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In this paper we investigate a certain class of systems containing dependent discrete time queues. This class of systems consists of
N nodes transmitting packets to each other or to the outside of the system over a common shared channel, and is characterized by the
fact that access to the channel is assigned according to priorities that are preassigned to the nodes. To each node a given probability
distribution is attached, that indicates the probabilities that a packet transmitted by the node is forwarded to one of the other nodes or
to the outside of the system.

Using extensively the fact that the joint generating function of the queue lengths distribution is an analytic function in a certain
domain, we obtain an expression for this joint generating function. From the latter any moment of the queue lengths and also average
time delays can be obtained.

The main motivation for investigating the class of systems of this paper is its applicability to several packet-radio networks. We
give two examples: The first is a certain access scheme for.a network where all nodes can hear each other, and the second is a
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1. Introduction

The purpose of the present paper is to analyze a certain class of systems containing dependent
discrete-time queues. The system under consideration consists of N nodes transmitting messages to each
other or to the outside of the system over a common shared channel. Fixed-length packets of data enter the
system at all nodes and are buffered until the channel is made available to the node. The time is divided
into slots of size corresponding to the transmission time of a packet and transmissions are started only at
the beginning of a slot. The system under consideration is characterized by the fact that access to the
channel is assigned according to priorities that are preassigned to the nodes. No two nodes have the same
priority and a given node is allowed to transmit in a given slot only if those nodes with higher priority have
empty queues. To each node we attach a given probability distribution that indicates the probabilities that
a packet of data transmitted by the node is forwarded to one of the other nodes or to the outside of the
network. All packets received by a node from outside or from other nodes, are buffered in a common
outgoing queue. In Section 2 we formulate the system we consider, and in Section 3 we present the
steady-state analysis of it and obtain the condition for steady-state and the joint generating function of the
queue lengths at the nodes. From this generating function any moment of the queue lengths at the nodes
can be derived and also average time delays can be obtained by using Little’s law [5].

The present model is an extension to the ‘loop-system’ considered in {2] in two respects: in [2] nodes
transmit only to the outside of the system and also the arrival processes are assumed to be independent.
Using a different approach, we are able to analyze in the present paper systems with dependent inputs as
well as those where nodes may transmit packets to each other. A different system where nodes send packets
to each other through a loop, has been described in [7].

Out motivation for investigating the class of systems of this paper is its applicability to several
packet-radio networks. In Section 4 we indicate two such applications: The first is the head of the line
protocol suggested in [3] for multiplexing a small number of fully connected buffered users over a common
radio channel, and the second is a three-node tandem packet-radio network.

2. Formulation

In this section we formulate the class of discrete-time queueing systems that is considered in this paper.
We assume that packets arrive randomly at the N nodes of the system from N different sources, and the
arrival processes may in general be correlated. Let A1), i=1,2,...,N,t=0,1,2,..., be the number of
packets entering node i from its corresponding source in the time interval (¢, z + 1]. The input process
(A4,())Y, is assumed to be a sequence of independent and identically distributed random vectors with
integer-valued elements. Let the corresponding probability distribution and generating function of the
input process be

a(iy,iy_15--r 1) =Prob{Ay(t) =iy, Ay_(t)=in_1,...,4,(t) = i)}, (1)
FROM NODE N 2 TO NODE| 2 N
U L) [t vl U@ V(N
NODE |
SOURCE i VO, oyt

Fig. 1. An example for a node / in the network.
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F(z)=E<Z}fIN(t)'Zjeﬁil(t)' ....Z{‘l(t)>, (2)

where we use the notation z = (zy, Zy_1,..., Z))-

Next, we describe the departure processes from the nodes. We assume that no more than one packet
may leave each node in any given time slot. Let node i have priority i, namely a packet leaves node i
whenever the queues at nodes 1, 2,...,i — 1 are empty and the one at node / is nonempty. In this case, node
i transmits the packet at the head of its buffer to node j (j=1, 2,..., N, j #= i) with probability 6,(j) or to
the outside of the system with probability 6,(0). Here we assume 6;(i) = 0. The above implies that packets
in the system are routed randomly through the nodes, until they eventually leave the system. It is assumed
that packets indeed arrive at every node with nonzero probability and that the buffers at the nodes have
infinite length. A schematic figure of a node 7 in the system appears in Fig. 1.

3. Steady-state distribution

To describe the evolution of the system we need several definitions. Let L,(¢) be the number of packets
atnodei (i=1,2,...,N) at time ¢ and let U;(L,(?)) (i=1,2,..., N) be a binary-valued random variable
that takes value 1 if L,(¢)>0 and 0 otherwise. Also let D/(¢), 1 <i< N, 0<j <N be a binary-valued
random variable that takes value 1 if a packet is transmitted from i to j at time ¢, where j = 0 stands for the
outside of the system.

Using these definitions it is easy to see that the system under consideration evolves according to the
following equations:

Fori=1,2,...,.Nandr=0,1,2,...,

L(t+1) = L)+ A0+ T D40~ U(L,(0) TT [1 = UL ()] ®)

Consider now the steady-state joint generating function of the queue lengths distribution,

G(z) = lim E{z5v. zLwp@. .20}, (4)
t— 00
Here we assume that the Markov chain (L,(t)}}_, is ergodic, namely G(z Nz=z,= - =zy=0 > 0. For
notational convenience let us define the ‘routing polynoms’ as follows:
N
P(z)= Y 6,(m)z,+6,(0) fori=1,2,...,N and P, ,(z)=1. (5)
m=1

Let us also define the following operators on G(z):

£iG(2) > G(2),
£G(z) = Gzl -0,

£,G(2) = G(2)l.,~2,-0> (6)

gNG(z) - G(z)|z|=zz= ce=zy=0"
We shall sometimes denote the constant £, G(z) by G(0). With these notations we prove in Appendix A the
following theorem.
Theorem 1. The following holds:
ZN- -1 P . IP G
G(Z)-_—F(Z) m—l[Zm+1 m+1(z) _Zlm m(z)]ém (z)
1—F(z)z; 'Py(z)

where zy, ;= 1. (7)
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In order to uniquely determine G(z) we still have to determine the boundary terms §,G(z) for
i=1,2,...,N

Determination of the constant G(0)

The constant G(0) (or £,,G(z)) plays an important role in this system since the condition for steady-state
is that G(0) > 0.

Theorem 2. The following holds:

N
G(0)=1- ) A, (83)
=1
where, for 1 <I< N,
N
N=r+ X A8 and 1= agEZ) : (8b,c)
j=1 ! Zy=zy= - =zy=1

Proof. For 1 <i< N — 1 we define

Gl(l) 2 giG(z)lzi+l=zi+2=~--=zN=1' (9)
If we substitute z,= 1 fori=1,2,...,j—1,j+1,..., N and let z; > 1 in (7), then using the normalization
condition

G(z)lzl=zz=-~-=z,v=l = 1’ (10)

we obtain the following set of equations:

1—r=[6,1)+1]G,(1)+ Z= [6,.+1(1) = 6,,(1)]G,,(1) = 8x(1)G(0), (11a)

“5=6()= L (801 =0.(N]G. (D)= [1+6,(N]G (1)

m=1
m=j, j—1

+[6::()+1]6,(D =05 (/)G(0) forj=2,3,...,N-1, (11b)

= 6(N) = T [Gyr(N) = G, (V)]G (1) — Gy, (1) + G (0). (110)

m=1

Here we have a set of N linear equations with the N constants G,(1), 1 <i < N — 1, and G(0) unknown. The
solution of this set of equations is:

i N
G(=1-Y 1, GO)=1-Y A, (12a,b)
=1 =1
This can be easily verified by substituting (12) into (11), thus proving the theorem. O
Determination of the boundary terms §,G(z), 1 <i< N —1
The process of finding the other boundary terms £,G(z), 1 <i< N — 1, uses extensively the fact that the
function G(z) is analytic in the polydisk |z,| <1, 1 <i <N To proceed we shall need the following

theorem.

Theorem 3. Let F(z) be the input generating function (2) and P,(z) the routing polynoms (5). For given
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Zyy Zgye..y Zy With |2,| < 1, 2 <1 < N, the following equation in z,,
Fz)Pi(z) =2, (13)

has a unique solution z, = z,(2,, z5,...,Zy) in the unit circle |z,| < 1.

Proof. Here we let |z,]=1 and |z,| < 1, 2 < i < N. We distinguish between two cases: The first is the case
that packets do arrive to some node /, 2 < /< N, from its corresponding source. The second is the case that
no packets arrive to nodes 2 < / < » from their corresponding sources. Our assumption that packets indeed
arrive to all nodes implies that in the latter case, packets do arrive at node 1, and it routes some of them to
at least one of the nodes /, 2 </ N.

Case 1. There exists some node / (2 < /< N) for which the probability that a packet will arrive to it from
its corresponding source is strictly positive, i.e., there exist a(iy, iy_,...,#;)> 0 for some i; and some
i;>0 (2<!<N). Therefore,

|F(z) P (z)| < |F(z)| =

o0 [ee] 0
=l X X o X alinsinoys-s i) 2R ZRT 2
in=0iy_1=0 iy=0
oo o0 0 )
<Y X o X alinsinopeeiy)lzf
iy=01iy_,=0  i,=0
[e o] o0 e o)
< Z Z Z alin, iy_ys-s i) =1=|z|. (14)
iy=0iy_,=0  i=0

Hence, applying Rouches’ theorem [6] the claim is proved in this case.
Case 2. Packets arrive at node 1 and it routes some of them to at least one of the nodes / (2 < /< N), i.e,
there exist §,(/) > 0 for some 2 < /< N. Therefore,

|F(z) P ()| <|P,(2)|=16,(1)z, +8,(2)z, + -+ +0,(N)zy +8,(0) <1 =]z (15)
Hence, applying Rouches’ theorem the proof is completed. O

We now have immediately the following corollary.

Corollary 1. Let 2, denote the (unique) solution of (13). Let 1 denote the vector z with its first component z,
replaced by Z,. Then

N -1 (¢} =1 )}
1) m= 2[ m+1Pm+1(z )_Zm Pm(z )]gmG(Z)
£G(z)=F(z") L FG0) 2 P ()

(16)

This is true since G(z) is analytic in the polydisk |z,| < 1, 1 <i < N. Then in this polydisk whenever the
denommator of G(z) vanishes, the numerator must also vanish. Smce the denominator of G(z) vanishes at
we have from (7) that

N

Y [z0d 1Pt (e®) =2, P, ()] 6,6 (2) + [Pz ") = 7P (e )]G () =0, (17)

m=2

which together with (13) implies (16). Notice that in (16) the boundary function £,G(z) is expressed in
terms of all the boundary functions §¢,G(z), 2 < i < N. Now, exploiting the similarity between (7) and (16)
we readily obtain the following corollary.

Corollary 2. With the notation of Corollary 1, the equation in z,,
F(z) Py (2 V) = z,, (18)
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has a unique solution in the unit circle |z,| < 1 for given |z;,| < 1, 3 < i< N. Let 7, denote this solution and z'*
denote the vector z with z, replaced by 2,(2,(z3, Z4,-.., ZN)s Z3,--., Zy) ahd 2z, replaced by 2,(z5, z4,...,Zy).
Then

o3[zt 1P (2?) — 2, 'P, (2P)]£,6(2)

by
£.6(z)=F(z") 1= F(z®)z; P, (z?)

(19)

The proof of (19) follows the same lines as the proof of Theorem 3 and Corollary 1. In (19), £,G(z) is
expressed in terms of £,G(z), 3 <i<N.
In general, repeating this procedure we have, for 1 <i<N -1,
gG(Z) _ F(z(i)) Zz=i+l[zr;-lklpm+l(z(i)) _Zr; 1I)m(z(i)):l gm(;(z)
i 1-F(z)z Py (zD)

where 2, is defined in (13) and Z,, 2 < i < N — 1, is the unique solution of
F(zU= D) P (2" P) =2 (21)

in the unit circle || < 1 for |z;| <1, i+ 1</ <N, and z!’ denotes the vector z with z; replaced by £, for
1 < i <. Notice from (20) that each boundary function £,G(z), 1 <i< N — 1, is expressed in terms of the
boundary functions §,G(z), i + 1 <j < N. Specifically,

[1=z3'Py(z")]6(0)
= F(M D)z Py (D)

Since G(0) has already been obtained in (9), we obtain £y, _,G(z) from (22) and then by backward recursive
substitution of §,G(z), j=N—1,N-2,...,2, in (20) we obtain £,G(z), 1<i<N—2. Thus, all the
required boundary terms have been obtained, and the joint generating function G(z) has been uniquely
determined.

From G(z) any moment of the queue lengths at the nodes can, in principle, be derived. Specifically, if
we denote by L, the average queue length at node i in steady-state, we obtain

0G(z)
0z,

i zj:l,lgjgN

: (20)

£ 16() = FG" )<

(22)

L=

(23)

If we assume that packets arrive at the nodes only at the end of a slot, then, using Little’s law, we may also
obtain the average time delays at node i denoted by 7; as follows: ‘
T,=L/\, (242)

where A ,—the total arrival rate at node i—is defined in (8b). The total average time delay in the system is
obtained by applying Little’s law to the whole system and it is given by

N N
T-YL/%n (240)
i=1 =1
where r,—the arrival rate at node i from its corresponding source— is defined in (8c).
Before proceeding we may mention that the solution we presented above can be applied to any network
that belongs to the class of systems considered here, though, as will be clear from the following examples,
the calculations might be very tedious.

4. Examples and applications to packet-radio networks

In this section we shall give two examples of how the results of Section 3 can be applied to packet-radio
networks. Our first example would be a fully connected packet-radio network (all nodes can hear each
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other) that applies the channel access scheme suggested in [3]. This scheme actually allows each node in the
network to know when the channel is made available to it. The second example is a three-node tandem
packet-radio network where, as will be seen, the priority of the nodes is determined by the network’s
topology. We shall assume here that all nodes in the network share a common radio channel and that a
node cannot transmit and receive a packet simultaneously.

Fully-connected packet-radio networks

By a fully-connected packet-radio network we mean that all nodes in the network can hear each other.
The head-of-the-line protocol suggested in [3] for multiplexing a small number of buffered users over the
common channel can be applied in such networks. Assume that priorities are preassigned to the nodes.
Then, according to this protocol, each slot is divided into two parts. The first part is used to determine the
node with the highest priority that has a packet ready for transmission in that slot, and the second part is
used for the actual transmission of the packet at the head of the buffer at this node. In order to determine
this node, the first part of the slot is divided into N equal parts (N is the number of nodes in the network)
which are called minislots. A node with priority / that has a packet ready for transmission, senses the
channel during minislots 1, 2,...,7 — 1 and only if the channel is idle during this period, it starts to
transmit a signal until the end of the first part of the slot. This protocol allows all nodes in the network to
know, during each slot, which is the node with the highest priority that has a packet ready for transmission,
and thus letting it transmit it successfully.

From the above discussion it is clear that a fully-connected network that applies the protocol suggested
in [3] belongs to the class of systems analyzed in this paper.

Example

Let us consider the packet-radio network depicted in Fig. 2. Assume that in this network the three nodes
can hear each other and they apply the protocol suggested in [3]. We shall assume that node i has priority i,
1 < i< 3. Packets arrive to the nodes from their corresponding sources. Nodes 2 and 3 transmit their
packets to node 1 and node 1 finally transmits all the packets to the outside of the system. Therefore, we
have here

8,(2) = 6,(3) = 6,(2) = 6,(3) = 6,(0) = 6,(0) =0, 6,(0)=6,(1) =6;(1) = 1.

NODE 2

o]

NODE 1

B —
SOURCE | >

NODE 3

SOURCE 3 ——> } t l

Fig. 2. A three-node packet-radio network.
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From (7) we obtain in this case
G(z3,2,, 7)) =

(232, — 27 ")G (23,25, 0) + (251 = 2;")2,G(2,, 0, 0) + (1-25'2,)6(0,0,0)
=F(z;, 25, 2,) — .
1 =27 'F(z4, 25, 2y)

(25)
We can now apply the solution method presented in Section 3. To facilitate the presentation we shall
assume that packets do not arrive at node 1 from its corresponding source and that the arrival processes
into nodes 2 and 3 are independent Bernoulli processes, i.e.,

F(zs,ZZaZl)=(23’3+’—'3)(22”2+’72)a (26)

where 7,=1—1r,, i=2, 3, and r, is the average arrival rate (in units of packets/slot) at node i. Now, from
(8a), (13), (16), (18) and (19) we obtain in this case that

2?1(22,z3)=(z3r3+;’3)(zzr2+fz), (27)

£(22) = (1= 2an7, — (T=4anp, | /(2ar7) whete a=(zyr,+5) (28)

and
1—257'%,(2,(z2,),
6(2,,0,0) = - 0B 1) g0 o g (29)
[Z3 _22(23)]21(22(23)’23)
[1-27'2,(z2,, 2,)]G(0, 0,0+ (25 — 23 ') £,(2,, 2,)G (23, 0, 0)
G(23,2,,0)= — — — (30)
Z3 Zl(zzazz)_zl (22’23)
N=3
04 '
] %
@
'g T
z
51
x
|
&
w
=
}—
(1)
2
&
Z
2.
T2
_ Y
000 010 020 030 040 050
TOTAL THROUGHPUT
(PACKETS/SLOT)

Fig. 3. Time delays vs. y for the network of Fig. 2, with n=0,n=r=ry=2r
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where

G(0,0,0)=1-2(r,+ry) (31)
and the condition for steady-state is r, + r, < 3. From (25)—(31) we obtain, after tedious algebra,

= - +

L =r+r, L2=r2(1+———1r2 2r3 ), (32a,b)

—2r,
_ 2rr+ Ay (4 ) — (D + A4, — )1 =1y — _
Ly=ry+ rrstAy(ntn) = (Lt Ay = Y1 =n=n) 1 where 4,=L,—r, (32c,4d)
1-2r,—2n

and

T,=1, T,=L/r, 2<i<3. (33a,b)

From (32b) we notice that though node 3 has lower priority than node 2, it affects the delay at node 2 since
both nodes 2 and 3 route their packets through node 1. In Fig. 3, T, and T;, the average delays (in units of
slots) at nodes 2 and 3 respectively, and the total average delay in the network, 7, are plotted vs. the total
arrival rate (in units of packets/slot) into the network, y, when r, = r; = r (clearly y = 2r).

Tandem packet-radio networks

A tandem packet radio network with N nodes is depicted in Fig. 4. In this network all nodes share a
common radio channel and are equipped with radio transmitting and receiving devices. We assume that
every node can either transmit or receive but not simultaneously. Instantaneous feedback to the transmitter
is assumed meaning that a node knows at the end of the slot if the transmitted packet has been successfully
received. All nodes are assumed to have full access capability to the common channel. This means that each
node always transmits a packet when its buffer is nonempty, while when it is empty, it doese not transmit
and is able to receive packets transmitted by other nodes. We also assume that the network topology is such
that when node i (2<i< N — 1) transmits only nodes i + 1 and i — 1 can hear the transmission. When
nodes 1 or N transmit, then only nodes 2 and N — 1 can hear the transmission respectively. We finally
assume that packets leave the network only when they are transmitted by node 1.

Tandem packet-radio networks with arbitrary number of nodes do not belong to the class of systems
considered in this paper since in these networks nodes i and i + 3 may succeed in their transmissions
simultaneously. However, a three-node tandem packet radio network does belong to the class of systems
considered in this paper. This is seen by noticing that, in such a network, it is clear that transmissions from
node 1 are always successful. Also a packet cannot leave node 2 unless node 1 is empty, because node 1
always transmits when it is nonempty, and in such a case it cannot receive packets from node 2. Finally, a
packet may not leave node 3 unless nodes 2 and 1 are both empty. The reason that node 2 should be empty
is clear. Node 1 must also be empty, otherwise it transmits, and the transmissions of nodes 1 and 3
interfere, so that the packet transmitted by node 3 cannot be successfully received at node 2. Therefore, this
network belongs to the systems considered in this paper. Also, from the network topology we find that
Py(z)=1z;; P,(z)=2;; Pi(z)=1.

Now we can apply the solution method presented in Section 3. In order to give numerical results we

SOURCE N SOURCE N-I SOURCE |

NODE N NODE N-I NODE |

= ===l

Fig. 4. A tandem packet-radio network with N nodes.
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have done it when the arrival processes into nodes 1, 2 and 3 are independent Bernoulli processes with
average rates ry, r, and r; respectively (in units of packets/slot), i.e.,
F(z3, 25, 2)) = (237 + B ) (2o, + 7 ) (2,1, + F,)  where =1 —r, fori=1,2, 3. (34)

For this case we have obtained explicit expressions for the average number of packets at each node and
then by using Little’s law we have found T,, T,, T,—the average time delays at nodes 1, 2 and 3
respectively (in units of slots)—and also 7—the average time in the system. The results are

1=r1+r2+r3(r1+A1)’ (352)
1
2 (), (35b)
T3=—1— - (r2+r3)A2+2r2r3—-(A1+A2)(1—rl—r2—r3)+r2+2r3+r1r2+r1r3 (50)
7y 1—r —2r,-3n
_ rntr rs
T_T1+r1+r2+r3 2-'_rl+r2—l—r3T3 (35d)
where
A1=(r2+r3)/(1—r1), (353)
4= <’2("2 +r)+ (1 - "1)("3 + "1”2)}/((1 —r)(1—=r - 2ry)} (35f)
and the condition for steady state is that
1—r,—2r,—3r>0. (36)
TANDEM NETWORK N=3

o

AVERAGE TIME DELAYS (IN SLOTS)

T
14 T + + t Y
000 008 O18 0.24 0.32 040
TOTAL THROUGHPUT
(PACKETS/SLOT)

Fig. 5. A three-node tandem packet-radio network: delays vs. y when r,=r, =r;=r, y = 3r.
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In Fig. 5 the average time delays 7,, T,, T3 and T are plotted versus y—the total throughput when

rn=rn=r=r(y=23r).

Appendix A

Consider the evolution equations (3),

i—1

L+ 1) =L () +4,()+ ¥ Di(0) = U(L(1) [T [1- Gy (La(0)]. (A1)

m=1

Let G,(z)= E[[1Y.,zL:(1)]. Then from (A.1) we have

i

m=1

N N
_ Li(t+D | _ LA+A4,(t)+ZN_ DL ()= UL, NI 1~ U,(L,,
Gr+1(z)—E{l_[Z( )l_E[l—[lZi() @) 1Dy (1) — UL (1)) i ( (t))]]
Li=

-1 ]
N
=F(z)E

i=1

[T 20+ Em-1Dn0= UL AT = Um(Lmu))]} , (A2)

where in (A.2) we used (2) and the fact that the vector arrival processes are independent of the state of the
system. Now for 0<j<N let the event that L,(r)=0 for 1<i<j and L,,,(#)>0 be denoted by

EVENT,(¢). Then from (A.2) we have

N N
G, (z)=F(z) Y PI’Ob(EVENTj(t))E nZL.-(r)+Z'$=1D;1(t>—U,(Li(t>)n;:=‘,[1—Um(Lmu»]/EVENTj(t)}.
j=0
(A.3)
Now using the definitions of the random variables U,( L;(¢)) and D/ (¢) for 1 <i, m < N we have
Gz+1(z) = F(Z){ [Gt(z) - Gz(z)|z1=0121_1[01(1)21 + ‘91(2)22 + HI(N)ZN + 01(0)]
+ [Gt(z)|z,=o - Gt(z)|22=zl=0]Z;I[02(1)21 + 02(2)21 +o- 4 02(N)ZN + 02(0)]
+oet [Gt(z)lzN_l=zN*2=~-~:zl=0 - Gt(z)izN:ZN_|=---=zl=0:|
XZX’I[HN(I)ZI + 0N(2)Z2 +oee ON(N)ZN+ 0N(0)] + Gt(z)lzN=zN_,=~~~=z|=0}'
(A4)

Letting ¢ = oo in (A.4) we obtain (7).
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