J

The last expression can be evaluated by direct integration (see cf. [8] for the more
simple case of standard exhaustive discipline). However, this cumbersome calculation
can be avoided by recalling the well-known solution of the following auxiliary
problem.

Aucxiliary problem: Assume a Poisson flow of jobs with rate A. Let T be the
(random) time that it takes to serve those jobs which arrived during the random time
L whose Laplace transform is L*(s). The service times of different jobs are i.i.d.
random variables with Laplace transform B*(s); these times, the interarrival times
and L are mutually independent. Then the Laplace transform of the distribution of
T is given by

T*(s) = E exp{—sT} = L"(A— AB*(s))

and as a special case, E(exp{—sT} |L =) = exp{—(A— AB"(s))!}. Using this fact,
we obtain from (4):

IN-2
Gk*+1(x)=D/:+1(xo)E{eXp - xjek—j+1]
j=1

mk+1)

. H exp
j=0

N
—Ak+1); (1 —B:kn),-(xo)) Z 9s‘((k+1),-)—1]}
i=1

IN-2
XjOr-j+1
=1

= Dg1(x0)E exp{—
j

m(k+1) N
- Y [1(k+1),-(1—3?k+1),-(x0))2 9§((k+1)j)—l]-

j=0 1=1

The theorem then follows by using the definition in (2), and the o, are the coefficients
that multiply the appropriate €'s in the last expression. g

Next, we obtain the steady-state statistical behavior of the vectors of station
times. In what follows, quantities in steady state are denoted by a tilde. Assume that
at 7(1) station 1 was polled. Under standard stability conditions (p < 1), for each
i, 1<i<N, ¢,y converge in distribution to some random vector B, as [ — oo} we



A. Khamisy et al., Polling systems with synchronization constraints 239

denote its components by 5,-_ j»J=0,...,2N -2 and the corresponding Laplace
transform by G;(x), i.e. '

j=0

_ dof IN-2
Gi(x) = E exp| - 2 xj0i_; |

Note that for each i, 1 i< N, §;_, has the same distribution as g;.

In order to obtain recursive expressions for G;(x), we define the following
indicator functions. Leti=1,2,...,N,n=0,1,...,2N-2,j=0,1,...,m@). If
s(i;) < i, then
I, i-s@ij)sn<i-s@@)+N-1,

0, otherwise.

I'(jym = {

If 5(j;) > i, then

1,.,‘.(_ ) 1, i+N—S(ij)SnSi—s(ij)+2N—1,
Sr= 0, otherwise.

THEOREM 2

The generating functions (N}‘-(x), i=1,...,N, can be computed by solving
the following set of equations:

Giv1(¥)=Dry, (x0)Gi(@),  i=1,2,...,N, (5)

~ def ~ @~ ~ . N
where @ = {0, 0, ..., 0y _,} is given by:

m(i+1)

Op=Xper - Hn#2N=2}+ Y T(j,mAus1y, (1= Bisy, (x0)). (6)
i=0

Proof
Follows immediately from lemma 1. O

Remark

In (5) and (6), we understand by i+ 1 to be equal to 1 when i = N.
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4. The moments

4.1. THE FIRST MOMENTS

Let C be the RV which represents the i;th cycle duration in steady-state
regime, i.e. the time it takes between the polhng of station i; until the next time it
is polled. Clearly, E[C ] E[C .] does not depend on | or J. Let c(k) be the RV
which represents the kth cycle duration. Let o(k) 4 ¥N-4 d(kN + n), i.e. the total
walking time during the kth cycle.

PROPOSITION 3
The expectation E[C] satisfies

E[C] = —El-— (7

for ergodic cyclic polling systems with arbitrary service discipline, provided that

(i)  the server does not idle (except for the walking times),
(ii)  with probability one,
k

im + Y c() = EIC], lim 26(1)_

ke K =1

Proof

Since the system is ergodic ( p < 1), and an amount of work p per time unit
is offered to the server, we have that the fraction of time during which the server
is busy is equal to p. We show below that the fraction of time during which the
server is not serving is equal to d/E[C], from which we obtain

which establishes the proposition. It remains to show that the fraction of time during
which the server is not serving is equal to d/E[C]. The quantity is given by

k k
li im 1 —
Ly lzl o0 _ kh_l,nm k 1§1 oD _d
= - = :
lim z o)  lim L ¥ () EIC] 0O
k—)oc -—1 k—)oo 1=1 '

Conditions (i) and (ii) of the proposition elearly hold in our case.
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We are now ready to calculate the expectations of the station times:

m(k) N
E[0;] = E{E[0;|0¢_11} = E[d(k)] + Zpk E[os“,, 1]

which in the steady-state regime yields

- _ om() _ 4
E[0:1=d,+ Y, p;,EIC] = 4, P T, i=1,2,...,N, (8)
j=0

where in (8) we define

e M)
p=_2

Note that for each i, i=1,2,...,N, E[8,_,] is deﬁned fori=1,2,...,2N-2,
where

_ El6y+iotl; —~(N-1)<i-1<0,
E[6;-11=1 . ©)
El@nyi1}; -@QN-3)<i-I<-N.

4.2. THE SECOND MOMENTS

In what follows, we shall use the following notation: For two integers i and

j, let
] = i—j+2N, otherwise.
Define fori=1,...,N, j=1,..., 2N, the following second central moments,
wr |EWBi—EB:)(6;—E6;)]; J<i,
ri = . o ~ ‘ (1)
E[(6;-E0;)(0;-2n—-EO;)]; j>i+]1,
and define
def (i)~,'
pi(N= XTI+, . (12)
1=0

We further define for i=N+1,N+2,...,2N, i—-j#2N-1
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o ri-Nyj+Ny» 1SjSN,
= (13)
Ti-N)(j-N)» N+1<j<2N.

rl.j

Note that, in the above definition of 7;;, 6 corresponds to a station time that comes
before the station time 6 Also, note that r; and r;; need not be equal.

THEOREM 4

Using the definitions in (10)—(13), the second moments of the station times
in steady-state regime can be calculated by solving the following N(2N — 1) equations:

( 2N -1 i-1
Y P M+ D P M)+ D, P (MY J<
m=1 m=j

m=i+1
i ) (14)
il 2N i-1
Z pi(m)rjm+ z pi(m)rmj+ 2 pi(m)rmj; Jj>i+1;
m=i+1 m=j m=1

L

2N=2 (m(@) _ ~
ry =var(d, )+ Y, (2 1, n)x,,b,(?}b:[ei_,,_l]

n=0 \I=0

+ Z p; (T +p, <z+1)2p G (15)

j#ll+1 ];tt

The proof of theorem 4 appears in appendix A.

5. The waiting times

In this section, we assume that service in each queue is given according to
the first-come-first-serve (FCFS) discipline. Standard techniques can be used to
compute the Laplace transform and the expectation of the waiting times for jobs in
father stations, using the previous expressions for the Laplace transform of the
station times (see e.g. [8] or [9]). For the synchronized stations the situation is more
complex, and we obtain the distribution of the waiting times through a similar
method to the one used in [15].
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5.1.  WAITING TIMES IN THE FATHER STATIONS

Let W; denote the waiting time at an arbitrary moment in steady-state regime
in the father station i, i=1,2,..., N, and let W,-*(s) denote its Laplace transform.
Let C;'(s) denote the Laplace transform of the ith cycle duration in steady-state C;,
i=1,...,N. We have:

* def [ [ N ]:I
C/'(s) =Elexp{-sC;}] = E| exp|~s Y, 0;_
I=1

=G(x) (16)

Xg=XN41=XN42=. =Xy 2=0"
X =XQ=...=XN =5

The Laplace transform of the waiting time is then given by

1 CMMAi—AiBI(s)]-C(s)
" E[C]  s=Ai+AiBI(s)

and the expectation of the waiting time is given by

1+p; _ (1+p;)var(Cy)
+ ,
2 2E[C]

E[W;]= E[C]
where

var(C;)

AL e R

i-1 2N n—1 i—-1 2N n—1 2N i-1
_ ( T ot St Y rm,,]+ ( v rnm+zrmn+z_rmn).
m=i { m=n m=1

n=i+N\m=i+N

5.2.  WAITING TIMES IN THE SYNCHRONIZED STATIONS
In this subsection, we compute the Laplace transform and the expectation of
the waiting times for jobs in the synchronized stations, namely, for the stations:

i, i=1,2,...,N, j=1,...,m(@).

The formulas we obtain for these quantities hold also for jobs in the father stations.
In order to proceed, we define the following random variables in steady-state regime:
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L; = the number of jobs that a job departing from station i; sees at station i;;
def

w, < the waiting time at an arbitrary moment in station i ;
d .

x5 %= the number of jobs in station i; at the polling instant to that station;

def . . —_ S . .
= the number of jobs in station i; at the polling instant to its father s(i;).

Let E(i ) d——gfs(i ) =N -1{s(i;) > i}, and define an empty sum to equal zero.

We define the RV d;_, ;to be the total walkmg time from station i to station J;. Let

D; _, j(s) denote its LST Then, D} _, i®= H’ OD (s) Define the moment generatmg
function

def g
Q;;(2) = E[2"].
In appendix B, we compute Q,-j(z) and obtain
0;,(z)
Xy Xii-X' X
* . o A "(')_ i sGj) | — i
_Bi (i~ iy 2) E[(ij (hij = i) ) 020 ] B[] an
E[X;{ij)] B} (Ai;— Ai;z) -z
The waiting time distribution is related to Q ij(z) through
Qi; (2) = Wi (i, = Ai; 2) B, (Aiy = Ay 2). (18)
Note also that
EI:XS(l ):I = E[E (X;éij)!ﬂs(ij)—l ]:|
sUp-N |
=E|d; Y, 6/|=2;E[Cyqy]=AiEICL (19)
1=5(G)-1
Using (17)-(19), we obtain
Wi (s)
Xij._ ;.” i i
E[(B;*j (Ai; - Ai; Z)) L ZX"j' X’J“f)} —El:zx‘j] eu
1 z=1-s/Ai; z=1-5/2i; _(20)

= E[C] = Ai; + i, B} (5)
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In what follows, we calculate the terms which appear in the numerator of (20).

5

i-1
= D/, j (Aij — Ai; 2)E| expi—Ai;(1-2) 3, 6n

n=§'(i,')

ji-1 N .
_l;) [li’ (1 —B?I(/lij "/lij Z)) Zl 9‘;([1)_"}}

* X'.j-‘ l,_ ij..
. El:(Bl} (Aij —_ Aij Z)) sGj) ZXU Xs(x,)]

i

Xij., ij_ i'.
) E(E[(Bt*, (Ai; = Aiy2)) - ZXii X dap

N
X CXP{—M; (1-Bf (i, = Ay, ) Y, 95(1,-)—,,})-
n=1

The last equality is obtained using the auxiliary problem at the end of this section.
We thus obtain:

E[(B;j(/li,- - Ai; Z))X;i"") 2 _X:{”’] =D/, (Ai; — Ai, 2)Gi_1 (B),
where B= {By. Bi.-- ., Buwv_2} is given by
-1
B, =1{0< n<i-53;)—1}- A, (1=2)+ Y, T'm)A;, (1= B, (Ai; - Ai; 2)
=0
+1{i-5(;) S n<i-5(;)+N-13}- A, (1-B] (Ai; - A, 2)) (21)

n=0,1,...,2N =-2.

; il
. E[ZXE} ] =Di*—->j (/lij —lii 2)E cXp ——/lij(l—z) z On
n=s(@i;)-N

izl N~
—gb Ai, (1= B, (Aij = Ay 2)) Zles(m—n ’
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from which we obtain:
x4 * T~
E[Z g ] =D (Ai; = 4;2)G -1 (7),
where Y= {%, %, - .-, Yan -2} 1S given by

% =1{0<n<i-s@)+N-1}-4;,(1-2)

Z ‘U, mA;, (1-B (Ai; - Ai;2))

n=0,1,...,2N -2,

Next, we calculate the expected waiting time in a synchronized station:

E[W,, ]———W ()‘

_ (+pyvar(X s(l))+El-ij)(X‘1 X ) |- B[ X0, JE[X - X0

225, E[ X34, ] A E[X )]
B[X{-Xip) , A+piB[Xg ] +py)
* 7 * 2. YR

Ly ¥ Lj

where E[Xs(l y] is given in (19), and
. E[X:,J s(: ):| E[E(X S(u),ﬂ‘ 1)]
1 N
—E['lz, 2 61+/lx, (E[dl—)]]'l'Zpl, 2 es(u) n]il

= S(l‘,)

Note that
N
[Z G- n]=E[CS(ij)]=E[C]-

Then we have
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. i-1 o
E[X;]- s(,})] Aill Y E[61]+126(d,~,+p‘.1E[C]) , (22)
1=5(ij) =

where E[é,] is given by (8) and (9).

o var(X[h ) ) = Al var(Cypl+ Ay, EIC]

s(i;

(see e.g. [10], pp. 186—187, eqs. 5.58, 5.61).
o E[Xl, (%3 - X)) - E[ Xy JBLX ) - X

=A?J.EK§I( 5;)-n — E[05,)- Djx[ g_)(@’m-E[ém])]] 23)

) Jj-1 N -
+ 4 pru E[( gl (9501)—': —E[es(in—n]))
N ~ ~
X [ Z;,l (Gs(ij>_m —E[Os(,-,-)_,,,])]]. (24)

Expression (23) is given by

r ) i-1 2N s@ip)-1
/l,-}, 2 ( 2 Tum + z Tom |3 S(j) <,
n=s(ij)\m=s(i;)+N m=1
(23) =4 (25)
) s(i)+N-1 2N i-1
A, D ( S tunt X T [ S() > L
n=s(i;) \m=s(i;)+N m=1

To compute (24), we have to compute

E[( S, (@sr-n -—E[gg(i,)_,,])]x(

n=1

m=1

(Bstpy-m — E[B5)- m])ﬂ (26)

foreach i, i=1,2,...,N, L, j=1,2,...,m(). For s(i)) < s(ij) <i (and similarly
for s(i;) < s(iy) < i), we have '
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s(ij-1 2N s(ig)-1
(26) = Z [ 2 Tnm + z rnm]

n=s(i;) \im=s(i;)+N m=1

s(i)-1 2N s(in-1

+ Y [ Y r,,,,,+2r,,,,,+ 2 Tonn
n=1 m=s(i;)+N

2N n—1 s(ip)—-1
+ Z ( 2 rnM+ z rmn+ 2 rmn)

n=s(i;}+N \m=s(i;)+N

For the case where §(i;), s(i) 2 i and 5(i)) < s(ij) (and similarly for s(i;) = s(ij)), we
obtain

s(ij)+N—-1 s(i;)+N-1 s()+N-17 p-1 s(i;)+N-1
(26) = Z E Tnm T 2 ( 2 Tnm + 2 rmn)
n=s({;)+N m=s(i;) n=s(ij) \m=s(i1) m=n

Finally, for the case where §(@i;) > i and s(;) < i (and similarly for the case where
s(i;) >i and s(i;) <i), we obtain

s(i1)+N-1 2N s(ig)=1
eo=" S [ S ot S r,,,,,]
m=1

n=s(ij) m=s(i;)+N

s(ij)+N-1 n-1 2N s@iy)-1
SN RS Py )
n=s(i1)+N \m=s(i;)+N m=n m=1

Auxiliary problem: We calculate the distribution of the number of jobs that
arrive at station J; during T; — the time that station i, is served. We denote this
number by ¥ ; WGy The jobs that are served at station i; are those that arrived at the
station during C; ;. We denote them by n. The moment generating function of ¥; i)
satisfies:

Yijn(2) = Ty (Ai, = A 2) = E exp{=A; (1= 2)T;, } = E[E exp{~A;, (1= 2)T;, | n}]

= B[ (B!, (ks - 24,2))" | = E{E[(B:(hs, ~ 4, 0) " | 3.2, T}

N
=F Cxp{—ﬂ,;l(l—B?I(l;J. —ﬂ,[jz)) Z ey(i’)_m}.
. m=1
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6. A pseudo conservation law

6.1. COMPUTING THE CONSERVATION LAW

In Boxma and Groenendijk [5], a "pseudo” conservation law has been derived
for polling systems with mixed service strategies. The derivation of this law is
based on a work decomposition theorem. Recently, Boxma [6] extended this theorem
to much more general single-server systems with non-serving intervals. Here, we
adapt theorem I of Boxma and Groenendijk [5] to our network with the synchronized
gated discipline.

The derivation of a "pseudo” conservation law for our network proceeds in
the same way as in Boxma and Groenendijk [5], and we may obtain an equivalent
equation to eq. (3.10) in [5] with the appropriate modifications in notation,

N m() e
CE[W. ]=p ——--+p—
_;jgopl,. W,1=p =57 =

+ 2(1d__ [P “i mz(l)Pl ]+2 ZE[M“)] Q7

i=1 j= i=1 j=

where M(l) i=1,2,...,N,j=0,1,...,m(@), is defined as in [5] and is equal to
the amount of work in statlon i; at a departure epoch of the server from station i;.

The meaning of the terms on the right-hand side of (27) is given in [5]
immediately after eq. (3.10). It turns out that E[M| (1)] is the only term on the right-
hand side of (27) that depends on the service strategy at station i, as expected. The
quantity E[M{"] represents the mean amount of work that arrived at station i
during the move of the server from station s(i;) to station i including the service
times of these stations and the stations between them, and the overall walking times
from station s(z ) to station i;. E[M; (1)] depends on the service strategy at station
i;. We now turn to the determmatlon of E[M (‘)] in the case of synchronized gated
discipline.

Fori=1,2,...,N, we have the following:
1 d
E[M"]=plEIC]=p} — . (28)
1-
For the synchronized stations, i=1,2,...,N, j=1,2,...,m(i), we have

the following:

. d
E[Mi(j1>]=p§E[c]+E[x;;— dip )b, =p] ——p+E[x Xy ] iy - (29)
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Using (8) and (9) in (22), we obtain
E[X;;' iy ,] A, 2 (p, E[C1+ d;, )+ Z(p” E[C]+d;,)|, (30)

1=5(ij)

where in (30) we used the following definitions:

- def — def —
Ny =p, ad dg-ny, =d,, 1=1,2,.,N

Substituting (28), (29) and (30) into (27), we obtain a "pseudo" conservation
law for our network:

N m@)
2

N mG) 21 .E;)Aifb"(f) d® d A

E =1J=v + — e —————— + i

2 IJZOP (W, ]=» 2(1-p) P2a T 2a1-p) {p i=21j=op’]

The last term on the right-hand side of (31) reflects the effect of the presence
of synchronization. The weighted sum of the mean waiting times increases in
comparison with the standard gated discipline. Without synchronization this term
is omitted, and we obtain the "pseudo” conservation law for the standard gated
discipline.

6.2. OPTIMIZING THE TOPOLOGY

Assume that we are free to choose the topology of the polling system; more
precisely, we assume that we may change the position of the different stations on
the cyclic path of the server. We assume that the walking time dij depends only on
station i; from which it starts. Our goal is to minimize the weighted sum of the mean
waiting times on the left-hand side of the "pseudo” conservation law (eq. (31)).

THEOREM 5

An optimal topology for the order of different stations is obtained by placing
for each father station i, i=1,2,...,N, all its children §;, j=0,1,...,m(@),
between it and the subsequent father station in the cycle (i + 1), in increasing order
of the quantity d;j/Pij-
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Proof

We first note that for any topology, the weighted sum of the mean waiting
times may be reduced if for each father station all its children are positioned
between him and the subsequent father station in the cycle. In that case, from eq. (31)
we obtain:

N m(i)
N m(i) z 2 A"'j bi(~2) 2 ] N m(i)
> Y E[W] pf—liz—o——;+p£_:)+-—d-— EZpl
i=1j=0 2(1_-p) 2d 2(1- i=1 j=0

N m() j—l_ E j—1
+Y Ep,[ di, + ——szn]- (32)

i=1]

From eq. (32), we see that the weighted sum of the mean waiting times is
independent of the order of the father stations. Moreover, we see that the optimization
problem decomposes into N independent optimization problems; for each 1 <i <N,
we wish to minimize

m(i) ji-1 4 -l d m@y  j-1
zpij[ diy+ — Pi,,:|= T P pi,,+2pi,~ Zodin' (33)
1 j j=1 n=

However, the first sum on the right-hand side of eq. (33) is invariant under
any change between the order of child stations. Thus, for each i,i=1,2,...,N,
we wish to minimize

m@)  j-1

2Py 2 diy- (34)

J

j=0 ' n=0
Assume any order of the stations i;, j=1,2,...,m(). Consider any two
adjacent stations, say i, and i,, at positions k and k+1 (k=1,2,...,m@) - 1),

respectively, and assume that d;/p; > d; /p; . Using interchange arguments, we
interchange the positions of stations i, and i,. The change in the quantity given in
(34) is p,d; —p; d;. Then, the above order is improved (in the sense of
minimizing (34)) if the positions of the stations i; and i, are interchanged. This
completes the proof of the theorem. g

7. Numerical examples

To obtain the expected waiting times at the different stations, one must
calculate the second moments of the station time_s. This involves solving N2N - 1)
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equations given in (14) and (15). It is convenient to solve these equations by
successive substitutions, using the Gauss—Seidel iterative procedure.

There are approximately 4N* multiplications and 4N? additions per iteration.
Humblet [9] reports that this procedure does indeed converge for a similar set of
equations (for the standard gated discipline).

In what follows, several numerical examples are demonstrated. In each of
them, the expected waiting times in the different stations of the network are calculated
and agree with the "pseudo” conservation law. Ten iterations were sufficient to
obtain the second moments with an accuracy of about 107%% in the expected waiting
times. In all the networks plotted in the following figures, a small circle indicates
a "child" station and a small box indicates a "father" station. An arrow is drawn
from a "father" station to its child.

Example 1

The purpose of this example is to demonstrate the solution of a general
polling system with several precedence constraints, and to compare its performance
with the standard gated discipline and the "optimal topology" version (see section 6).

1
1.1
5 5 2
4.1Q 4.1 2.1
4 3
~,
3.1 3.2 3.1
network 1 network 3

Fig. 1. Networks 1, 2 and 3.

A schematic figure of the network appears in fig. 1. It consists of 10 stations;
5 of them are "father" stations and the others are "child" stations. The network is
symmetric with deterministic walking times. The following parameters are considered:

b;=0.25 bP=0.125 d;,=1, dP=1.
J 7 J
The expected waiting times in the different stations of the network and the

average waiting time in the network (W,,,;) are plotted in fig. 2 as functions of the
total system load p. All "father" stations have approximately the same expected
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EXPECTED WAITING TIME

TOTAL TRAFFICp

Fig. 2. Expected waiting times in the different stations of network 1, and in
network 1 versus total load in network 1 p. (E,-i = 0.25, b,-g,z) =0.125, d,-j =1, dig,z) =1.)
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0 0.2 0.4 0.6 0.8
TOTAL TRAFFICp

Fig. 3. Average waiting times in networks 1, 2 and 3 versus total
load in the network p. (b, =0.25, b,§2)= 0.125, Eij =1, d,§2> =1.)

253



254 A. Khamisy et al., Polling systems with synchronization constraints

waiting time, and it is the smallest among the stations of the network. For a "child"
station, the expected waiting time increases as the distance (number of stations in
the direction of the server movement) between its "father" and it increases.
Schematic figures of networks 2 and 3 appear in fig. 1. They are symmetric
networks with the same parameters as in network 1. The average waiting times in
networks 1, 2 and 3 (W,,,;, W,.,, and W,,,5) are plotted in fig. 3. Network 2 is the
"optimal topology" version of network 1, as described in section 6. The average
waiting time in network 2 is lower than the average waiting time in network 1, as
proved in section 6. Network 3 is the "gated" version of network 1, where all the
stations are "father" stations. The average waiting time in network 3 is the smallest
among the three networks, as noticed in section 6.

Example 11

In this example, we show the effect of the distances between a "father"
station and its "child" station on the expected waiting times in the "father” stations
and the "child" stations, and also on the average waiting time in the network. To

network 4 network 5

network 6

Fig. 4. Networks 4, 5 and 6.

show this, we use 3 networks as shown in fig. 4 (networks 4 -6). All these networks
are symmetric with the following parameters

b, =0.25, b®=1, d; =0.01, d¥=0.001.
J Lj J Lj

In fig. 5, the expected waiting times in "father" and "child" stations and the
average waiting times in network (i), i=4,5,6 (Wfa,he,(net i), W u(net i) and
W,..;) are plotted as functions of the total network load p. The expected waiting
time in a "father" station (it is the same for all "father” stations) decreases as the
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Fig. 5. Expected waiting times in "father" and "child" stations
and in the network, for networks 4, 5 and 6 versus total load
in the network p. (b =0.25, b<2>~1 =0.01, d<2>—0001)

distance between "father” and "child" stations increases. For a "child" station, opposite
behavior is observed. The average waiting time in the network remains approximately
unchanged as the distance increases; this can be explained by the fact that d and
d® are small, and in that case the "pseudo” conservation law becomes a conservation
law. We use the following parameters to illustrate the behavior of the network for
larger d and d®:

b; =025 bP=0.125 d;=1 dP=1

The expected waiting times in "father" and "child" stations are plotted in
fig. 6 as functions of the total network load p, for networks 4, 5 and 6. The expected
waiting time for a "father" station is approximately the same for the three networks,
and for a "child" station it increases as the distance increases. In fig. 7, we plot the
average waiting time in the network, for networks 4, 5 and 6. It can be seen from
fig. 7 that the average waiting time in the network increases noticeably as the
distance increases.
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Fig. 6. Expected waiting times in "father" and "child" stations for networks 4, 5
and 6 versus total load in the network p. (b, = 0.25, b{»=0.125, dy=1, d,§?> =1)

(o]
o
T

!
)
1)
:l
H

!
i
)

> (]
o o

AVERAGE WAITING TIME
N
o

I 1 |

L
0.6 0.8 1

1

0 0.2 0.4
TOTAL TRAFFIC P

Fig. 7. Average waiting times in networks 4, 5 and 6 versus total
load in the network p. (b, =025, b{?=0.125, d, =1, d{P = 1.)
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Example 111

In this example, we demonstrate the effect of the number of synchronized
stations in the network on the expected waiting times in the "father" and "child"
stations and also on the average waiting time in the network. As extreme cases of
our analysis, we have the following two service disciplines: In the one extreme,
there is the standard gated scheme (without synchronized stations at all) and in the
other extreme, there is the globally gated scheme in which all the stations except
one (the "father" station) are synchronized stations.

In [7], it was reported that for a symmetric, globally gated network in which
d = 0, stations positioned at the "first half circle" prefer a globally gated regime
(in the sense that lower expected waiting times are achieved), while the others

(1) (1)
(8) (2) 5 1.1
(8) (2)
(5) (3) 4 2
(5) (3)
(4) 3 (4)
network 7 network 8 network 9

1.3 (4)

network 10 network 11 network 12

Fig. 8. Networks 7-12.

prefer the standard gated scheme. In order to investigate the behavior of polling
systems with synchronization constraints for small values of d, we use 6 networks
as demonstrated in fig. 8 (networks 7—12). The station numbers that appear in
brackets indicate the station numbers used in the following figures (figs. 9-12).
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Fig. 9. Expected waiting time in station (1) versus average total wglk-
ing time in the network d. (Bij= 0.25, bi§2)= 1, p=0.75, d,-(jz) = d%j.)

1

e
N

-
o

03]

1

[ H 1 1
0 0.2 0.4 0.6 0.8
AVERAGE TOTAL WALKING TIME d

Fig. 10. Expected waiting _t_ime in station (3) versus average total wglk-
ing time in the network d. (3; = 0.25, b,§2)= 1, p = 075, d,-(],") = d?j.)
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Fig. 11. Expected waiting time in station (5) versus average total walk-
ing time in the network d. (5, =0.25, b{=1, p = 0.75, d,ﬂjZ):d%j.)
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Fig. 12. Average waiting time in the network versus average total walk-
ing time in the network d. (E,.j =0.25, b,.§2>= 1, p = 0.75, dfj” = d,?j.)
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In each of the networks there are 6 stations, and the only station with any children
is station 1. Network 7 is the standard gated version and network 12 is the globally
gated version. The other networks are versions that lie between the globally gated
and the standard gated schemes. For all networks, we use the following parameters:

b; =025 bP=1, d¥=4d, p=0.75.

j ’
That is, var(d,-j) =0.

In figs. 9, 10, 11 and 12, the expected waiting times in stations 1, 3, 5 (the
stations enclosed in brackets in fig. 8) and in the network, respectively, are plotted
as functions of the average total walking time in the network d. For each graph in
figs. 9-12, we print the number of the network in which the graph was obtained
near the graph (in brackets).

From fig. 9, the expected waiting time in station 1 decreases when moving
from network 7 to network 12, for all values of d. That is, station 1 prefers more
synchronized stations in the network. From fig. 10, station 3, which is positioned
in the "first half circle", prefers network 8 over the other networks for values of
d greater than 0.18, prefers the globally gated regime over the other networks for
values of d smaller than 0.18, and prefers the globally gated regime over the gated
scheme for values of d smaller than 0.32. From fig. 11, station 5, which is positioned
in the "second half circle", does not prefer the globally gated regime for any value
of d, and prefers network 10 (the last network before it becomes synchronized) for
all values of d. From fig. 12, the average waiting time in the network increases
when moving from network 7 to network 12 for all values of d > 0, that is, the
average waiting time in the network increases as the number of synchronized stations
increases. Note that, for d — 0, the "pseudo” conservation law becomes a conservation
law and the average waiting time in the network does not depend on the service
strategy, and it is the same for all the networks.

8. Concluding remarks

We present in this section some further applications and possible extensions
of our results, and compare the performance of our model with the corresponding
standard gated discipline.

8.1. COMPARISON OF THE PERFORMANCE

By the corresponding standard gated discipline model, we mean the system
which is obtained by using the same number and order of stations and the same
statistics of arrivals, service times of jobs and walking times, but replacing the
synchronized gating by the standard gating discipline. We therefore keep the notation
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i=1,...,Nand i;,j=1,...,m(i) also when referring to the standard gated discipline
without any longer assuming that stations i; are synchronized to other stations.

As we saw in subsection 4.1 (eq. (7)), the expectation of the cycle duration
remains the same. Another quantity that remains unchanged is E [X!): the expected
number of jobs in a father station i, i=1,...,N, seen at the polling instants to
that station. This can be seen in eq. (19) (which holds also for j = 0). However, the
synchronization mechanism causes an increase in these quantities in all synchronized
stations. E[X" f( ] as computed in the synchronized regime turns out to be equal to
E[X"] in the correspondmg standard gated regime. However, E[X; f] as computed
in thje synchronized regime, is strictly larger forany j=1, ..., m() "than the same
quantity in the corresponding standard gated regime. The difference is equal to the
right-hand side of eq. (22). Finally, as we saw in section 6 (eq. (31)), the weighted
sum of the mean waiting times increases when adding synchronization; the difference
is given in the last term of eq. (31).

In [7], the individual expected waiting times for the symmetric gated scheme
and for the globally gated scheme were compared. In the case of a polling system
with general synchronization constraints, an explicit comparison is impossible, because
no explicit expressions exist for the expected waiting times. Instead, they are expressed
as functions of the second moments which are given implicitly by a set of
N(2N - 1) equations, and poses a different structure from the equivalent set of
equations in the standard gated scheme.

We carried out the calculation of the waiting times distributions and moments
through an extension of the "station time" approach. The alternative "buffer occupancy”
approach (as can be found in [15]), i.e. the direct calculation of the distributions
of the quantities X/ (where & and / stand for arbitrary stations) was not suitable for
our synchronized model; the problem of using that method directly is that it becomes
extremely complex to appropriately represent information needed from more than
one cycle back in a way that yields recursive equations for calculating the moment
generating functions.

8.2. THE EXHAUSTIVE SYNCHRONIZED DISCIPLINE

Assume the same partition between father and child stations as in the gated
synchronized model, and assume that the father stations are served by an exhaustive
discipline. We require that the precedence constraints are to hold between the father
and its child stations, i.e. jobs in any child station can be processed only if all jobs
that arrived previously at the father station have been served. In order to meet these
precedence constraints, we may use the following synchronization discipline: at the
end of the service of every father station, gates are closed in all its child stations.
When the server arrives at a child station, it serves only the jobs that arrived there
before the gate was closed. The same methodology that we developed in this paper
can be applied for analyzing this new discipline. '
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8.3. NESTED PRECEDENCE CONSTRAINTS

In parallel computations, we often encounter precedence constraints which
are much more complex than the ones we analyze; these are described either by
trees of arbitrary depth or by more general precendence graphs (allowing cyclic
dependence between jobs) (see e.g. [2,3] and references therein). We could consider
a nested precedence order between stations for creating gates, e.g. when station 1
is polled it closes a gate in station 4, and when station 4 is polled it closes a gate
in station 7. However, it can easily be seen that such a discipline fails to meet with
the original nested precedence constraints. For example, a problem arises in station
7, where jobs that arrived after the polling instant at station 1 will be served before
the jobs that arrived at station 4 after the polling instant at station 1. The same kind
of problem arises when using variants of the exhaustive synchronized discipline.
Therefore, in order to fulfill nested precedence constraints one should devise more
complex service discipline.

8.4. PRIORITY POLLING SYSTEMS

Consider a single server, cyclic system with N stations, and nonzero
switch-over times between the stations. Jobs from m() + 1 different classes i,
j=0,1,...,m(i), arrive at each station i, i = 1, 2, . . ., N according to independent
Poisson processes with intensity l for class i; _]ObS Assume that service at each
station i is given according to pre- ass1gned prlormes to the different classes, where
the priority of class i;, j=0, 1,...,m(i), jobs increases as the index j decreases.
Assume that the service strategy is the standard gated strategy, where at each
polling epoch to station i a gate is closed at that station and jobs are serviced
according to their priorities. Assume also that the server takes a vacation each time
it finishes service of a priority class at station i. The polling system with priorities
and vacations between the service of priority classes we have just described turns
out to be a special case of the synchronized polling system described in this paper,
where we have N father stations and for each father station, all of its children are
situated between him and the following father station as described in the model
description (the same topology as for the "optimal topology" described in section 6).

8.5. REDUCING THE COMPLEXITY

Actually, the evolution of the system can be described in terms of N + Dist
station times in place of 2N — 1 station times described in section 3 (eq. (1)), where
Dist equals the largest distance (number of father stations in the direction of the
server movement) between a father station and one of its child stations. Then,
0<Dist< N~ 1. Dist =0 when all fathers have their children situated between
them and the subsequent father stations, and Dist=N —1 when for some child
station i;, its father is the station i + 1. This fact may be used to reduce the number
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and complexity of the equations for the second moments. Note that for the case
without synchronization, Dist = 0, and the state can be described by N station times
as in the standard gated discipline. For the globally gated discipline, Dist = 0 and
N =1, the state can be described by one station time. We avoid the use of Dist to
simplify notation.

Appendix A: Proof of theorem 4
To obtain the second moments, we differentiate (5) twice, with respect to the

different xj's:

aZCN},-(x) a2 * ~
= =33 D; (XO)Gi—l(a)

dx3 B 0x3

d2D*(xp) ~ dD*(xo) 2832 d&, 3G (&
_ '(O)G,-_l(a)+2 ,(o)z . l~1( )
dx3 dxo o dxo ad,
2N-2 327 ~ ~
% d2@, J0G;_ (@
4D (xp) y, Lon 20i1(@)
n=0 dxo aan
2N-2 2N-2 4~ ~ ~ ~
X d&, déa, 0°G,_;(@&
+D"(x0) D, - — 1~( ). (35)
: ns0 moo dxo dxo 08,04,
Denote by 0 the vector with 2N -1 zeros. Let i=1,...,N and
nm=0,1,...,2N-2. We have:
dD(x9) _ 7 d2D*(xo) 4@
de oo i dx% 0 iy
‘ = l(],n)Pl-. > 2" == l(.]’ n)ll'j bff)’
dxo =0 ;<0 ! dx§ |x=0  j=0
aG,_1 (&) ~ 92G;1 (&) ~
+ =-E[0;_,_1], -—‘,:—‘—1:— =E[0;i_p-10i-m-1].
o0&, , 00,00,
X = xX=

We thus obtain by computing (35) at x =0
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2N-2 (m(i) _ -
E[07]=d+ { > TGma, (2ds, B, +b§f’)}E[ei_n_1]
n=0 (j=0
2N-2 2N=-2 | m(3) m(i) ~ ~
+ 2 Z ‘W' Gom)p,, py; 1E[8in-10i-m-1]. (36)
n=0 m=0 [[=0 j=0
Note that
2N=-2 [ m(i) ~ -
E[o] 2 Zl(j,n)pij E[6i_n-1]+d;,. (37)
j=0

We thus obtain
2N-2 2N- 2{»:(1 m(

CEEDIED Z mT'mp;, pij}E[é'i_n_le[éi_m_lj

n=0 m=0 |!I=

2

2N=2(m@) - _
[ 2 1‘(j,n)p,-,.jE[ei_,,_1]+<d.-,) : (38)
j=0

+2 d; s 2
n=0
Similarly, we obtain by computing 9%G;(x)/0x,0x, at x = 0:

2N 2 (m3) ~ ~
E[6:0,-1]=di, E[6;1]+ ¥, (21(Ln)pi,.]E[e,-_,.-le.-_,], (39)
j=0

n=0

Note that
- - 2N=2 (m() - _ -
E[O;]E[Bi_,]z{ Y (2ll(j,n)pl.jJE[Gi_,,_l:|+d,~f}E[6,-_1]. (40)
n=0 \j=0

From (12), (36), (38), (39) and (40), we obtain (14) and

2N=-2 ( m(i) -
r,, = var(d;, 20 [ 2 I'(L, n)A;, b;p]z;[e,-_,,_l]

i-1
+le‘~ (j)( > p (M), + 2 P, (M) + 2 P (m)rm,]
=

m=i+1

2N
+ pl.(j)[ Z pl(m>r,m+2p(m)rm,+ 2 p(m)rm,] (41)

j=i+1 m=i+1

Substituting (14) into (41) finally yields (15). O
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Appendix B: Obtaining equation (17)

Consider the regeneration points as the time instants at which the father
station s(i;) is visited and all stations are empty. A regeneration interval is the
period between two consecutive regeneration points. Denote a cycle as the period
between two consecutlve polling instants to station s(i;). The nth cycle is denoted
by C,. Let M %' the number of cycles in a regeneratlon interval.

Define the following random variables:

o'i(m, n) (respectively, o*%)(m, n)) is the service completion instant for the mth
job served at station i; (s(i;), respectively) in the nth cycle.

L‘-j(m, n) is the number of jobs that a job departing from station i; leaves at station
i; at time o"!(m n).

XiJ;,(n) (respectively, X s(‘ y(n)) is the number of jobs at station ; at the polling
instant to that station (to its father station s(i;), respectlvely) in the nth
cycle.

When adding a hat to the above random variables (and to others), we shall mean
that n refers to the nth cycle in a typical regeneration interval.

Due to the well-known PASTA phenomenon (Poisson Arrivals See Time
Averages [13]) and the fact that the state changes by unit step values (one by one)
only, Q,-j(z) (defined in section 5.2) also stands for the moment generating function
of the number of jobs at station i; in steady-state regime at an arbitrary time.

Following Takagi ([15], pp. 77-79, 109), we have

s(xj)(n) N

M
E 2 ZLij (m.n)
n=1

where L was defined in section 5.2.
Smce we assume that the system is stable (ergodic), it follows that

N'b—d

t
2 =EC w.p.l.

On the other hand, from the theory of Renewal Reward Processes (e.g. [14], p. 279)
it can be seen that
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Combining these equations, we obtain

M A
EY ¢,
n=1 .

EM

EC=

(In some references, such as in [15], Wald's Theorem is used improperly to obtain
the same result.)
By using similar arguments, we obtain

M [ Xy

Xii EX| X 2Ly )

from which it follows that

X;Ji‘j)
E 2 ZLii (m)
m=1

Eley@]= — ¢

The rest of the calculation follows as in [15].
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