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Minimum Delay Routing in Stochastic Networks

Ariel Orda, Member, IEEE, Raphael Rom, Senior Member, IEEE, and Moshe Sidi, Senior Member, IEEE

Abstract— We consider the problem of traveling with least
expected delay in networks whose link delays change proba-
bilistically according to Markov chains. This is a typical routing
problem in dynamic computer communication networks.

We formulate several optimization problems, posed on infinite
and finite horizons, and consider them with and without using
memory in the decision making process. We prove that all these
problems are, in general, intractable. However, for networks with
nodal stochastic delays, a simple polynomial optimal solution is
presented. This is typical of high-speed networks, in which the
dominant delays are incurred by the nodes. For more general
networks, a tractable c-optimal solution is presented.

1. INTRODUCTION,

OUTING has a major impact on the functionality, per-

formance, and flexibility of computer networks. This is
why such a vast amount of research was conducted to devise
efficient routing algorithms. Routing is generally defined as
identifying a path in the network that optimizes a certain
criterion. While many criteria have been suggested, minimum
delay is the most natural and most common one.

In terms of analysis, minimum delay routing falls into
the category of shortest path problems where the delays
are modeled as weights whose sum is to be minimized. A
large number of algorithms were proposed as a solution to
the problem under a variety of conditions and constraints
[1]. The vast majority of these algorithms deal with fixed
networks, i.e., those with fixed topology and link delays.
While these algorithms did solve the basic static problems, the
advancement of computer networks created dynamic problems
that could not be solved by static models.

There are several possible approaches to model the dynamic
behavior of networks. The most popular one is the quasi-static
model, in which it is assumed that link delays change from
time to time but remain constant between these (infrequent)
changes [2]-[5]. This approach is memoryless and does not
make use (nor does it benefit from) the known dynamics of
the network, i.e., the predicted or observed manner in which
the delays change.

Another approach is to consider a deterministic, time-
dependent network in which the exact behavior of link delays
is described by a given set of delay functions. Shortest path
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problems for such a model were studied in several works
[6]-[9] and recently in the context of computer networks
[10], [11]. The time-dependent approach is beneficial when
the dynamics of the network are deterministic or can be
predicted fairly well. However, in many computer networks
such knowledge is not readily available. More commonly,
the network designer has a partial estimate of the network
dynamics in a structural form and a set of available parameters
that describe the stochastic nature of the network, giving rise
to the problem of finding minimum delay routes in stochastic
network models, which is the subject of this paper.

Shortest path problems for stochastic models of dynamic
networks were investigated in the past. In [12], a network is.
considered in which links may be “up” or “down” according to
a stochastic rule. Each operational link has a fixed delay, and
the problem is to travel with the least expected delay, allowing
possible “detours.” It is shown that the general problem is
complex, and a solution for a simpler problem is given. In
[13], a network is considered which is both random and time-
dependent. It is shown that the optimal route is not a simple
path but must be constructed as an adaptive decision rule.
Mirchandani ef al. investigate several versions of the general
problem [14]-[16], of which the most relevant to this work
is [16], where the delays in the network change according
to a global Markov chain: each state of the chain describes
the delays of all links in the network. It is assumed that the
current state of the network (and thus, the delays of all links)
is known. Since each state describes the delays of all links,
the number of states in the chain may be very large. A recent
work [17] investigates a network model in which links fail
or recover according to discrete Markov chains. In that work,
the memory problem (to be addressed later in this paper) is
avoided by considering the special cases in which either the
network is directed and acyclic or the states of the Markov
chains are independent (i.e., memoryless) from slot to slot.

In this paper, we also assume that the stochastic evolution
of the network is Markovian. However, there are some key
differences between this paper and [16]. We assume no global
chain but rather a separate Markov chain per node. This
approach better reflects the dynamics of the network and gives
a better insight to complexity issues. In addition, we do not
assume global knowledge regarding the states of links; in a
computer network, it is unreasonable to assume that the routing
information at every node includes the exact current state of
all other nodes. Rather, we assume that the routing decisions
at a node are based on the current state of links emanating
from that node and on the statistics of other links. A case
where the travel history is recorded in the message is also
considered.
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Our aim is to devise policies for traveling between two
nodes with the least expected delay. Analysis of the problem
reveals radical differences from the regular shortest path
problem. The basic difference is that the solution of the
stochastic problem is not in the form of a “path,” but rather
as an adaptive decision policy. This means that an optimal
policy may well route messages in loops and through paths
of unbounded length. Another remarkable property is that past
information regarding a travel is beneficial in minimizing the
expected delay.

The above properties make the general problem highly
complex, and we prove that even when posed on a finite
horizon and excluding travel history considerations, it is
an NP-Hard problem. Nonetheless, efficient and tractable
solutions do exist for some interesting cases. Most ‘notably,
when the stochastic nature of delays is a nodal property,
which is typical in high-speed networks, we present a simple
algorithm for finding an optimal policy. For other networks,
we apply suboptimal approaches and present a polynomial
algorithm that finds an e-optimal policy.

The paper is structured as follows. The formal model is
presented in Section II. In Section III, the minimum delay
path problem in a stochastic environment is formulated, and
its intractability is established. The case of nodal delays is
considered in Section IV. Section V presents a suboptimal
algorithm. In order to facilitate the reading of this paper,
proofs that are either too lengthy or too technical appear in
the Appendix.

II. THE MODEL

The network is represented by a directed graph G(V, B),
where V is the set of nodes and B C V x V is the set of links.
At any time, a positive number is associated with each link
representing the delay of traversing the link at that time. Time
is divided into unit slots and we assume that link delay remains
constant for the duration of the slot. The delay of each link
evolves according to a homogeneous discrete Markov chain
with a finite number of states and known transition probabili-
ties, and transitions may occur only at slot boundaries. In other
words, associated with each state is a discrete and nonnegative
number representing the link delay during that slot.

Focusing on the node, we can combine the state of the links
emanating from that node into a single node state. Thus, each
node ¢ can be characterized by a discréte Markov chain with
states E}, ES,- -+, Ef,(where m; is the number of states of
node ¢); when node 7 is in state E;'-, the delay of link (,k) € B
is given by dix(j) € {0,1,2,---}. We assume that chains
of different nodes are independent. Note that we do allow
dependencies between delays of links outgoing from the same
node. Such possible dependencies are reflected in the nodal
Markov chain. In order to incorporate a stay in node 4, we add
self-loops of the form (4,4), for which d;;(j) = 1. Given for
each i is also the state transition probability matrix Pi= {p]l}
such that D is the probability of a transition from state E1
to Ef at node ¢ (at the beginning of a slot). For 51mp11c1ty,
and W1thout loss of generality, we assume that Vi m; = m and

denote M 2 {1,2,---,m}. The incorporation of link states
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into a single nodal state should not be confused with the nodal
delays model discussed in Section IV: in the latter, the delay
of a link is composed of a stochastic delay value which, at
each state, is identical for all links emanating from the same
node, plus possibly a constant (deterministic) delay value for
each link whereas, in the general model presented herein, each
link takes a delay value at each (nodal) state which may be
independent of those of other links and other states.

Although our interest in the problem stems from the field of
computer communication networks, the results reported here
are of interest in other types of networks as well. Hence,
our use of the generic terms “traveler” and “traveling policy”
instead of “message” and “routing policy.”

We assumé that a traveler in the network who is currently
at node ¢ is able to measure the current state of the node, and
thus knows the exact delays of outgoing links from node i in
the current slot. The traveler cannot measure the state of any

other node (except node 7). Furthermore, we assume that, at
the begmmng of his journey, the traveler has no knowledge
regarding the initial state of any Markov chain in the network.
Thus, when steady states exist, he initially assumes that chains
are in their steady states.

A path is a (finite or infinite) sequence of nodes (vp, v1, - - -)
such that, for all 4, (v, v541) € B (v; = v;41 corresponds to
parking at a node for one slot).

Without loss of generality, we assume that travelers enter
the network at the beginning of a slot, and that their departure
from each node along their paths is at the beginning of a slot.
Thus, arrival times at nodes also occur at the beginning of
slots.

A realization is a (finite or infinite) sequence of node-state
pairs ((vo, E37), (v1, E}Y), - - -) such that (vg, vy, - - ) is a path.
In addition, for all 4, k, k > 4 such that v; = v, = v and, for
all ¢y, the following holds:

k-1
Pr{v in state E7, at time to + Z d
l=1

in state £, at time o} > 0.

VlVl+1 ]"/,l)IV

In other words, a realization describes a possible sequence of
node-state pairs that a traveler may encounter while traveling
in the network. The pair (v, EY) for some v € V and j € M
is called a realization component. The set of all realizations
is denoted by R.

III. PROBLEM FORMULATION AND TRACTABILITY ANALYSIS

In order to reduce traveling delays, the traveler should be
allowed to adapt his routing decisions while traveling, rather
than having to fix his entire route beforehand. The example
deplcted in Fig. 1 makes this point clear. In this network

= 2 and all links but (2,3) and (2,4) have a deterministic
delay of unity. Link (2,3) has a deterministic delay of 2 units.
For link (2,4), we have in state E? : dgs(1) = 1, and in state
E3 : dy4(2) = 10. The transition probabilities are py =05
for 1,7 € {1, 2}. Consider the problem of traveling from node
1 to node 5. Since the expected delay through link (2,4) is
5.5, it is clear that the path with minimal expected delay is
(1,2,3,5), with a deterministic delay of 4 units. However, if
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Fig. 1. Advantage of adaptive routing.

dis

Fig. 2. Example network: infinite paths, advantage of memory.

upon arrival at node 2 the traveler measures the state to be
EZ, then, if he is allowed to change his decision, he should
go along link (2,4), decreasing the delay to 3 units.

To cope with such circumstances, it behooves us to define
traveling policy as a mapping from node-state pairs into nodes:

tp: VM-V

A traveling policy dictates which node a traveler should turn
to for each state he measures at each node in his journey.
The policy may also make the traveler stay at a node for an
additional slot(s). We denote by tp(4, j) the identity of the next
node when measuring state E; at node . A proper traveling
policy ¢p is one in which, for all 4, 7(3, ({p(i, 7)) € B (note
that, due to the self-loops, (i,7) € B and, thus, it is possible
that ¢p(i,7) = ¢). We shall consider only policies that are
proper.

For a given source node v; and a destination node vg, the
delay D(tp) of a policy tp is defined as the expected delay
(over all realizations) of a traveler that leaves node v; and
travels according to ¢p, up to his arrival at v4. Note that, in
general, a journey according to a tp may result in an infinite
path for certain realizations. For example, consider the network
depicted in Fig. 2 in which the delay of link (4,3) (¢ = 1,2)
is 1 in state E} and 10 in state Ej. All transition probabilities
are equal to 0.5. Let the source node be 1 and the destination
be node 3.

It is easy to verify that the “best” {p is to move to node 3
in state 1, and in state Fs either to stay at the node or else
to move to the other node. Assume that the realization is such
that the traveler always measures the state Fs, in both nodes
1 and 2. In this case, he will either travel forever between
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the two nodes or else he will stay forever at the same node,
resulting (in both cases) in an infinite path. Note, however, that
the probability of this realization is 0, and the infinite delay
incurred by it does not affect the delay of the policy.

To avoid an infinite path, one might prefer a traveling policy
tp that guarantees arrival at the destination within a bounded
number of link traversals. We thus define a g-stage traveling
policy as a mapping from node-stage triplets into nodes, i.e.,

tp?: VxMxQ@Q-—-V

where Q@ = {1,2,---,q}, and ¢ is the maximal number of
link traversals allowed. We consider staying at a node for an
additional slot as a traversal and, thus, such a travel policy
bounds the traveling time. We say that the traveler is at stage
s if he has g — s traversals left (the journey begins at stage
0). Also, when computing the delay of a {p, a realization for
which the traveler does not arrive at the destination in ¢ stages
is considered having an infinite delay.

So far, we have not considered traveling policies that
make use of past information regarding node states gained
while traversing the network. As the next example shows,
the traveler can improve his performance by remembering
past measurements. Consider the network depicted in Fig. 2
in which link (4,3) (i = 1,2) has delay 1 in state Ei and
delay 10 in state E%. The state transition probabilities are
pi, = phy = 0.99,p%, = pi; = 0.01 which converge to
steady-state probabilities of 0.5 (i.e., both nodes are equally
likely to be in either of the two states). For simplicity, we
consider three-stage policies (¢ = 3). Let node 1 be the source,
node 3 the destination, and assume that at the beginning
the traveler measures state E3. If he goes directly along
link (1,3), his delay is 10; if he stays and waits for state
E} [and then leaves on (1,3)], then his expected delay is
1+0.01-1+0.99-(14-0.01-140.99-10) > 10; and, if he leaves
to node 2, his expected delay is at most 14+0.5-14+0.5-10 = 6.5
because he will find node 2 in either of the two states with
equal probability (the last calculation is the expected delay
for a two-stage policy, which is an upper-bound for that of a
three-stage policy). To optimize his delay, the traveler should
therefore move to node 2. Assume that, once arrived at node
2 (having only two stages left), he measures the state F3.
Consider first the case where the traveler does not remember
any previous measurement. If he departs immediately, his
delay is 10; if he waits (for at most one slot) at node 2, his
expected delay is 140.99-104-0.01-1 > 10; and, if he goes to
node 1, his expected delay is 14-0.5-1040.5-1 = 6.5 [these
are in addition to the one-slot delay incurred while traversing
link (1,2)]. Under these circumstances, the best decision is
to return to node 1. However, if he does remember previous
measurements, then he realizes that the probability of finding
node 1 again in state E3 is pl, - p3s + pig - Py = 0.9802.
Therefore, by returning to node 1 he will incur an additional
delay of 1+0.9802-10+0.0198-1 > 10. Going directly along
(2,3) is, therefore, the preferred move.

The above example shows that the best ¢tp must consider
previous measurements. Denoting the set of (partial) realiza-
tions by R, such a tp will be denoted by tp, and is defined
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as
tp:VXMXR—V

ie., tp(v, 4, r) is interpreted as the next node along the path,

where v is the current node, j is the index of the state currently

measured, and r € R is the realization observed so far.
Similarly, we define a g-stage ¢p by

W VMxRBRxQ-—-V.

The sets of' all possible traveling policies tp,tp?,tp, and p?
shall be denoted by T'P,TP?, TP, and T P4, respectively.
We are now ready to define several problems.

» The Memoryless Delay Minimization Problem (MDM):
Given a source node v, and a destination node v4, find
a traveling policy ¢p* € T'P such that for all tp € TP :
D(tp*) < D(tp).

» The (General) Delay Minimization Problem (DM): Given
a source node v, and a destination node vy, find a
traveling policy t5* € TP such that for all tp € TP :
D(tp*) < D(tp).

* The g-Stage Memoryless Delay Minimization Problem
(OMDM): Given a maximal stage value g, solve problem
MDM within ¢ stages.

* The g-Stage Delay Minimization Problem (QDM): Given
a maximal stage value ¢, solve problem DM within ¢
stages.

The policies tp*, tp*, tp?*, and ¢p?* shall be referred as op-

timal policies, each with respect to the corresponding problem.

We proceed to analyze the tractability of the above prob-

lems. We have seen that problems DM and M DM may need
solutions posed on infinite time horizons; thus, they are (in
general) intractable. We shall now show that QDM is likely
to be intractable as well.

Theorem 1: Problem QDM is NP-Hard.

Proof: See the Appendix. O

The intractability of QDM is typical of problems that require

memorizing the entire history. It might be hoped that this
would not be the case with OQMDM since, in that problem,
the traveler forgets his measurement as soon as he leaves a
node. Unfortunately, QMDM is also NP-Hard. In order to
realize it, one should note that for a policy to be optimal
(w.r.t. QMDM) it should consider the effect of the current
measurement on future network states. For example, consider
again Fig. 2. Suppose that the traveler is in node 1 and
measures the state E}—when he considers a traversal to node
2, he should take into account that he may measure the state
E% and that, as a consequence, he may then return to node 1.
However, since (in the present time) node 1 is in state E3, the
traveler knows that after that round trip through node 2 the
present node will very probably be in the same state (since
1-— P21 - P11 — P22 - P21 = 09802) Thus, gOiIlg to node 2
is beneficial only if state £? will be measured there. In other
words, for making his present decision, he should “simulate”
his future decisions in node 2 for every possible state there.
Although that simulation is memoryless in the sense that future
decisions do not incorporate the present measurement, this
measurement should be accounted for when evaluating the
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future performance, i.e., although the traveler is memoryless,
he needs in fact to “remember” a lot when considering his
future stages. This discussion is formalized by the following
theorem.
Theorem 2: Problem QMDM is NP-Hard.
Proof: See the Appendix. O

IV. NETWORKS WITH NODAL DELAYS

Assume that the stochastic nature of delays in the network
is a nodal property, i.e., the delay of a link at each (nodal)
state is the sum of a stochastic (state-dependent) component,
which is common to all links emanating from the same node,
and of a deterministic (possibly zero) value, which varies from
link to link. In other words, for every link (7, k) and for every
state E;, dix(4) = di(j) + dix, where d;(5) is the value of the
random variable d; at state E'; and d;;, is a deterministic value.
For simplicity, we shall also assume that a link cannot have
zero total delay, i.e., V(i,k) € B,j € M : d;(j) + dix, > 0.
For such a network, we show in this section that Problem DM
is tractable. Define the weight of link (¢,k) to be d; + diz,
where cfi is a constant value to be defined in the sequel. We
now show that an optimal DM policy for a network with nodal
delays is one that navigates the traveler through a minimum-
weight path, according to a certain departure-time decision
strategy. We prove the above in two phases. First, we show that
the minimum-weight path should be chosen independently of
the departure-time decision and then we derive the departure
times for the selected path.

The key point in our proof is to show that the optimal
traveler should never return to a previously visited node.
Intuitively, a traveler may wish to return to a previously visited
node when he realizes that the state of a link in his journey is
worse than was expected, and a different path should be tried.
However, in a network with nodal delays, the stochastic state
equally affects all links emanating from a node, and thus the
traveler incurs the same cost for moving to a previously visited
node and moving to an unvisited node which will lead him
closer to the destination. Obviously, this argument is far from
satisfactory since a DM policy is adaptive and may not choose
entire paths beforehand, and it relies on the entire history as
measured thus far and not only on the current measurement at
a node. We proceed with a more convincing but still informal
argument. A rigorous proof appears in the Appendix.

In general, a (optimal) traveling policy may indeed make
the traveler return to a node that was previously visited.
Nonetheless, there is at least one node from which such
traversals are. not possible—the destination node r4. Thus,
backward movements (i.e., “away” from the destination) are
possible from at most |V| — 1 nodes. Let ¢ be a neighbor of
the destination, for which the deterministic delay component
of the link to destination d;,,, is minimal (among all neighbors
of vg). Suppose that the traveler is located at node 7 and
measures the state E; The delay to the destination taking
the direct link (%, vq4) is d;(j) + d,, while the delay taking a
path through any other neighbor, say through node &, will be
at least d;(j) + dj,, since the delay on link (i, k) is at least
d;(j) and the delay on any link that ends at the destination
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is, at all times, at least d;,,,. We conclude that, when in node
i, the traveler leaves only directly to the destination, meaning
that there never are backward movements from node ¢. We are,
thus, left with at most |V| — 2 nodes that may allow backward
movements. We can now “contract” the network by merging
vy and ¢ into a single new destination node, such that the
new network is “equivalent” to the former, from the optimal
DM policy standpoint; such a contraction is made possible by
the fact that any traversal through node ¢ continues directly
to the destination. We then apply the above argument to the
new network, and identify another node which never allows
backward movements. Repeating this procedure, we conclude
that nowhere in the network will backward movements be
made.

Lemma I: In a network with nodal delays, a traveler using
a DM-optimal policy does not return to a node which was
previously visited.

Proof: See the Appendix. |

Note that the lemma states that revisiting previously visited
nodes is excluded by the optimal policy in every (nonzero
probability) realization.

In fact, the proof of Lemma 1 shows that there is a DM-
optimal policy that avoids returning to previously visited nodes
even when zero delay values are ‘allowed (see Appendix).
Howeyver, in that case there may be other DM-optimal policies
which do visit nodes more than once, since one might move
around a loop of zero delay, without affecting optimality. It
should be noted that the proof makes implicit use of the lack of
correlation between nodes. When such a correlation exists, the
above lemma may not hold (e.g., a small round-trip through a
few nodes might reveal all that is necessary about future delay
values at all nodes, making such a trip beneficial).

Suppose that the policy employed instructs a traveler situ-
ated at node ¢ that its next node is neighbor %, independently of
the state measured at 4 and of the past history. Indeed, Theorem
13 shows that this is the case with an optimal DM policy. With
such a policy, it remains to decide at which state to leave node
i. We are faced with a one-hop decision problem, namely
when to depart from the current node. We seek a departure
time policy that minimizes the expected elapsed time from the
arrival to the current node ¢ and up to the arrival to the next
node k. It is straightforward that the choice of the departure
time depends solely on the stochastic component of the link
delay. Thus, when calculating the departure policy we may
ignore the deterministic component of link delays (i.e., in the
following calculation we assume that d;; = 0). In order to
specify the required policy, we define, for each node i, the
values d;(4) (for 1 < j < m) through the following relations:

1+Zp]n‘ 2

Intuitively, d; (4) is the expected delay, from the present slot
and up to the arrival to the next node, of a traveler that is
currently located at node ¢, measures state Ei, and departs
only “when it is worthwhile.” If a traveler measures state E;
and decides to wait, his expected delay is 1+ ., Pjn -di(n);
if he departs immediately, his delay is d;(j). Thus, the traveler

min

Ji (J) =
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should depart only when di(j) < 1+ 3.7, pjn - di(n). The
above relations have a unique solution {d;(5) T 1 (see [18]).
Consider a policy that instructs the traveler to depart in states
j for which d;(j) = d;(j) and to wait otherwise; this policy is-
the optimal one we seek [18]. We call it the Departure Policy.
Next, we show that the values d;(j) can be calculated in a
number of steps which are polynomial in m. We present the
following iterative algorithm for making the calculation.

Departure Algorithm:

D n e 0, W, « 0,95 d2()) — di(j).

2y n «— n+ 1. .

3) Wa e {JIL+ X000 pin - df 71 (1) < di(h)}-

4) Vj ¢ Wnd?(j) < di(j).

5) Solve the following system of nonhomogeneous linear
equations (for j € W,,):

i () = Y pau-di (1) + Ci()

lew,

where C;(j) 214 Ligw, Pit - dit ().

6) If W, = W,_1, then stop.

7) Go to step 2.

The Departure Algorithm is a version of the approximation
in the policy space method [18]. It is known that the equations
in Step (5) have a unique solution and that, for all j,czz'-‘(j)
converges to d;(j) monotonically in n.

Lemma 2: The Departure Algorithm stops after, at most,
m+ 1 1teratiAons. Let N be the final value of n; then,
VidY(j) = di(y)-

Proof: From the monotonicity of d"(j) follows that
Wyp-1 C W,, for all n. Since W,, can have at most m
elements and W,, = W,,_; stops the algorithm, it follows
that the algorithm runs for at most m + 1 iterations.

Assume that, for some §,dN (j) > d;(j). Suppose that we
let the algorithm run indefinitely [i.e., we delete step (6)].
Since N was the last iteration in the original algorithm, we
have that Wy_; = Wy. Since the solution of the equations
in Step (5) is unique, it follows that dN (j) = d¥ (5 /), and
that for all n > N we have W,, = Wy and d"(j) = dN(j).
This is a contradiction, since df( /) converges monotonically
to d;(5). Thus, d¥(j) < d;(4), for all j. On the other hand,
d;(j) corresponds to an optimal departure policy, and d¥ (5)
corresponds to some departure policy. Thus, dN () > di(5).
We conclude that dV¥ (5) = di(5).

O

Since each iteration consists of O(m3) steps, we have

Corollary: The Departure Algorithm stops after O(m?)
steps.

R (]

Let d; be the steady-state expected value of d;(j) (over all
J). Assign to every link (4,k) € B a weight w; = d; + dp.
We then have: '

Theorem 3: In a network with nodal delays, a policy that
instructs the traveler to move to the next node on a minimum-
weight path to the destination according to the Departure
Policy is an optimal DM policy.
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Proof: Denote by MW, the minimal weight distance
from node ¢ € V to the destination. The proof is by induction,
and the inductive step is as follows. Suppose we proved that
the claim is true for the n» nodes whose weight distance from
the destination is at most the nth lowest, and denote that set
of nodes by S.

Suppose that the traveler visits for the first time some node
u ¢ S, from where he moves to a neighgbor v € S. Due to the
inductive assumption, it is easy. to see that, prior to measuring
the state(s) of node u, such a travel incurs an expected delay
of at leastAczu + duy + MW, = wy, + MW, > MW, The
argument d,, in the previous expression is due to the optimality
of the Departure Policy for one-hop departure time decisions:
an expected value is taken since node u was not visited before.

Let ¢ be a node having the (n + 1)st lowest minimal
weight distance from the destination. We shall prove the
inductive step by showing that the claim also holds for node
i. Consider a traveler arriving to node 4 for the first time.
Recall that, by Lemma 1, the traveler will not return to nodes
that were previously -visited. Denote by j the state at which
the traveler departs from ¢ (according to the optimal departure
policy). Node i has some neighbor k such that k& € S and
w; + MWy = MW;. Due to the inductive assumption, it is
easy to see that a travel starting at node ¢ (at-the jth state)
and continuing through neighbor % incurs an expected delay
of d;(§)+dix+ MW, = MWi+di(j)—Ji. 1t is easy to verify
that every travel from node ¢ to the destination must include a
traversal from a node u ¢ S to a node v € S. Due to Lemma
1, node u was not visited before. If v« # 1, then, according to
the observation in the previous paragraph, the expected delay
is at least d;(j) + MW,. According to the choice of 7, we
have that MW, > MW;, meaning that the travel beginning
with neighbor % has a smaller expected delay. Thus, v = 4
and the inductive claim follows immediately.

We note that the base of the induction applies trivially to
the destination node, and thus the theorem follows.

]

The above discussion and lemmas show that, for nodal
delays, we have a DM-optimal policy that can be found in
O([V]? + |V| - m*) steps.

V. A SUBOPTIMAL SOLUTION

Ergodic Markov chains usually converge fairly rapidly to
their steady state. We rely on that property (assuming that
our chains are indeed ergodic) to obtain a solution to the
QDM problem that is arbitrarily close to the optimal solution.
We first present an optimal (and intractable) algorithm for
obtaining a QD M-optimal policy and then modify it to a
tractable e-optimal one. The algorithm is based on Dynamic
Programming.

We begin with some notations. Let a realization history, r,,
be a sequence of up to n consecutive components observed
by a traveler traversing the network according to some policy.
Let R,, denote the set of all possible realization histories. Let
d be such that d;x(j) < d (for all 4, k, §). Let (i, Ef|rn) be
the probability of our traveler observing node i being in state
E; when 7, is his recorded history. Finally, denote by N; the
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set of node 4’s neighbors (including node 4 itself, due to the
self-loop). Recall that v, is the destination node.

The algorithm uses several internal variables as follows.
Consider a traveler located at some node s having passed n
stages (0 < n < ¢) on its way to the destination node vy
and having recorded r, as his realization history. For such
a traveler, Lg")(rn) is the least expected delay to the desti-
nation (as known thus far in the execution of the algorithm).
Similarly, L§”) (Tn,j) is the least expected delay (as known
thus far) for a traveler under the same conditions and that is
currently measuring state . Finally, L8 (rn, 5) is the least
expected delay (as known thus far) for a traveler under the
previous conditions, and whose next move is to node k.

As previously stated, we implicitly assume that LE")(rn) is
defined only for those r,,’s which do not prohibit the traveler
to be at that node at the nth stage. Similarly, it is implicitly
assumed that L™ (r,, j) and Lz{:) (Tn, j) are defined only for
those r,’s which make it possible for the traveler to be at 7 at
that stage and measure the state E.

The algorithm consists of ¢ iterations, each representing a
traversal stage, starting with the last one (i.e., stage q). At each
iteration, the algorithm considers all nodes ¢ € V at which
the traveler may be found, all possible measurements E; and
all possible realization histories r,,. In the description of the
algorithm, we use the operator “&” to signify the concatenation
of a realization component to a history realization record.

Optimal QDM Algorithm:

1) Initialization: for all ¢ € V3 # vy : qu) (rq) = oo; for
all0 < n < q:LvZ)(rn) =0,n«q—1.
2) For all ¢ € V,i # vy, for all r,:

a. forall j € M:

i Yk e N 2 IP(r,5)
LMY (ra&e(i, EY)).
ii. LM (rp,5) « ming L (r,, §).

b. LE")(rn) =3 Lgn)(rn,j) (i, Bi|ry).

) ne—mn-1

4) If n > 0 then go to step (2).

In the first step of the algorithm we consider a traveler
who has already passed ¢ stages. Obviously, if he did not
arrive at the destination, then his expected delay is infinite.
On the other hand, the incremental delay of a traveler that
arrives to the destination is zero, at all stages. The next steps
consider previous stages in backward order. In step (2.a.i),
we consider a departure from node ¢ to node k, when the
past measurements are recorded by 7, and the present state
is E; Here, we make use of our previous computation for
node k, stage n + 1, and the history recorded by r,&(i, E;)
Using this result, we identify in step (2.a.ii) the best decision to
make under those circumstances. In step (2.b), expectation is
taken over all possible states of node 7, where the probabilities
consider the history recorded.

Using standard Dynamic Programming techniques [19], one
can show that the above algorithm indeed solves the QDM

dir(7) +
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problem. The optimal policy for a traveler located at node 3
after n stages, whose past measurements are recorded by r,
and whose present measurement is E¢, is to move to a node k
such that L™ (r, 5) = L& (7, 5); if k = 4, then the traveler
should stay at node . The final value of L§”) (ry) is indeed the
minimal expected delay to the destination of a traveler located
at node 4 that passed n stages and whose realization history
is recorded by 7.

We proceed to count the number of operations of this
algorithm. In step (2), we consider all r,,’s (for0 < n < ¢— 1),
and their number is O((m - |[V|)™). For each r,, we perform
O(m - |B|) operations in step (2.a). Step (2.b) involves the
calculation of p(i, Ei|r,) for each node i, state E}, and
realization 7,; each such calculation involves up to n - d
multiplications of an m x m probability matrix. Thus, we
have O(|V|-m - n - d - m?®) operations for each r, in step
(2.b). The total number of operations of this algorithm is
O(m - |B| - LiZg(m- V)" +m-[V]-d-m? - i gn-
(m - [V)*) = O((m - [V)2 - (] +d - m® - q)), which is
intractable for a large number of stages. We point out that the
length of 7, can be restricted to at most |V| — 1, since it is
sufficient to record just the last visit at each node. This means
that the value of ¢ in the above complexity expression could
be replaced with min(q,|V| — 1). Nonetheless, the resulting
complexity is still intractable.

We shall now modify this algorithm to obtain an efficient
algorithm for finding an e-optimal DM policy. It is here that
we rely on the convergence of Markov chains to- their steady
states. The idea is that since convergence is expected to be fast,
the traveler can forget his oldest measurements, with only a
negligible degradation in his performance.

For a given integer d, we restrict ourselves to networks
whose maximal link delay value is d; that is, dix(j) < d
(for all 4,k, 7). We also restrict ourselves to the class of
(finite) Markov chains that are irreducible and aperiodic (and
thus also ergodic), and assume that each transition probability
matrix P* has m linearly independent left eigenvectors. Such
chains fulfill the following properties [20]: each P* has m
eigenvalues, the dominant one (i.e., the unique maximal one)
being A\ = 1. Among all nondominating eigenvalues of P let
A% be one of maximal absolute value. Let #r* be the steady-state
(row) probability vector of P¥; let 2%, and g3 for 1 <n <m
be, respectively, the left- and right-eigenvectors of P* (z}, is
a row vector, and y; is a column vector). Finally, let z, be
any (row) probability vector, i.e., a vector of order m with
nonnegative components whose sum is 1. Then, the following
relation holds [20]:

[ zo(PY* — ot [I< ASIF D Il woviss, | (1)
n=2
meaning that the convergence of the :th chain to its steady state
is not slower than geometric, with a rate of at least [A¢|, (|| - ||
denotes the standard Euclidean norm on R™).

Let A 2 max; |A¢|. We shall consider a class of networks
for which, for all ¢ € V, all possible z, and for predetermined
positive o and 3, A < (m—llVl—)F and -7 || zoyhzl [|I< B
As we shall see, @ and § influence the complexity of the e-
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optimal algorithm. Thus, given a maximum allowable number
of operations, these values classify the set of networks that
can be considered by this algorithm.

Suppose that the traveler records only the most recent [
history components (I < n). If 7, is his entire history, then
he records just 7,, which is defined as the last { components
of r,, (for n < [#, = r,). It is easy to verify that, from (1)
and from the assumptions made on the Markovian chains, the
following relation holds:

Vi € V,Vry : [p(i, Bilrn) — p(i, Bjlfn)| < 8- M. ()

Consider now the following algorithm, which is identical to
the QDM Algorithm, with the exception that r, is replaced
by 7, (the value of the corresponding [ shall be determined
in the following).

Epsilon-Optimal QDM (EQDM) Algorithm:

1) Initialization: for all i € V,i # vq : L9 (7,) = oo; for

allOgngq:f/,(,’:)(fn)zo.ne—q—l;

2) Forall: € Vi £ vy, forall 0 <n <g—1,forall 7,:

a. forall j € M:
i Vk o€ Ny ¢ L) — da(h) +
s(n4+1) A . i
Ly (7 &0, Bf)).
i, L™ (f,5) — ming L8 (7, ).
b L(fn) = Sy L (s ) - w0, B ).

N n—n-—1

4) If n > 0, then go to step (2).

In step (2.a.i), 7, stands for the deletion of the first
component from r,, for n > [. In this way, we keep #,, within
the allowed maximal size.

Lemma 3: Assume that algorithms QDM and EQDM are
run both on the same network, and consider the final values
of their corresponding variables. Let n = B - A1, Then, for
all 0 < n < g, € V,rp,7u:

LM (#0) =L ()] € me([V|=1)-d-(q=n) - (L+men)d™".

?

Proof: See the Appendix.

0
The corresponding EQ DM policy is as follows: the traveler
keeps a record 7, of his past [ measurements; when located
at node ¢ after n stages and when measuring the state E%, he
moves to a neighbor & for which ﬁg")(fn,j) = f;ﬁ;‘)(m,j). It
is easy to verify that the final value of ﬁfn) (#,) is the expected
delay of a traveler who uses the £Q DM policy, is located at
node 4 having passed n stages, and whose I-truncated history
is 7,. Thus, the last lemma shows that his expected delay will
be at most m - (|[V| —1)-d-q-n-(1+m-n)? away from
the optimal value (i.e., it is an additive error). Let us consider
I’s which are large enough so that n < Ejl;n— (in fact, we shall
soon restrict ourselves to even larger I’s). For such values of

7, we have

m-([V|-1)-d-¢-n-1+m-n)!<m-|V[-d-q-7

1 q
-(1+E> <m-|V|-d-qg-n-e.
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Thus, for an e-optimal policy, we require that m - [V} -d - ¢ -
n-e < e Since n = 8- M+ 4 1, the required size of [ is

log (e mrfvras)
b2 =gy b
We proceed to count the number of operations of the

EQDM algorithm. In step (2), we consider all #,’s (for
0 < n < ¢-1), and their number is O((m - |V])!). For
each 7, we perform O(m - |B|) operations in step (2.a), thus
having a total of O(q - m - |[B| - (m - |V])!) operations for
step (2.a). Step (2.b) involves the calculation of p(s, E;]fn),
for each node 1, state E;:, and realization 7,,. Each calculation
involves up to ! - d multiplications of an m X m probability

matrix; the values of p(i, E}|#,) (for all ¢, j, and #,) can be

precalculated (instead of calculating them again for each n),
needing a total number of O(m3-d-1-(m-|V|)**1) operations
for this calculation. Thus, the number of steps performed by

the EQDM algorithm is
O((m- [Vt (q- % +m3-d-l>>.

This, together with the above expression for the required size
of 1, leads to the following result.
Lemma 4: The complexity of the EQDM algorithm is

log (ﬂ~m-|;/|-d~q)

1Bl . s :
O q +m d - min —&Tg(mi—)-'

VI

s - (m00) ]

Proof: See the Appendix.

vl

|

Since d, o, and 3 are predetermined, the above expression is
polynomial in m, |V, ¢, and e. Thus, for the class of networks
considered in this subsection, the EQDM algorithm provides
a tractable e-optimal solution for the DM problem.

In order to gain some insight into the last result, note that
for a deterministic network we have m = 1, [ = 0, and
the number of steps for ¢ = |V| is O(|V| - | B|), similar to
Ford’s shortest path algorithm (see [21]). This expression is
a lower bound for the complexity expression found above,
that is achieved asymptotically for A — 0 (since then we can
choose @ — o0). As can be expected, the above expression
shows that the algorithm works harder in order to get a better
approximation, i.e., for smaller values of . Also, a smaller
A implies a greater o, which results in less computations.
Intuitively, a smaller A promises faster convergence, which
allows us to keep a smaller track of past events. We note that
¢ is the additive deviation of the algorithm’s outcome from the
optimal value (rather than a value related to the ratio between
the two). This means that small integer values of & would
be good approximations, e.g., ¢ = 1 means that the expected
delay of the EQDM policy is higher than that of the optimal
policy by a single delay unit.

The EQDM algorithm serves as a general scheme for
obtaining efficient and tractable solutions when convergence
is fast enough. It is possible to improve its performance

further by exploiting specific network properties. For example,
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consider a network whose topology is such that any node is
at most within h hops away from the destination (in fact, this
is always the case when A is the network diameter). For such
a network, it is possible to change the bound of (|V| - 1) -d
used in the proof of Lemma 3 by h - d; this means that in the
complexity expression of Lemma 4 the component |V - d can
be replaced with A - d. An example of the performance of the
EQDM algorithm is presented in the Appendix.

VI. CONCLUSION

Traveling with the least expected delay in a stochastic
network turns out to be an extremely complicated problem
in general. Nonetheless, this problem merits attention, since
we have shown that careful analysis of the specific class
of networks considered may lead to the design of tractable
solutions that are optimal or almost optimal. In particular, an
efficient optimal solution can be found in networks with nodal
stochastic delays. This is typical of high-speed networks, in
which the dominant delay is incurred by nodes and not by the
high-speed links.

In this paper, we assumed that the underlying Markov chains
are uncontrolled, i.e., routing decisions do not affect link
delays. This is a proper framework for the case in which we
aim to route efficiently (i.e., considering all that is known on
the network) a portion of traffic that does not have a major
effect on the total network loads. More generally, the results of
this paper could serve as a baseline for the investigation of the
case in which the effect of routing decisions on the network
performance is taken into account. This, in fact, was the case
with static-deterministic networks, for which the establishment
of efficient load-dependent routing algorithms benefited from
prior knowledge on the load-independent case.

Due to the complexity of the problem, it is of interest to
evaluate the performance of different heuristics. An initial
step in this vein is done in [22], where a version of a
regular shortest-path algorithm is discussed. The algorithm
considered the measured delays of links emanating from the
current node, while all other links in the network are assumed
to be in their steady states. It is shown that for irreducible
and aperiodic Markov chains, the algorithm guarantees arrival
to the destination with probability 1. However, for periodic
chains a counter example is given. The investigation of various
heuristics, as well as possible enhancements of the model (e.g.,
incorporation of semi-Markov processes), are important topics
left for further research.

APPENDIX

Proof of Theorem 1

Theorem 1: Problem QDM is NP-Hard.

Proof: Assume that there is some algorithm in class P
that, when given a source node, a destination node, and a
(finite) maximal stage value ¢, produces an optimal g-stage
traveling policy. We now show how this algorithm can solve
the Hamiltonian Path Problem, which is known to be NP-
Complete [23].
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Given is a graph G = (V, B), for which it is required to
decide whether it contains a Hamiltonian path beginning at
some node o, € V. We derive from G a new graph G in
the following way: we add to V a fictitious node V4, and
join each ¥ € V to vq by a fictitious link. Thus, we get
V =V U{va}, B=BU{(,v)|p € V}. We define for
each link in B the following stochastic link delay: all links,
except those that end in »4, have a deterministic delay of
unity. The delay of every link that ends in v, is described by
a homogeneous Markov chain with two states Fq, E5 such that
d(1)=1,d(2) =D =2 |V|,p11 = pa2 = 1,p12 = pa1 = 0.
Recall that the traveler does not have any knowledge regarding
the initial states of links, and therefore he assumes that a link
is in each state with a probability of 0.5.
~ We now solve the QDM problem in G for source node
vs = Us, destination node v4, and ¢ = |V| — 1, obtaining an
optimal policy tp?*. It is straightforward that £p?* will instruct
the traveler to move straight to 14 on the first occasion that he
measures the state £ at a node. We now show that as long as
there is an unvisited node in the network, the traveler should
refrain from departing to the destination on a link whose state
is E2.

Consider a traveler that uses some QDM-optimal policy
tp?*. Suppose the traveler is at a node v, whose link to the
destination is in state E. Let n{n > 1) be the number of
unvisited nodes in the network excluding v4. Suppose, by
contradiction, that {57 instructs the traveler to take the direct
travel on the link (v, v4), whose delay is D. We now construct
a new policy that is better than #p?*. Since n > 1, there is
some unvisited node w; the new policy directs the traveler to
w and then to take the direct link (w,vy) (regardless of the
measurements at w). The delay of the voyage from v to w is at
most |V| 1. Since w is unvisited, the probability of finding it
in each state is 0.5. Thus, the expected delay on link (w, v4) is
0.5(1+ D). We conclude that the expected delay of the travel
to vg through node w is [V'| — 1 +0.5(1+ D) < D. Thus, the
decision taken by ¢$?* is not optimal, which is a contradiction.

Therefore, in a realization for which the state of every
visited node is FEy,tp?* will first carry the traveler along
all nodes in V. On the other hand, visiting a node twice is
wasteful, since it is certain to be in state E5. Thus, we conclude
that in such a realization tp?* will carry the traveler along a
Hamiltonian path, if there is one. Thus, in order to solve the
Hamiltonian Path Problem in G, we compute an optimal travel
in G in [V| — 1 stages, assuming that state E; is measured at
each stage. The answer to the Hamiltonian Path Problem is
positive iff the obtained path is Hamiltonian. |

Proof of Theorem 2

Theorem 2: Problem OQMDM is NP-Hard.

Proof: We make the same reduction from the Hamilton-
ian Path Problem as in Theorem 1. We note that the optimal
policy in the problem outlined in Theorem 1 (where memory is
allowed) does not use memory at all, since it can choose the
Hamiltonian path beforehand (given that it exists), and then
instructs the traveler to go along the path until he measures
" state E'; when he should go directly to the destination. This
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policy would therefore also be an optimal policy for the
memoryless case. This means that ¢$?* finds a Hamiltonian
path iff there is one, and thus one can obtain an answer
to the Hamiltonian Path Problem by simulating a travel of
|V| — 1 stages, in which all links to »4 are found in state Es.
We conclude that £p?* solves the Hamiltonian Path Problem,
proving the theorem. O

Proof of Lemma 1

Lemma 1: In a network with nodal delays, a traveler using
a DM-optimal policy does not return to a node which was
previously visited.

Proof: We start with the following deﬁnltlon For a given
DM problem and a policy that solves it, a cluster is a set of
nodes such that the following hold.

1) There exists a nonzero probability realization for which
the policy causes a traversal from each node in the
cluster to some other node in the cluster. (In that
realization, every node in the cluster is visited at least
once and at least one node in the cluster is visited at
least twice.)

2) For all nonzero probability realizations, after leaving the
cluster for the first time (i.e., after the first traversal from
a cluster node to a non-cluster one), the traveler is not
instructed by the policy to visit cluster nodes anymore.

It is emphasized that the definition of a cluster depends on
the source destination pair considered (by the given problem)
and on the traveling policy. Condition (1) states that the
traveler may return to a previously visited node. Condition
(2) defines the cluster corresponding to Condition (1) to be
the largest possible one. In fact, it is easy to verify that
whenever a policy instructs the traveler to move from a node
to a previously visited neighbor, then these two nodes belong
to a cluster. In other words, considering, for a given policy,
all possible link traversals under any (nonzero probability)
realization results in a (possibly empty) sequence of clusters
interconnected by acyclic subgraphs. Clearly, our aim is to
prove that a DM optimal policy does not have clusters.

Consider a traveler that uses a DM-optimal policy: such
a policy must bring the traveler to the destination for any
nonzero probability realization. Since the destination cannot
participate in clusters [due to condition (1)], it follows that,
for a DM-optimal policy, every cluster has at least one
escape node v with at least one escape state EY such that
if the traveler arrives to v having measured some realization
r and then measures the escape state E;’ , he is instructed
(by the optimal policy) to move to an escape neighbor w
which is outside the cluster. Escape neighbors have an im-
portant property: after reaching them, the traveler will never
return to the previous cluster(s), regardless of the realization
measured.

Denote by D,(r) the expected delay from node v to
the destination, when using a D M-optimal policy and the
measured realization history is r. Suppose that a traveler
moves from a cluster to an escape neighbor w. Since previous
nodes will not be visited anymore and the stochastic chains of
different nodes are independent, we conclude that the history
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r cannot affect the travel from w and on, ie., D,(r) =
D,,. We stress that the last relation holds since there is
no backwards traversal from w for any nonzero probability
realization. Otherwise, by definition, w would have been part
of the cluster. We are now ready to proceed with the proof.

Assume that the lemma is violated. Thus, there is at least one
cluster C. Denote by {v1,vs,---,1,} the (nonempty) set of
C’s escaping nodes, and by {w1,ws, - - -, w, } a corresponding
set of escaping neighbors (we point out that an escaping node
may have several such neighbors, and vice-versa. Hence, it
may be that v; = v; or w; = w; for ¢ # j. However, we
construct the two sets so that v; = v; implies w; # wj,
and thus the two sets are finite). When the traveler moves
from an escaping node, v; to an escaping neighbor w; at, say,
some state E}’", the expected remaining delay (to conclude the
journey) at that point is d, (§) +dy,w, + Duw, . Thus, the cost of
making such an escape is at least K; 2 Ay, + Dy, . Denote
K 2 min; K;. Since the traveler must escape eventually,
after entering C' we have, for all nodes v in C and all
possible realizations 7, D, (r) > K. Suppose that | is such
that K; = K. Since v; is in C, there is at least one nonzero
probability realization r that brings the traveler to v;; let E}”
be the state measured then at v;. We point out that = is not
necessarily such that the traveler is instructed to escape at v;
(the escape condition depends on the history measured and on
the state measured at the escaping node). If the traveler does
escape (to wy), then his expected delay is

dy,(7) + Ki = dy, (§) + K

and if he moves to any neighboring node « within the cluster,
his expected delay is

dy, (J) + dyyu + Du<7"’) >dy,(j)+ K

where ' is the “prefix” of r which corresponds to the
realization measured up to the arrival to . From the last two
relations it follows that, when arriving to v, escaping is at
least as good as continuing the travel in the cluster regardless
of the history and present state measured. Moreover, the last
relation holds with equality only if all of the following hold:
1) dy,o, = 05 2) w is an escaping node, say u = v;, for which
k; = K; 3) for at least one state EY, du(j') = 0 (otherwise,
when escaping from v we always pay something for the nodal
delay). Repeating the above discussion but considering u as the
escaping node, we again discover that regardless of history and
state measured, escaping from u is at least as good as moving
to any neighboring cluster node u'. However, equality here
would again imply d,, = 0, meaning that d,, (3) + dyw =0,
which is forbidden in our model.

We conclude that there is at least one node in cluster C,
from which it is always preferable to move out of the cluster.
Since we assume that an optimal policy is used, whenever the
traveler arrives to that node he never returns to the cluster,
meaning that that node is not in the cluster, which is a
contradiction. O
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Proof of Lemma 3

Lemma 3: Assume that algorithms QDM and EQDM are
both run on the same network, and consider the final values
of their corresponding variables. Then, for all 0 < n < ¢q,i €
V,Tn, P

L (R) =L (ra)| < moe(1V] = 1)-d (g =n) - (1mem) e,
Proof: By (backward) induction on n. The claim is trivial
for n = ¢ (adopting the convention that, in the initial setting,

“00—o00 = 07”). Assuming truth for n41, we prove the lemma
for n. By the inductive assumption on n + 1, we have

L5 (s 9) = L (s )] = |0 (77 &6, L))
— LD (ke (i, B)) < m- (V] = 1)
d-(g=n—1)-n-1+m-p)* """
Thus, from step (2.a.ii) of both algorithms:
L (3 = L8 (1, )] = [ min LG (7, )
—min LG (r, )l S m([V| = 1) d- (g —n — 1)
- (1 +m-n)m ©)
Denote
~ N A . . i . A
pi(Tna 'rn,.]) = mm[p(z, Ejl’f’n),p(l, E]l’l‘n)]
and
L (1, 5) £ min[L{™ (rn, 5), £ (7, ).
From (2), we have
P(Z,Eﬂf'n) sz(Tn,fmJ)"‘?? 4
Similarly, from (3) we have
L (rn, 5) < L8 (1 i ) +m- (V] = 1)
d-(g=n—1)n-(1+m-n) "1
L (80, ) S L (rn, 70, §) +m- (V] = 1)
d-(g=n-1)-n-(1+m-n? """ Q)
For the next transition, we use the following relation:

given positive numbers a,a’,b,b" such that 0 < a <
min(a,a’),max(a,a’) < A,0 < b < min(b,b), and

max(b,b') < B, it holds that |a-b—a'-b'| < A-B—a-b. This,
together with (5) and step (2.b) in both algorithms, yields

L () = L) € Y AL (7 iy )

j=1
+m-(|[V|-1)-d-(g-—n-1)
- (Ltme )T - [pi(ra, i, ) + 1]
"LSTL)(TTL)’FW,’]) pz(rna'fnaj)}

< S s g) m+me (V] = 1) -d- (g —n— 1)

=1
0 (L men) "0 p(i, Eifr)
+m- (V] =1)-d-(g=n—1)-7"- (1+m-n)?"""],
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Since L;(ry, j) is the optimal expected delay for a DM policy,
it cannot be larger than (|V| — 1) - d, which is the maximal
delay for a policy that always chooses any simple path to the
destination. Thus,

|E{™ (7)) — L (7 Z|v1—1>-d~n

m-([V|-1)-d- (Q-n—1)

- (1+m-n)™"" 1-2 (i, Ejlrs)

+m-([V|-1)-d-(¢g—n—-1)-n

.(1+m.n)q—n—1.m.n
=m-(V|-1)-d-n-[1+(g-n-1)

(A+m-nT ™ (g-n—1)

A4+ m-p)?" T m )
=m-(|V]-1)-d-n

P+(@-n-1)-1+m-n)"]
<m-(VI-1)-d-(g=n) - n-(1+m-n)*™"

completing the inductive step. ]

Proof of Lemma 4:
Lemma 4: The complexity of the EQDM algorithm is

log (ﬂ-m'lgl-d-q)

B
Ol lq: | |+m -d-min { |V], D

14

1/
.max(m-[V]7<ﬂ‘m‘|:|'d'q) ))

Proof: We recall that the number of steps performed
by the EQDM algorithm is O((m- 1288 (q- Jl-%[ +m3-
d-1)) and that ! can be chosen as [ =

lo RN -
(0, [—g‘(e'gg"a;fl.d'q)‘-l . For I =
immediate. For [ > 0, we have that the complexity of the

algorithm is

alog(m

max

0, the lemma is

B, los (camivra)
1) i od-
T tm Tog )

log (e-ﬁ~m~€|V|-d-q)
V) (m V)=
eBm-|V]dyg
| | 3 log( € )
0 =4 m”-d-
T iog (%)

i m|V})
e~ﬂ-m']V[od~q> 103( )

£

-
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B, oy e ()

< it}
ol\emr D

- V] o - log(m

-(m-lVl)-(ﬂ-m-lVl-d-q--i—)l/a)

In the last inequality we use the assumption that A < (CHdER
Since it is sufficient to record just the last visit at each node,
we have [ < |V| and the lemma follows. O

Example of EQDM Algorithm Performance

We consider a network for which m; = 2,d;(1)
1,d;(2) = 10. The transition probabilities are p1; = paa

0.55,p12 = po1 = 0.45, to which correspond A = 0.1, 8 =

—1—2, and an expected link delay of 5.5 units.

We make the following assumptions regarding the topology.
The number of edges is |B| ~ |V|'5, ie., an intermediate
value between a sparse network and a complete one. We
assume that a node is within at most 2 - \/|_V_| hops away
from the destination. This, for example, is the case with a
rectangular grid. Following the remark in Section V, in the
complexity expression of Lemma 4 the component |V| - d can
be replaced with 2 - \/|_‘7| - d. A typical value of g would be
between 2 - /|V] (the minimal number of stages in order to
reach the destination) and |V| (which is far more than what is
usually needed in a network with the 2 - \/m property).

Let |[V]| = 50. Then, |B| ~ 350 and 2 - /|V| =~ 14.
We choose ¢ = 35, i.e., an intermediate value in the range

[V|---|V]. Let € = 2, i.e., less than half of the steady-
state expectation of a link delay. We then have [ = 3,
i.e., the EQDM algorithm works on the last three realization
components. The number of operations of the algorithm is on
the order of 101°, which is reasonable for off-line computation.
Note that the number of operations for the optimal QDM
algorithm is on the order of 1072

We proceed to estimate the performance of the policy
obtained by the FQDM algorighm. To that end, we obtain an
approximation for the performance of an optimal policy. Con-
sider a policy that navigates the traveler through a minimum-
hop path to the destination, each time waiting for state 1 to
come about. The expected delay of such a policy (considering
a path of 14 hops) is approximately 29.5 delay units; the
expected elapsed time per hop is, approximately, 2.1 delay
units. Note that such a policy seems a good approximation for a
DM policy, in view of the high symmetry in the network. Also,
note that this policy has no bounds on the number of stages
but, since ¢ = 35 > 29.5, it is a reasonable approximation for
our g-staged case. With this approximation, the expected delay
of the EQDM algorithm would be at most 29.5 + £ = 31.5.
A standard shortest path algorithm (which considers just the
expected link delays) has an expected delay of 77 delay units
(5.5 per link, on a path of 14 links). Thus, we have

D(opt) ~ 29.5 < D(EQDM) =~ 31.5 < D(SP) = 77.

This example shows how EQDM may yield efficient solu-
tions within a tractable number of operations when the Markov
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chains converge rapidly. For chains with a slower rate of
convergence, we would need more computations or else do
with a higher ¢. For example, consider the above network but
with chains corresponding to A = 0.2. Choosing ¢ = 6 (i.e.,
approximately the expected delay of a link) yields [ = 4 and
an order of 10'? operations (again, compare with 107 for the
optimal algorithm). We now have

D(opt) ~ 29.5 < D(EQDM) =~ 35.5 < D(SP) = 77.

In considering the tradeoff between the quality of the result
and the number of operations, one should note that the EQDM
algorithm lends itself easily to an implementation on a parallel
machine (e.g., by assigning a processor to each network node).
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