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Abstract

In this paper, we consider the problem of devising a loop scheduler that allocates slots to users according to their relative weights
as smoothly as possible. Instead of the existing notion of smoothness based on balancedness, we propose a variance-based metric
which is more intuitive and easier to compute.

We propose a recursive loop scheduler for a class-based scheduling scenario based on an optimal weighted round-robin
scheduler. We show that it achieves very good allocation smoothness with almost no degradation in intra-class fairness. In addition,
we also demonstrate the equivalence between our proposed metric and the balancedness-based metric.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a scenario where an indivisible resource (e.g., time slot) is to be shared amongst K users by means of
time multiplexing. The components that are relevant to this resource-allocation problem are the service discipline or
scheduler, the users and the performance metrics.

Users can be characterized in terms of their type (jobs vs streams) and arrival characteristics (time and size). The
scheduler determines how much resource, which user and when to allocate the resource. The scheduling mechanism
may depend on the user characteristics (online) or offline (independent of arrival characteristics). Finally, such a
system is usually evaluated in terms of its efficiency (e.g., mean waiting time in the system) and fairness (e.g., how
fairly each user is treated). While efficiency has been studied extensively and is well understood, there is still no
commonly agreed upon theoretical yardsticks for measuring fairness in resource-allocation systems.

A common notion of fairness is the following: an allocation is fair if, at every instant of time, each user is
receiving its fair share (instantaneous fairness). Assuming that each user has equal rights or priority to the resource,
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a hypothetical service discipline that is fair is a bit-by-bit round-robin (BR) discipline since, at every instant in time,
each user is receiving its fair share. For users that can be characterized as jobs (e.g., in a supermarket set-up), the
processor sharing model (introduced in [1] and generalized in [2]) is commonly used to evaluate the efficiency of the
BR discipline as the bit size tends to zero. Recently, a resource-allocation queueing fairness measure (RAQFM) has
been proposed in [3] that accounts for both seniority differences (times of arrival) and service-time differences (job
sizes). The authors also analyzed the fairness performance of four basic queueing systems, where the results shed
some light on job-level unfairness as a function of the service discipline.

On the other hand, if each user corresponds to a stream of packets (e.g., in communication systems), the notion of
fairness is modified to take into account the idle periods between packet arrivals to a user as follows: an allocation is
fair if, for an interval, τ , over which each user is backlogged, it receives its fair share (fairness over τ ). Since sending
packets in a bit-by-bit fashion is unrealistic, packet-by-packet transmission schemes have been proposed to emulate
the BR scheme, most of which are variants of the weighted-fair queueing (WFQ) discipline [4]. This was extended
in [5] with the generalized processor sharing (GPS) discipline (and corresponding packetized GPS (PGPS) schemes),
where each user i is associated with its fair share, x i , where x i

6= x j for users i , j . Most variants of the PGPS (or
WFQ) schemes are computationally intensive to implement, since they require keeping track of the finishing times
(or times of departure) of packets in the corresponding (fluid) GPS scheme. However, under heavy load, where all
users can be assumed to be continuously backlogged, the weighted round-robin (WRR) scheduler (which is offline,
and hence independent of arrival characteristics) will be similar to the WFQ if packets are of fixed size [6]. Such a
scheduler is simpler to implement and also analytically tractable.

In this study, we consider the design of offline schedulers (such as WRR) and the analysis of their fairness
performance for communications system, where each user comprises a stream of packets. Since the schedulers are
offline, the schedule (or assignment of time slots) is constructed according to a given x = {x j

}
K
j=1, where x j is the

requested share of user j ,
∑K

j=1 x j
= 1 and x j

≤ xk if j < k. Such a schedule can be characterized in terms of its
fairness and smoothness, which are defined as follows.

Fairness: A schedule is (perfectly) fair if the fraction of time slots allocated to each user j is (equal) close to x j . This
is similar to the notion of fairness over τ defined above.

Smoothness: A schedule is (perfectly) smooth if the time slots allocated to each user are (equally spaced) as evenly
spaced as possible. This is similar to the notion of instantaneous fairness, defined above.

A schedule that is both perfectly-fair and perfectly-smooth is desirable in many communication problems, for
example,

QoS provisioning in TDMA-based wireless networks: In such networks, we envisage packets of different applications
that differ in terms of data rates to be delivered from/to a wired network via a base station to/from wireless receivers
within its coverage. The base station comprises multiple input queues, where queue j contains packets destined
for wireless receiver j and its requested share, x j , can be computed from the relative data rates of all queues. A
scheduler is required at the base station to determine the queue to transmit at each time.

A schedule that is perfectly-fair ensures that each user receives its requested share (QoS). In addition, a smooth
schedule minimizes the buffer requirement at the wireless receiver, since the jitter of the inter-arrival intervals is
minimized.

Data forwarding in wireless sensor networks: We consider wireless sensor networks where sensor nodes are grouped
into clusters. The cluster-head of cluster j is responsible for aggregating the data collected within that cluster, and
forwarding it to the base station, and its requested share, x j , can be computed from the relative data arrival rates at
all cluster heads. A scheduler is required at the base station to determine the cluster-head to transmit at each time.

A schedule that is perfectly-fair ensures that each cluster-head receives its requested share and this
minimizes the probability of packet lost due to buffer overflow. In addition, a smooth schedule spreads
out the transmissions, and hence, maximizes the lifetime of the nodes, which is the bottleneck in such
networks.
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However, a schedule that is both perfectly-fair and perfectly-smooth is infeasible for most x . The design of
perfectly-smooth schedulers can be found in [7–11] and the design of an online perfectly-fair scheduler that maximizes
the throughput is considered in [12–14]. Given that the packet arrival process to each user is independent and
identically distributed (i.i.d.),

• for K = 2 and unit buffer size per user [12], the schedule must be open-loop (or de-centralized) and conflict-free;
• for K > 2, an optimal schedule always exists and is stationary and cyclic (or loop) [13], i.e., there exists an R such

that, for all i , the user allocated to slot i is also allocated to slot i + R;
• for K > 2 and unlimited buffer size per user, the mean packet delay is minimized with a perfectly-smooth

schedule [14]. A golden ratio scheduler [14] is proposed that achieves a nearly-optimal throughput and performs
extremely well compared to lower bounds for expected packet delay, although it is not perfectly-smooth.

As a result, the original online problem is reduced to an offline one, where the objective is to determine a loop
schedule of size R, given x , that is perfectly-fair and maximally smooth. However, no metric was proposed that
measures the extent of non-smoothness of a given schedule.

In [15], the author defined the notion of regularity (equivalent to smoothness) for K = 2. This notion is applied
in [16], where the authors defined the equivalent notion of balanced schedules for K > 2. Recently, the authors in [17]
introduced a new notion of m-balancedness, where the value of m (which is a non-negative integer) gives a measure
of smoothness of schedules for any K , where a smaller value indicates a more balanced schedule. The authors also
proposed an m-balanced scheduler that constructs a schedule with m ≤ K − 1 for any given x , but highlighted the
difficulty in finding a schedule with the smallest possible m.

1.1. Perfectly-fair loop schedulers

In this study, we focus on the special case where x comprises only rational elements. Then, we can write x as

[
r1

R , r2

R , . . . , r K

R ], where {r j
}

K
j=1 are positive integers, R =

∑K
j=1 r j , and the greatest common divisor of {r j

}
K
j=1 is 1.

In this way, we can define Fr as the class of K -flow perfectly-fair loop schedulers such that the following conditions
are satisfied for any integer z and 1 ≤ j ≤ K :

• r j slots are allocated to user j over any interval of R slots (perfect-fairness over R);
• if slot i is allocated to user j , then slots i + z · R are also allocated to user j .

If n j
π (i) denotes the interval (in slots) between the (i − 1)th and i th allocation to user j under a scheduler π , then

we have the following property:

Property 1. If π ∈ Fr then, for 1 ≤ j ≤ K ,

n j
π (r j

+ i) = n j
π (i)

k+r j
−1∑

i=k

n j
π (i) = R, for any k > 0.

Hence, the elements, {n j
π (i)}

r j

i=1 (which we denote by n j
π ) are sufficient to characterize any scheduler π ∈ Fr .

1.2. Class-based scheduling scenario

In any K -flow scheduling scenario given by r , all users j , k with r j
= rk can be grouped into the same class,

based on the paradigm of service classes [18]. As a result, we propose an alternative class-based specification of the
scenario given by κ = {κc

}
C
c=1, r̃ = {r̃c

}
C
c=1, such that class c comprises κc flows whose indices are defined by Cc,

where

Cc
=

{
c−1∑
y=1

κ y
+ 1,

c−1∑
y=1

κ y
+ 2, . . . ,

c∑
y=1

κ y

}

r̃c
= r j if j ∈ Cc and

∑C
c=1 κc

= K . The special case of κ = {1, . . . , 1} corresponds to the original (class-less)
scenario.
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Such a class-based specification enables the definition of a class-aware scheduling paradigm, where slots are
allocated to flows within each class independently of other classes (intra-class scheduling) and the allocation vectors
obtained are subsequently combined in an optimal way (inter-class scheduling). This may result in a gain in
performance and reduction in complexity over class-unaware schedulers.

1.3. Contribution of this paper

In this paper, we consider the design of perfectly-fair loop schedulers (or loop schedulers in short). We propose a
variance-based smoothness metric, and analyze the smoothness of the schedules obtained with various known loop
schedulers. For a class-based scheduling scenario, we propose a recursive class-aware loop scheduler and demonstrate
its performance gain over class-unaware loop schedulers.

The paper is organized as follows. In Section 2, we define our scheduling problem, where we consider the
design of perfectly-fair loop schedulers to maximize allocation smoothness while maintaining intra-class fairness
in a class-based scheduling scenario. We describe the mechanism and properties of several loop schedulers in
Section 3. In Section 4, we propose a recursive loop scheduler that achieves good performance in terms of
both smoothness and intra-class fairness in a class-based scheduling scenario. In Section 5, we compare the
performance of various loop schedulers in terms of numerical results. Finally, some concluding remarks are given in
Section 6.

2. Problem definition

Given r , our objective is to design a loop scheduler that generates a schedule that is as smooth as possible.
In addition to absolute (ensemble) smoothness, intra-class fairness (which pertains to relative smoothness) is a
desirable property in a class-based scheduling scenario. A loop scheduler is intra-class fair if the resulting schedule
is equally smooth with respect to (i.e., has the same per-user smoothness for) all users in the same class, for all
classes.

2.1. Smoothness metrics

In this section, we describe metrics for evaluating per-user smoothness, from which the ensemble smoothness
can be obtained. We propose a variance-based metric and then describe an existing metric that uses the notion of
m-balancedness [17].

2.1.1. Variance-based metric

A schedule that is perfectly-smooth with respect to user j has equally-spaced allocations to user j , i.e., zero
variance of n j

π (denoted by Var[n j
π ]). However, as the evenness (or smoothness) is reduced, Var[n j

π ] is increased.
Hence, we define a metric (denoted by s j

π ) to evaluate the smoothness of a given schedule with respect to user j as
follows:

s j
π = Var[n j

π ] = E[(n j
π )2

] − (E[n j
π ])2 (1)

where E[(n j
π )x

] =

∑r j
i=1(n

j
π (i))x

r j is the x th moment of n j
π and, according to Property 1, we have the following:

E[n j
π ] =

r j∑
i=1

n j
π (i)

r j

=
R

r j independent of π.
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Although s j
π = 0 with perfect-smoothness, the actual lower bound on s j

π (denoted by s j
min) for a given r is achieved

according to the following theorem:

Theorem 1. The minimum value of s j
π for all π ∈ Fr is achieved with n j

π∗ given as follows:

n j
π∗ =



r j
⌊

R
r j

⌋
+r j

−R︷ ︸︸ ︷⌊
R

r j

⌋
, . . . ,

⌊
R

r j

⌋
,

⌈
R

r j

⌉
, . . . ,

⌈
R

r j

⌉
︸ ︷︷ ︸

R−r j
⌊

R
r j

⌋


(2)

where the order of the elements in n j
π∗ is unimportant, and its value is:

s j
π∗ = s j

min

=
R(2Q + 1) − r j Q(Q + 1)

r j −

(
R

r j

)2

where Q = b
R
r j c.

Proof. We consider the following cases:

R ≡ 0 (modulo r j ): Perfect-smoothness is achieved for user j when the inter-allocation interval is constant, i.e.,
n j

π∗(k) = n j
π∗(i). This is achieved if and only if n j

π∗(k) =
R
r j for 1 ≤ k ≤ r j .

R ≡ y (modulo r j ), 1 ≤ y ≤ r j
− 1: In this case, a constant inter-allocation interval for user j cannot be achieved.

We thus have to find an optimal set of values for n j
π∗(k).

Let us define n j
π∗ as comprising m values, {ak}

m
k=1, where each value ak has multiplicity zk , where ak, zk ∈ Z+.

Without loss of generality, we can assume av > aw for v > w, which means that the set can be written as
{a1 + dk}

m
k=1 and d1 = 0, dv > dw for v > w. Clearly,

∑m
k=1 zk = r j and

∑m
k=1 zk(a1 + dk) = R.

The corresponding expression for E[n j
π∗ ]

2 is given as follows:

r j E[(n j
π∗)

2
] =

m∑
k=1

zk(a1 + dk)
2

=

m∑
k=1

zkd2
k + a1(2R − a1r j )

<

m∑
k=1

zkdkdm + a1(2R − a1r j )

= dm(R − a1r j ) + a1(2R − a1r j ).

It follows that, to minimize E[(n j
π∗)

2
], we have to minimize dm , which is bounded from below by dm−1. But

setting dm equal to dm−1 actually means reducing the dimensionality of n j
π∗ (it is interesting to note that the bound

is independent of explicit zk). Since d1 = 0, we can continue this until m = 2, where E[(n j
π∗)

2
] is minimized by

setting d2 = 1. Hence, by setting Q = a1, we have

n j
π∗ =


z1︷ ︸︸ ︷

Q, . . . , Q, Q + 1, . . . , Q + 1︸ ︷︷ ︸
r j −z1

 . (3)

Then, since
∑r j

k=1 n j (k) = R, we have the following:

z1 · Q + (r j
− z1) · (Q + 1) = R
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from which we have

z1 = r j
· Q + r j

− R.

However, since 1 ≤ z1 ≤ r j
− 1, we have the following constraints on Q:

R

r j − 1 +
1
r j ≤ Q ≤

R

r j −
1
r j . (4)

Since b
R
r j c − 1 < R

r j − 1 +
1

r j and d
R
r j e > R

r j −
1

r j , the only integer Q that can satisfy Eq. (4) is Q = b
R
r j c.

Substituting these values into Eq. (3) results in the expression given in Eq. (2). The corresponding expression for
s j

min can be obtained by substituting n j
π∗ into Eq. (1). �

We define a general ensemble smoothness metric, sπ , in terms of {s j
π }

K
j=1 and per-user weighting factors, {w j

}
K
j=1,

where
∑K

j=1 w j
= 1, as follows:

sπ =

K∑
j=1

w j
· s j

π . (5)

2.1.2. m-balancedness
Let aπ denote the schedule (comprising R slots) according to scheduler π ∈ Fr . If y denotes a sub-schedule

(sequence of consecutive slots) in aπ , then |y| is the length of y, j y j is another sub-schedule that begins and terminates
with j , and |y| j is the number of occurrences of j in y.

According to Sano et al. [17], we have the following definition:

Definition 1. For a non-negative integer m j
π , a schedule aπ is m j

π -balanced with respect to user j if the following

condition holds: for any sub-schedule, j y j in aπ , any other sub-schedule y′ in aπ , such that |y′
| = |y| + m j

π + 1,
satisfies |y′

| j ≥ |y| j + 1.

We note that m j
π = 0 if aπ is perfectly-smooth with respect to user j ; otherwise, the pseudocode for computing

m j
π is given below:

Algorithm for Computation of m j
π , 1≤ j ≤ K

Initialize {m j
π }

K
j=1 = 0

Set a = b = 1
while a ≤ K

M(a, b) = max
1≤u≤ra

u+b∑
y=u+1

na
π (y)

M(a, b) = min
1≤u≤ra

u+b∑
y=u+1

na
π (y)

ma
π = max (M(a, b)-M(a, b), ma

π )
if b = b

ra

2 c or M(a, b)-M(a, b) = 0
a = a + 1

else
b = b + 1

According to the above algorithm, for a given n j
π , the value of m j

π depends on the order of the elements in n j
π , and

we have the following corollary to Theorem 1:
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Corollary 1. If n j
π∗ comprises the elements given in Eq. (2), then m j

π∗ satisfies the following properties, where
V = min{r j

b
R
r j c + r j

− R, R − r j
b

R
r j c}:

m = V, V ≤ 2;⌈
r j

+ 1
2

⌉
− V ≤ m j

π∗ ≤ V, V > 2.

The lower and upper bounds for m j
π∗ are obtained when n j

π∗ are given respectively as follows (where the order of the
elements are important):

n j
π∗ =


r j

⌊
R

r j

⌋
+r j

−R︷ ︸︸ ︷⌊
R

r j

⌋
, . . . ,

⌊
R

r j

⌋
,

⌈
R

r j

⌉
, . . . ,

⌈
R

r j

⌉
︸ ︷︷ ︸

R−r j
⌊

R
r j

⌋


n j

π∗ =

[⌊
R

r j

⌋
,

⌈
R

r j

⌉
,

⌊
R

r j

⌋
,

⌈
R

r j

⌉
, . . . ,

⌊
R

r j

⌋
,

⌈
R

r j

⌉]
.

As in Eq. (5), the corresponding ensemble smoothness metric, mπ , can be defined as follows:

mπ =

K∑
j=1

w j
· m j

π .

A specific ensemble smoothness metric is proposed in [17] as follows:

mπ = max
1≤ j≤K

m j
π (6)

which corresponds to the following weighting factors:

w j
=

{
1, j = arg max

1≤i≤K
mi

π ;

0, otherwise.

2.1.3. Comparison between m j
π and s j

π

According to Sections 2.1.2 and 2.1.1, both metrics, m j
π and s j

π , can be computed given n j
π . However, according

to Theorem 1 and Corollary 1, for the set of elements n j
π∗ given in Eq. (2), while the value of s j

π∗ is unique, the

corresponding value of m j
π∗ can only be given in terms of a range. This is true for any valid n j

π , i.e., s j
π is unique

while m j
π depends on the order of the individual elements in n j

π . This imposes much more stringent conditions on n j
π

(and, therefore, it is harder to construct a schedule) to achieve optimality in terms of m j
π .

In the subsequent analysis, we will quantify the per-user smoothness of various loop schedulers in terms of the
variance-based metric; the corresponding m-balancedness metric will be computed for the purpose of comparison.

2.2. Intra-class unfairness metric

Let dc
π denote the number of distinct values of per-user smoothness (s j

π or m j
π ) for all users j ∈ Cc with scheduler

π , where 1 ≤ dc
π ≤ κc.

Since π is intra-class fair if aπ achieves the same per-user smoothness for all users in the same class, for all classes,
i.e., dc

π = 1, 1 ≤ c ≤ C , a larger value of dc
π indicates larger intra-class unfairness for class c. Hence, we define the

following measure to quantify the level of unfairness over the ensemble of all classes with scheduler π :

uπ =
1
K

C∑
c=1

dc
π .
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According to the definition of dc
π , the unfairness metric, uπ , is bounded as follows:

C

K
≤ uπ ≤ 1.

We use the notations uπ (s) and uπ (m) to denote the unfairness metrics based on s j
π and m j

π , respectively.

2.3. Problem formulation

Since our objective is to determine a scheduler that minimizes both the smoothness and intra-class unfairness
metrics, it can be formulated as an optimization problem as follows:

K-flow Loop Scheduling Problem

Determine the schedule aπ∗ such that
sπ∗ = min

π∈Fr
sπ

and
uπ∗ = min

π∈Fr
uπ

To assess the size of the problem, let A = {aπ : π ∈ Fr
}. Then, we have the following:

|A| =
R!

K∏
j=1

r j !

.

We note that a number of aπ ∈ A are equivalent, since they are identical under rotation with respect to the performance
metrics. However, even after eliminating these, the resultant space is still non-tractable for large R.

A dynamic programming approach to derive an optimal scheduler requires the definition of an additive objective
function, i.e., one which is computed incrementally. However, the per-flow smoothness metric, s j

π , is a cumulative
quantity, which renders the approach unsuitable.

Therefore, our approach is to evaluate the performance of various known loop schedulers in terms of both
smoothness and intra-class unfairness, benchmarked against the respective lower bounds.

3. Description of K -flow loop schedulers

In this section, we describe the mechanism and study the per-user smoothness (according to the variance-based
metric) and intra-class fairness properties of several loop schedulers.

3.1. K -flow deficit round-robin scheduler (DRRK )

Fair-queueing schedulers (e.g., weighted-fair queueing (WFQ)) achieve nearly-perfect fairness, but they are usually
expensive to implement. DRRK [19] is an online scheduler that is an approximation to fair-queueing that is simple to
implement and yet achieves good fairness and can also be implemented as a loop scheduler. Within the scope of our
scheduling problem, the DRRK scheduler reduces to a weighted round-robin (WRR) policy, which simply allocates a
block of r1 slots to user 1 followed by a block of r2 slots to user 2, and so on. Hence, each user j is allocated slots in
blocks of size r j , with an interval of R − r j slots between successive blocks. Therefore, we have the following:

n j
DRRK

=


r j

−1︷ ︸︸ ︷
1, . . . , 1, R − r j

+ 1

 . (7)

The performance of the DRRK is given by the following theorem:
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Theorem 2. The DRRK scheduler ensures intra-class fairness, but exhibits the worst smoothness amongst π ∈ Fr ,
i.e., for 1 ≤ j ≤ K , its value is given by:

s j
DRRK

=
r j

+ (R − r j )2
+ 2(R − r j )

r j −

(
R

r j

)2

= max
π∈Fr

s j
π . (8)

Proof. The expression for s j
DRRK

given in Eq. (8) can be computed by substituting Eq. (7) into Eq. (1).

Let us consider an arbitrary scheduler π ∈ Fr with n j
π given as follows:

n j
π =

1 + z1, . . . , 1 + zr j −1, R − r j
+ 1 −

r j
−1∑

y=1

zy


where zy ∈ Z+, 1 ≤ y ≤ r j

− 1. We note that, for zy = 0, 1 ≤ y ≤ r j
− 1, π = DRRK .

We can express s j
π in terms of s j

DRRK
as follows:

s j
π = s j

DRRK
+

r j
−1∑

y=1
z2

y +

[
r j

−1∑
y=1

zy

]2

− 2(R − r j )
r j

−1∑
y=1

zy

r j . (9)

Since n j
π corresponds to inter-allocation intervals, we have the following constraint:

R − r j
+ 1 −

r j
−1∑

y=1

zy ≥ 1.

In addition, according to the triangular inequality, we have:

r j
−1∑

y=1

z2
y ≤

r j
−1∑

y=1

zy

2

.

Substituting into Eq. (9), we have the following:

s j
π ≤ s j

DRRK
+

r j
−1∑

y=1
z2

y +

[
r j

−1∑
y=1

zy

]2

− 2

[
r j

−1∑
y=1

zy

]2

r j

= s j
DRRK

+

r j
−1∑

y=1
z2

y −

[
r j

−1∑
y=1

zy

]2

r j

≤ s j
DRRK

.

According to Eq. (8), the per-user smoothness metric for user j is a function of r j only, and hence the DRRK scheduler
ensures intra-class fairness. �

3.2. K -flow credit round-robin scheduler (CRRK )

The motivation to design the CRRK scheduler [20] was to reduce the latency of the DRRK scheduler. As with
the DRRK scheduler, the CRRK scheduler can be implemented as a loop scheduler, and the pseudo-code is given as
follows:
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K-flow credit round-robin scheduler (CRRK )

Initialize y j = r j

r K , 1≤ j ≤ K
Set i=1, SP=K, count=0
while i ≤ R

if count < K
if ySP < 1

count = count + 1
else

aCRRK (i) = SP,
ySP = ySP - 1, i = i + 1, count = 0

SP = SP - 1 (modulo K)

else y j = y j + r j

r K ∀ j , count = 0

The CRRK scheduler possesses the following property for 1 ≤ j ≤ K − 1 [21]:

Property 2. The ith allocation of user j always occurs between the d
ir K

r j eth and d
ir K

r j e − 1th allocation of user K ,

1 ≤ i ≤ r j .

Property 2 can be generalized for a class-based scenario as follows:

Property 3. For the CRRK scheduler, users within each class are allocated in blocks, where the order within class
Cu is

∑u−1
i=1 κ i

+ 1,
∑u−1

i=1 κ i
+ 2, . . . ,

∑u
i=1 κ i for 1 ≤ u ≤ C. In addition, the i th block of Cu will reside between

the d
i ·r̃C

r̃u eth and d
i ·r̃C

r̃u e − 1th block of CC , where 1 ≤ i ≤ r̃u .

We note from Property 3 that users within each class are always transmitted in blocks, where each user from that
class is allocated exactly once and the order within each block is constant. Hence, the per-user smoothness for users
belonging to the same class are identical, i.e., intra-class fairness is maintained.

3.3. K -flow smoothed round-robin scheduler (SRRK )

The SRRK scheduler [22] is a variant of the standard WRR scheduler, aimed at reducing the latter’s output
burstiness and short-term unfairness (i.e., improving allocation smoothness). A weight spread sequence (S) that
distributes the allocation to each user evenly and a weight matrix (M) that is a binary representation of r are two
key structures of the scheduler. The pseudo-code for the SRRK scheduler is described as follows, where the function
dec2bin(i, k) converts the integer i into its binary representation with k bits:

K-flow SRR scheduler (SRRK )

rmax = max1≤ j≤K r j

k = dlog2(rmax + 1)e

S = []
for i=1:k

S = [S i S]
M = []
for j=1:K

M = [M ; dec2bin(r j ,k)]
a=[]
for i=1:length(S)

index = find(M(:,S(i))==1)
a = [a index]
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According to the above algorithm, the SRRK scheduler possesses the following property for a class-based
scenario:

Property 4. For the SRRK scheduler, users within each class are allocated in blocks, where the order within class Cu

is
∑u−1

i=1 κ i
+ 1,

∑u−1
i=1 κ i

+ 2, . . . ,
∑u

i=1 κ i for 1 ≤ u ≤ C.

As with the CRRK scheduler, we can deduce from Property 4 that intra-class fairness is maintained for the SRRK
scheduler.

3.4. K -flow weighted round robin with WFQ-like spreading scheduler (WRR-spK )

The WRR-spK scheduler [23] is another variant of the standard WRR scheduler, in which the service order amongst
the users is identical to WFQ. The algorithm for the WRR-spK scheduler is described as follows:

K-flow WRR with spreading scheduler (WRR-spK )

Let the array y contain the sequence
<

q
r j , j >: q ∈ {1, . . . , r j

}, 1≤ j ≤ K
sorted in lexicographic order.
The vector aWRR-spK

is constructed as follows:
aWRR-spK

(i) = j if y(i) =<
q
r j , j >

According to the algorithm, the sequence 〈
q
r j , j〉 is sorted in lexicographic order, i.e., they are sorted in ascending

order (primary sorting) according to the first component (i.e., q
r j ) of each element (

q
r j , j) and, in the event of a tie, the

elements will be sorted in ascending order (secondary sorting) according to the second component (i.e., j).
The WRR-spK scheduler possesses the following property for 1 ≤ j ≤ K − 1 [21]:

Property 5. The ith allocation of user j always occurs between the d
irk

r j eth and d
irk

r j e − 1th allocation of user k,

where k > j , 1 ≤ i ≤ r j .

Property 5 can be generalized for a class-based scenario as follows:

Property 6. For the WRR-spK scheduler, users within each class are allocated in blocks, where the order within class
Cu is

∑u−1
i=1 κ i

+ 1,
∑u−1

i=1 κ i
+ 2, . . . ,

∑u
i=1 κ i for 1 ≤ u ≤ C. In addition, the i th block of Cu will reside between

the d
i ·r̃ y

r̃u eth and d
i ·r̃ y

r̃u e − 1th block of Cy , where y > u and 1 ≤ i ≤ r̃u .

As with the CRRK scheduler, we can deduce from Property 6 that intra-class fairness is maintained for the
WRR-spK scheduler.

We propose a generic WRR-spK scheduler (denoted by WRR-spK (%), 1 ≤ % ≤ K ) such that the secondary sorting
is performed in the order [%, % + 1, % + 2, . . . , K , 1, 2, . . . , % − 1]. We define a maximally smooth WRR-spK (%)

scheduler (denoted by WRR-sp∗

K ) as follows:

sWRR-sp∗
K

= min
1≤%≤K

sWRR-spK (%).

We note that Property 6 is preserved with the WRR-sp∗

K scheduler.

3.5. K -flow golden ratio (GRK ) scheduler

The golden ratio scheduler was proposed in [13] and is described as follows:
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K-flow golden ratio scheduler (GRK )

Let z = 0.6180339887 and w(m) = frac(m · z)
where frac(y) = y − byc

Let the array y contain the sequence w(m),
0≤ m ≤ R-1, sorted in ascending order.
The vector aGRK

is constructed as follows:
aGRK (i) = j

if
∑ j−1

k=1
rk

R ≤ y(i) ≤
∑ j

k=1
rk

R , 1≤ j ≤ K

It was established in [14] that, if R is a Fibonacci number, then n j
GRK

comprises at most three values for each j ;
otherwise, more values are generated.

3.6. K -flow short-term fair scheduler (STFK )

We can characterize the throughput-fairness (as opposed to the notion of intra-class fairness defined in Section 2
that pertains to smoothness) of any loop scheduler in terms of the cumulative service-deficit, sd j (i), which measures
the discrepancy between the requested and allocated share for user j up to slot i , 1 ≤ i ≤ R. If y j (i) denotes the
cumulative number of slots allocated to user j up to and including slot i , then we have the following:

sd j (i) =
r j

R
−

y j (i)

i
.

A positive (negative) value of sd j (i) implies that user j has received less (more) than its requested share up to slot
i . Hence, we consider a scheduler that allocates each slot to the user with maximum instantaneous service-deficit
so as to achieve maximum throughput-fairness (short-term fair or STFK scheduler). Whenever there is a tie, priority
for allocation is given to the user with the highest flow index. The pseudo-code for the STFK scheduler is given as
follows:

K-flow short-term fair scheduler (STFK )

Initialize y j (0) = 0, 1≤ j ≤ K
for i=1:R

y j (i) = y j (i − 1), 1≤ j ≤ K

sd j (i) = r j

R - y j (i)
i , 1≤ j ≤ K

aSTFK (i) = arg max
1≤ j≤K

sd j (i)

yaSTFK (i)(i) = yaSTFK (i)(i)+1

This scheduler was first suggested in [13], where the authors conjectured, based on numerical calculations, that it
is a promising scheduler. However, no analysis of the scheduler was provided in terms of smoothness.

According to our analysis [21], the STFK scheduler possesses the following property:

Property 7. For any two-class scheduling scenario (C = 2), users within class C2 are allocated in blocks, where the
order within each block is K , K − 1, K − 2, . . . , K − κ1; users within class C1 are always allocated in the order
κ1, κ1

− 1, . . . , 1 and the maximum number of users in class C1 allocated between two successive C2 blocks is κ1.

We can deduce from Property 7 that intra-class fairness is maintained for two-class scheduling with the STFK
scheduler.

3.7. K -flow m-balanced scheduler (MBALK )

The m-balanced scheduler was proposed in [17] and its pseudocode is given as follows:
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K-flow m-balanced scheduler (MBALK )

Initialize φ = {φ1, φ2, . . . , φK
} s.t.

φ j is uniformly distributed on [0, R
r j ), 1≤ j ≤ K

for i = 1:R
y = arg min

1≤ j≤K
φ

aMBALK (i) = y
φy = φy + R

r y

The smoothness metric corresponding to the schedule constructed by the algorithm is upper-bounded according to
the following property:

Property 8. According to the metric defined in Eq. (6), the worst-case m-balancedness of the MBALK scheduler is
K − 1, i.e., mMBALK ≤ K − 1.

It is difficult to find an initial value for φ that achieves the best possible smoothness. Hence, the authors proposed
iterating the algorithm over a predetermined number of runs (denoted by ITER) in an attempt to improve the
schedule.

3.8. K -flow random (RNDK ) scheduler

The loop schedulers considered so far are deterministic since the schedule aπ ∈ A is fixed. In this section, we
define a random scheduler, RNDK , whose schedule, aRNDK

, is uniformly selected from A. We note that RNDK ∈ Fr

because the selected aRNDK
is used for allocation in each loop.

The per-user smoothness metric for each user j is given as follows [21]:

s j
RNDK

=
R(2R − r j

+ 1)

r j (r j + 1)
−

(
R

r j

)2

. (10)

By comparing Eq. (10) with Theorem 2, we have the following corollary:

Corollary 2. The per-user smoothness metric for the RNDK scheduler is upper-bounded by that of the DRRK
scheduler, i.e., for 1 ≤ j ≤ K ,

s j
RNDK

≤ s j
DRRK

.

4. Design of class-aware loop scheduler

Our analysis in Section 3 suggests that the GRK , MBALK and RNDK schedulers do not ensure intra-class fairness,
which is a desirable property in a class-based scheduling scenario. On the other hand, while the STFK scheduler
guarantees intra-class fairness only for a two-class scenario (C = 2), the CRRK , SRRK and WRR-spK schedulers
are intra-class fair for any C . Hence, the latter schedulers are suitable as bases for constructing class-aware loop
schedulers. We begin with the design for C = 2, and then extrapolate the design to the multi-class (C > 2)

scenario.

4.1. An optimal two-class loop scheduler (C = 2)

Comparing Properties 3 and 6, it can be deduced that the CRRK and WRR-spK are equivalent for two-class
scheduling, and hence we restrict our consideration to the latter scheduler.

Using Property 6 and Theorem 1, n j
WRR-spK

and n j
π∗ can be computed and are given in Eqs. (11) and (12),

respectively.
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n j
WRR-spK

=





r̃1
⌈

r̃2

r̃1

⌉
−r̃2︷ ︸︸ ︷

κ1
+ κ2

⌊
r̃2

r̃1

⌋
, . . . , κ1

+ κ2
⌊

r̃2

r̃1

⌋
, κ1

+ κ2
⌈

r̃2

r̃1

⌉
· · · κ1

+ κ2
⌈

r̃2

r̃1

⌉
︸ ︷︷ ︸

r̃2−
(⌈

r̃2

r̃1

⌉
−1

)
r̃1


, j ∈ C1

;

{

r̃2 K−R
κ1︷ ︸︸ ︷

κ2, . . . , κ2, K , . . . , K︸ ︷︷ ︸
R−κ2 r̃2

κ1

}, j ∈ C2.

(11)

n j
π∗ =





r̃1
(
κ1

+

⌊
κ2 r̃2

r̃1

⌋)
+r̃1

−R︷ ︸︸ ︷
κ1

+

⌊
κ2r̃2

r̃1

⌋
, . . . , κ1

+

⌊
κ2r̃2

r̃1

⌋
, κ1

+

⌈
κ2r̃2

r̃1

⌉
, . . . , κ1

+

⌈
κ2r̃2

r̃1

⌉
︸ ︷︷ ︸

R−r̃1
(
κ1+

⌊
κ2 r̃2

r̃1

⌋)


, j ∈ C1

;



r̃2
(
κ2

+

⌊
κ1 r̃1

r̃2

⌋)
+r̃2

−R︷ ︸︸ ︷
κ2

+

⌊
κ1r̃1

r̃2

⌋
, . . . , κ2

+

⌊
κ1r̃1

r̃2

⌋
, κ2

+

⌈
κ1r̃1

r̃2

⌉
, . . . , κ2

+

⌈
κ1r̃1

r̃2

⌉
︸ ︷︷ ︸

R−r̃2
(
κ2+

⌊
κ1 r̃1

r̃2

⌋)


, j ∈ C2.

(12)

Comparing these equations, we note that n j
WRR-spK

6= n j
π∗ for 1 ≤ j ≤ K , and hence the WRR-spK scheduler is not

optimal in terms of per-user smoothness. However, when κ1
= 1 (κ1

= K −1), the WRR-spK scheduler offers optimal
per-user smoothness for users in C2 (C1). Hence, since κ1

= 1 = K − 1 when K = 2, the WRR-sp2 scheduler offers
optimal smoothness for all users, i.e.,

s j
WRR-sp2

= min
π∈Fr

s j
π .

Hence, we can construct a class-aware scheduler (see Section 1.2) for a two-class scenario by (a) defining an equivalent
two-flow scenario (K = 2), (b) constructing a schedule using the WRR-sp2 scheduler (inter-class scheduling), and (c)
substituting for the indices of the users (intra-class scheduling). Denoted by OPT2, it can be shown that n j

OPT2
= n j

π∗

as given in Eq. (12) for 1 ≤ j ≤ K , i.e., the OPT2 scheduler achieves optimal smoothness for two-class scheduling.
The pseudo-code is given below, assuming κ1

· r̃1
≤ κ2

· r̃2 (the corresponding scheduler for κ1
· r̃1 > κ2

· r̃2 can be
obtained by interchanging the indices 1 and 2):

Optimal two-class loop scheduler (OPT2)

Set r = [κ1
· r̃1, κ2

· r̃2]

Define I1 = [

r̃1︷ ︸︸ ︷
C1, . . . , C1

], I2 = [

r̃2︷ ︸︸ ︷
C2, . . . , C2

]

Compute aWRR-sp2
= WRR-sp2(r )

for y = 1:2

index = find(aWRR-sp2
==y)

aOPT2 (index) = Iy
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4.2. A recursive class-aware loop scheduler for multi-class scenario (C > 2)

In this section, we construct a class-aware scheduler for a multiple-class scenario (C > 2). In order to exploit the
smoothness property of the optimal two-class scheduler (OPT2), we propose a recursive approach that (a) partitions
the original C-class problem into smaller sub-problems at various levels (Forward), (b) solves each sub-problem,
beginning with the lowest level (Solution), and (c) substitutes the solutions obtained in the return path to obtain the
required schedule for the original problem (Return).

We describe the approaches for each stage as follows, where the notation REC(I ), I ∈ C = {1, 2, . . . , C},
represents an |I |-class scheduling problem.

4.2.1. Forward

We begin by partitioning the C-class (level 0) problem, REC(C), into level 1 sub-problems, denoted by
REC(I 1

1), REC(I 1
2), where I 1

1 ∪ I 1
2 = C and I 1

1 ∩ I 1
2 = {}.

As far as this stage is concerned, we can interpret REC(I 1
1), REC(I 1

2) as comprising two independent problems,
REC(I 1

1) and REC(I 1
2), each of which can be further partitioned into level 2 sub-problems. For example, REC(I 1

1)

can be partitioned into REC(I 2
1), REC(I 2

2), where I 2
1 ∪ I 2

2 = I 1
1 and I 2

1 ∩ I 2
2 = {}.

One particular approach for partitioning [21] is that, for each level y sub-problem, REC(I y
1), REC(I y

2), ∀ y ≥ 1,
min{|I y

1 |, |I y
2 |} = 1.

4.2.2. Solution

Let us consider the level y sub-problem, REC(I y
1), REC(I y

2). In order to solve this problem, we first
compute aREC(I y

1 ) and aREC(I y
2 ) independently (intra-class scheduling), and then combine these schedules to obtain

aREC(I y
1 ),REC(I y

2 ) (inter-class scheduling). The respective functions are described as follows:

Intra-class scheduling: According to Section 4.1, the OPT2 scheduler achieves optimal smoothness for any two-class
scheduling scenario. Hence, the forward phase of the recursive scheduler is executed until level l, such that for each
level l sub-problem, REC(I l

1), REC(I l
2), max{|I l

1|, |I
l
2|} = 2.

As such, we begin the solution phase at level l, and the resulting schedules, aREC(I l
1)

and aREC(I l
2)

, will be optimally
smooth. We note that a simple round-robin scheduler suffices to ensure optimal smoothness for a one-class scenario,
i.e., |I l

| = 1.
Inter-class scheduling: There are many different ways to combine aREC(I y

1 ) and aREC(I y
2 ) to obtain aREC(I y

1 ),REC(I y
2 ).

One approach is to construct an equivalent two-user scheduling problem by aggregating the users in I y
1 and I y

2 ,
respectively, and apply the WRR-sp2 scheduler to obtain a two-user schedule, a. The slots allocated to users ‘1’
and ‘2’ are substituted by the indices of I y

1 and I y
2 , respectively. The pseudo-code (similar to the OPT2 scheduler)

is given below:

Function a = inter-c(a I y
1
,a I y

2
)

Set r = [
∑

c∈I y
1

κc
· r̃c,

∑
c∈I y

2

κc
· r̃c]

Compute aWRR-sp2
= WRR-sp2(r )

for q = 1:2
index = find(aWRR-sp2

==q)
a(index) = a I y

q

An alternative approach for inter-class scheduling (denoted by inter-c’) is proposed in [21], and it is applicable
if the following condition holds:

min{|I y
1 |, |I y

2 |} = 1. (13)
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Fig. 1. Illustration of the inter-class scheduler, inter-c’(), for the REC(C) scheduler.

To illustrate the approach, let us assume that |I y
2 | = 1 and |aREC(I y

2 )| ≤ |aREC(I y
1 )|. If we let v = aREC(I y

2 )

and z = aREC(I y
1 ), then our objective is to insert the elements of z into v so that successive elements of v are as

uniformly spaced as possible in the combined vector, aREC(I y
1 ),REC(I y

2 ), i.e., we attempt to maximize smoothness

with respect to v. This is illustrated in Fig. 1, where P = d
z
v
e and Q is given as follows:

Q =

{
P, |z| = |v|;

P − 1, otherwise.

For the case where |v| > |z|, we simply swap the definitions of v and z.

4.2.3. Return
Upon completion of the solution phase with all level l sub-problems, we begin the return phase, which computes

the schedule for each level y −1 sub-problem using the solutions of its level y sub-problems iteratively until we arrive
at the schedule for the original problem.

Let us consider a level l −1 sub-problem, REC(I l−1
1 ), REC(I l−1

2 ). Assume that REC(I l−1
1 ) is partitioned into level

l sub-problems, REC(I l
1), REC(I l

2) and REC(I l
3), REC(I l

4). We apply the solution phase on each of the above level l
sub-problems to obtain the respective schedules:

Sl−1
1 = {aREC(I l

1),REC(I l
2)

; aREC(I l
3),REC(I l

4)
}.

Similarly, REC(I l−1
2 ) is partitioned into level l sub-problems, REC(I l

5), REC(I l
6) and REC(I l

7), REC(I l
8), and the

respective solutions are given as follows:

Sl−1
2 = {aREC(I l

5),REC(I l
6)

; aREC(I l
7),REC(I l

8)
}.

In order to obtain aREC(I l−1
1 ),REC(I l−1

2 )
, we have to determine the combination, (a1 ∈ Sl−1

1 , a2 ∈ Sl−1
2 ), that results in a

schedule, inter-c(a1, a2), with the best smoothness, i.e., if sa is the smoothness metric corresponding to the schedule
a, then:

sinter-c(a1,a2)
= arg min

b1∈Sl−1
1 ,b2∈Sl−1

2

sinter-c(b1,b2)
. (14)

Once we have obtained the required schedules for all level l−1 sub-problems, they are returned to the corresponding
level l − 2 sub-problems in the same way until we arrive at the original problem.

4.3. Variants of recursive class-aware loop schedulers

According to Section 4.2, we may define variants of the REC(C) that differ in terms of (a) the approach for
partitioning in the forward phase and (b) the inter-class scheduling function in the solution phase. In this section, we
define variants considered in this study for C = 3 and C = 4.
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Fig. 2. Partitioning approaches for the REC(C) scheduler (C = 3).

Fig. 3. Partitioning approaches for the REC(C) scheduler (C = 4).

Table 1
Properties of variants of REC(C) scheduler (C = 3, 4)

C Variants of
REC(C)

Partitioning approach Inter-class
scheduler

Computational requirements (No. of runs)

OPT2() inter-c() or inter-c’() min() in Eq. (6)

3
REC-1

All sub-problem satisfy Eq. (5)
inter-c()

3 3 1
REC-2 inter-c’()

4
REC-1 No sub-problem satisfies Eq. (5) inter-c() 6 3 1
REC-2

All sub-problems satisfy Eq. (5)
inter-c()

6 16 5
REC-3 inter-c’()

C = 3: In this case, there is only one approach for partitioning, and this is illustrated in Fig. 2. However, since
each sub-problem satisfies Eq. (13), we can define two variants (denoted by REC1(C) and REC2(C)) that employ
inter-class() and inter-class’(), respectively, for inter-class scheduling.

C = 4: In this case, two approaches for partitioning exist, as illustrated in Fig. 3 (a) and (b), respectively. With
approach (a), only inter-class() is valid, and we denote the resulting scheduler as REC1(C). On the other hand,
with approach (b), since each sub-problem satisfies Eq. (13), we can define two variants (denoted by REC2(C) and
REC3(C)) that employ inter-class() and inter-class’(), respectively, for inter-class scheduling.

We summarize the properties of variants of the REC(C) scheduler for C = 3 and C = 4 in Table 1. In general,
the computational requirement of the REC(C) is upper-bounded by the variant where each sub-problem satisfies

Eq. (13), and the algorithm requires
(

C
2

)
runs of OPT2(), C(2C−1

− C) runs of inter-c() and 1 +
∑C−4

q=0
∏C

i=C−q i

runs of min() (Eq. (14)). The fact that C is usually small makes the problem tractable in practical cases.
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Fig. 4. Comparison of sπ (left) and uπ (right) amongst variants of recursive loop schedulers for r̃ = [32, 75, 100, 125] in 4-class scheduling.

5. Numerical results

We consider the following broadband applications with the corresponding typical bandwidth requirements in
kbps [24]: Streaming Video (Internet Quality) (128), Residential Voice (300), Video Telephony (400), and Interactive
Games (500).

We define various C-class scheduling scenarios, where C ∈ {3, 4}, and the user composition is assumed to be
uniform, i.e., κc

= κ for 1 ≤ c ≤ C . For C = 4, each class comprises users from each of the above applications, and
the scheduling scenario is defined by r̃ = [128, 300, 400, 500] = [32, 75, 100, 125]. For C = 3, multiple scheduling
scenarios are possible. For example, if we consider Residual Voice, Video Telephony and Interactive Games, then we
have r̃ = [300, 400, 500] ≡ [3, 4, 5].

The weighting factors, {w j
}

K
j=1, are chosen to be proportional to the relative demand of each user as follows:

w j
=

r j

R
.

For the MBALK scheduler, we set the number of iterations, ITER, to 1000. This number has to be sufficiently large
so that it is more likely to obtain the best possible scheduler; however, this is achieved at the expense of increased
computational complexity.

5.1. Performance of variants of recursive class-aware loop schedulers

We begin by comparing the smoothness (sπ ) and intra-class unfairness (uπ ) achieved with the variants of
recursive class-aware loop schedulers defined in Section 4.3. The results for the 4-class scheduling scenario,
r̃ = [32, 75, 100, 125], are plotted in Fig. 4. The corresponding results for the 3-class scheduling scenario, r̃ =

[32, 75, 125], are shown in Fig. 5.

C = 4: In terms of smoothness, using the partitioning approach that satisfies Eq. (13) (i.e., REC-2 and REC-3), we
note that REC-2 (which uses inter-c()) achieves better performance than REC-3 (which uses inter-c’()). This is
expected since inter-c() is derived from the OPT-2 scheduler, which achieves optimal smoothness for two-class
scheduling.
Comparing between the partitioning approaches, the REC-2 scheduler performs better than the REC-1 scheduler
at the expense of computational complexity, since the REC-2 scheduler is computationally more expensive (See
Table 1).
In terms of fairness, REC-1 and REC-2 are less unfair than REC-3, which once again demonstrates the superiority
of inter-c() over inter-c’() (implemented in REC-3).
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Fig. 5. Comparison of sπ (left) and uπ (right) amongst variants of recursive loop schedulers for r̃ = [32, 75, 125] in 3-class scheduling.

Table 2

Table of sREC-1
sREC-2

and uREC-1(s)
uREC-2(s) for various 3-class scheduling scenarios

Metric s(REC-1)/s(REC-2) uREC-1(s)/uREC-2(s)
κ 5 10 20 30 40 50 5 10 20 30 40 50

[75, 100, 125] 1
[32, 75, 100] 0.6000 0.3749 0.1240 0.0505 0.0207 0.0111 0.6250 0.2857 0.1579 0.1667 0.0938 0.0682
[32, 75, 125] 0.7826 0.5571 0.1315 0.0808 0.0458 0.0310 0.6667 0.4444 0.2667 0.1429 0.1538 0.1212
[32, 100, 125] 1.0000 0.9401 0.5698 0.6098 0.3012 0.2306 0.5714 0.4000 0.2000 0.1739 0.1200 0.0938

C = 3: Since the partitioning approach is unique, the recursive schedulers are distinguished according to the inter-
class scheduling function implemented. We note that REC-1 (which uses inter-c()) achieves better smoothness
performance than REC-2 (which uses inter-c’()). This concurs with the observations for C = 4.
In terms of fairness, REC-1 is less unfair than REC-2, which once again demonstrates the superiority of inter-c()
over inter-c’() (implemented in REC-2).

Table 2 summarizes the comparison between both variants of recursive schedulers for 3-class scheduling scenarios.
The above observations for C = 3 are consistent over the various 3-class scheduling scenarios.

5.2. Performance comparison between class-aware and class-unaware loop schedulers

Next, we compare the smoothness and fairness performance in terms of sπ and mπ between the ‘best’ variant of
recursive loop scheduler (according to the results in Section 5.1 and denoted by RECK ) and the class-unaware loop
schedulers defined in Section 3.

Our computations show that the performance of the variants of round-robin schedulers (SRRK , WRR-sp∗

K and
CRRK ) are similar (within 14% over all the user configurations, κ = {1, 5, 10, 20}, for sπ ). Hence, we define a
representative round-robin scheduler (denoted by ∗RRK ) with performance metric, σ∗RRK , defined as follows, where
σ ∈ {s, m}:

σ∗RRK =
1
3
[σS R RK + σWRR-sp∗

K
+ σCRRK ].

In addition, the RNDK scheduler performs significantly worse than the deterministic schedulers (excluding
the DRRK scheduler) in terms of smoothness, and this performance gap widens as the number of users per

class, κ , increases. To quantify this, we evaluate ∆max
RNDK

=
minπ∈{RECK ,MBALK ,STFK ,∗RRK ,GRK } sπ

sRNDK
and ∆min

RNDK
=

maxπ∈{RECK ,MBALK ,STFK ,∗RRK ,GRK } sπ
sRNDK

, and the results are shown in Table 3. We observe that the performance gap between

the RNDK scheduler and the deterministic schedulers widens as the number of users per class, κ , increases. However,
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Table 3
Performance gap in terms of smoothness between RNDK and the deterministic schedulers in 3-class scheduling

κ 1 5 10 20.00
∆RND ∆max

RND ∆min
RND ∆max

RND ∆min
RND ∆max

RND ∆min
RND ∆max

RND ∆min
RND

[75, 100, 125] 0.092 0.184 0.001 0.126 0.000 0.119 0.000 0.117
[32, 75, 100] 0.100 0.274 0.003 0.158 0.001 0.156 0.000 0.156
[32, 75, 125] 0.116 0.254 0.002 0.148 0.001 0.142 0.000 0.139
[32, 100, 125] 0.104 0.195 0.002 0.158 0.001 0.154 0.000 0.150
[32, 75, 100, 125] 0.139 0.386 0.002 0.251 0.001 0.246 0.000 0.241

Fig. 6. Smoothness performance of various π ∈ Fr for r̃ = [32, 75, 100, 125] in 4-class scheduling in terms of sπ (left) and mπ (right).

Fig. 7. Smoothness performance of various π ∈ Fr for r̃ = [32, 75, 125] in 3-class scheduling in terms of sπ (left) and mπ (right).

even for κ = 1, the worst-case smoothness metric obtained with deterministic schedulers is less than 40% of the
corresponding metric obtained with RNDK schedulers. Hence, for easier comparison of the relative performance of
the remaining schedulers, both the RNDK and DRRK schedulers have deliberately been omitted from the figures.

5.2.1. Allocation smoothness
The results for allocation smoothness for the 4-class scheduling scenario are plotted in Fig. 6. The corresponding

results for r̃ = [32, 75, 125] and [32, 75, 100] in 3-class scheduling are shown in Fig. 7 and Fig. 8 respectively.
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Fig. 8. Smoothness performance of various π ∈ Fr for r̃ = [32, 75, 100] in 3-class scheduling in terms of sπ (left) and mπ (right).

Table 4
Table of sπ

sGR
and mπ

mGR
, for various loop schedulers in 3-class scheduling

[75, 100, 125] sπ /sGR mπ /mGR

κ 5 10 20 30 40 50 5 10 20 30 40 50

∗RR 0.9820 0.9962 0.9947 0.7725 0.7725 0.9962 1.2463 1.1845 1.1547 0.8871 0.8896 1.1475

STF 0.8065 0.8182 0.8170 0.8182 0.8182 0.8182 0.7105 0.7143 0.7170 0.7217 0.7238 0.7255

MBAL 0.0398 0.0202 1.0000 0.0062 0.0048 0.0038 0.1723 0.1246 0.0808 0.0747 0.0747 0.0602

REC 0.0059 0.0015 0.0000 0.0000 0.0000 0.0001 0.0533 0.0268 0.0000 0.0000 0.0000 0.0054

[32, 75, 100] sπ /sGR mπ /mGR

κ 5 10 20 30 40 50 5 10 20 30 40 50

∗RR 0.5004 0.4866 0.4913 0.4903 0.4900 0.4903 0.2555 0.2356 0.2259 0.2227 0.2210 0.2200

STF 0.3763 0.3608 0.3629 0.3615 0.3606 0.3608 0.2579 0.2538 0.2549 0.2547 0.2538 0.2538

MBAL 0.0204 0.0124 1.0000 0.0040 0.0031 0.0025 0.0609 0.0409 0.0292 0.0255 0.0202 0.0170

REC 0.0169 0.0046 0.0009 0.0004 0.0002 0.0046 0.0223 0.0023 0.0003 0.0003 0.0001 0.0000

[32, 100, 125] sπ /sGR mπ /mGR

κ 5 10 20 30 40 50 5 10 20 30 40 50

∗RR 0.4506 0.4427 0.4446 0.4443 0.4440 0.4443 0.2634 0.2557 0.2535 0.2527 0.2521 0.2518

STF 0.3247 0.3345 0.3345 0.3357 0.3340 0.3343 0.2642 0.2677 0.2714 0.2657 0.2688 0.2658

MBAL 0.0310 0.0125 1.0000 0.0034 0.0030 0.0028 0.0544 0.0453 0.0307 0.0253 0.0234 0.0184

REC 0.0148 0.0040 0.0005 0.0005 0.0001 0.0001 0.0098 0.0018 0.0003 0.0002 0.0001 0.0000

We observe that the schedulers can be ranked on the basis of their relative smoothness performance (beginning
with the best smoothness) as follows: {RECK , MBALK , STFK , ∗RRK , GRK }. Such a ranking is consistent in terms of
both smoothness metrics and for both scheduling scenarios. This shows that there is some equivalence between the
variance-based smoothness metric that we proposed and the notion of balancedness.

In addition, we note that, due to its class-awareness, our proposed recursive scheduler gains in smoothness as the
user population, κ , increases, while the converse is true for the other class-unaware schedulers. Hence, the recursive
scheduler ensures stability under high load conditions.

Since the GRK scheduler exhibits the worst smoothness performance for r̃ = [32, 75, 125], we tabulate the metrics,
sπ
sGR

and mπ

mGR
, π ∈ {∗RRK , STFK , MBALK , RECK }, for each of the remaining 3-class scheduling scenarios in Table 4.

We show that the above observations are consistent over all the 3-class scheduling scenarios.
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Fig. 9. Fairness performance of various π ∈ Fr for r̃ = [32, 75, 100, 125] in 4-class scheduling in terms of sπ (left) and mπ (right).

Fig. 10. Fairness performance of various π ∈ Fr for r̃ = [32, 75, 125] in 3-class scheduling in terms of sπ (left) and mπ (right).

5.2.2. Unfairness

The results for unfairness for the 4-class scheduling scenario are plotted in Fig. 9. The corresponding results for
r̃ = [32, 75, 125] in 3-class scheduling are shown in Fig. 10.

According to Figs. 9 and 10, if we categorize the schedulers into two groups, A = {MBALK , GRK } and
B = {∗RRK , STFK , RECK }, then we notice that the Group B schedulers achieve better fairness than Group
A schedulers in terms of both variance-based and balance-based metrics. Hence, as with allocation smoothness,
there is some equivalence between the variance-based smoothness metric that we proposed and the notion of
balancedness.

Since the MBALK scheduler exhibits the worst fairness performance for r̃ = [32, 75, 125], we tabulate the metrics,
uπ (s)

uMBAL(s) and uπ (m)
uMBAL(m)

, π ∈ {∗RRK , STFK , GRK , RECK }, for each of the remaining 3-class scheduling scenarios in
Table 5. We show that the above observations are consistent over all the 3-class scheduling scenarios.

Overall, the superior smoothness performance achieved with the MBALK scheduler is traded off with unfairness
and computational complexity (due to ITER) compared with the ∗RRK and STFK schedulers. In addition, while the
GRK scheduler performs poorly in terms of smoothness and fairness, our proposed recursive scheduler achieves the
best smoothness with almost no degradation in fairness.
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Table 5

Table of uπ (s)
uMBAL(s) and uπ (m)

uMBAL(m)
, for various loop schedulers in 3-class scheduling

[75, 100, 125] uπ (s)/uMBAL(s) uπ (m)/uMBAL(m)

κ 5 10 20 30 40 50 5 10 20 30 40 50

∗RR 0.2727 0.1500 0.0833 0.0526 0.0435 0.0345 0.3750 0.2308 0.1200 0.0938 0.0882 0.1619
STF 0.2727 0.1500 0.0833 0.0526 0.0435 0.0345 0.3750 0.2308 0.1200 0.0938 0.0882 0.0857
GR 1.3636 1.5000 1.6667 1.5789 1.7391 1.7241 0.7500 0.5385 0.2400 0.2500 0.2059 0.1429
REC 0.2727 0.1500 0.0833 0.0526 0.0435 0.0345 0.3750 0.3077 0.1200 0.0938 0.0882 0.1143

[32, 75, 100] uπ (s)/uMBAL(s) uπ (m)/uMBAL(m)

κ 5 10 20 30 40 50 5 10 20 30 40 50

∗RR 0.3000 0.1250 0.0732 0.0441 0.0236 0.0638 0.8095 0.6296 0.4722 0.4048 0.3148 0.2833
STF 0.4000 0.1667 0.0976 0.0588 0.0315 0.1064 0.7143 0.4444 0.4167 0.3571 0.2222 0.2000
GR 1.5000 1.2500 1.4634 1.3235 1.1811 1.7021 1.2857 1.0000 1.0833 0.9286 0.6111 0.4500
REC 0.5000 0.1667 0.0732 0.0319 0.0236 0.0851 0.7143 0.5556 0.4167 0.3571 0.2778 0.2000

[32, 100, 125] uπ (s)/uMBAL(s) uπ (m)/uMBAL(m)

κ 5 10 20 30 40 50 5 10 20 30 40 50

∗RR 0.2143 0.1111 0.0577 0.0462 0.0313 0.0236 0.6667 0.5185 0.3889 0.2917 0.2745 0.2456
STF 0.2857 0.1481 0.0962 0.0769 0.0521 0.0394 0.8571 0.6667 0.5000 0.3750 0.3529 0.3158
GR 1.0714 1.1111 1.1538 1.3846 1.2500 1.1811 1.4286 1.4444 1.0833 0.9375 0.8235 0.7895
REC 0.2857 0.1481 0.0577 0.0615 0.0313 0.0236 0.7143 0.6667 0.5000 0.3750 0.3529 0.2632

5.3. Performance comparison with GPS and PGPS schedulers

The generalized processor sharing (GPS) [5] scheduler is an idealized scheduler where multiple users are served
simultaneously and the traffic is assumed to be infinitely divisible (bits as opposed to packets).

In our context, users are assumed to be continuously backlogged and, with GPS scheduling, each user j with
relative demand x j will be continuously served at a constant rate x j . As a result, the GPS scheduler exhibits ideal
smoothness and fairness, i.e., sGPS = mGPS = 0 and uGPS = minπ∈Fr uπ .

If Fp is the time at which packet p will depart (finish service) under GPS, then a very good approximation of GPS
would be a work-conserving scheme that serves packets in increasing order of Fp. These packetized implementations
of GPS are known as packetized GPS (or PGPS) [5] or weighted-fair queueing [4]. Under the assumption of
continuously backlogged users and constant packet (slot) size, it can be shown that PGPS schemes are equivalent
to the WRR-spK scheduler.

6. Conclusions

In this paper, we consider the design of a perfectly-fair loop scheduler, where the time-slot assignment amongst K
users is weighted according to the relative bandwidth requirement, is periodic, and is as evenly-spaced (smooth) with
respect to each user as possible. Such schedules are useful for QoS provisioning in cellular-type wireless networks
and for data forwarding in wireless sensor networks. We consider a class-based scheduling scenario where users are
grouped according to their relative bandwidth demands. In addition to (absolute) allocation smoothness, it is desirable
for the schedule to ensure intra-class fairness, where users in the same class have the same allocation smoothness.

While the allocation smoothness has been quantified on the basis of the concept of balancedness in existing
literature, we propose an alternative smoothness metric based on the second moment of the inter-allocation distance
for each user, which is more intuitive and also easier to compute. We analyze the allocation smoothness of a weighted
round-robin with spreading (WRR-spK ) scheduler for a 2-class scenario. Based on these properties, we construct an
optimal scheduler that employs the WRR-spK scheduler as an inter-class scheduler, and also suggest an enhancement
to the WRR-spK scheduler. We then propose a recursive class-aware scheduler based on the 2-class optimal scheduler
for a multiple-class scenario.

We then compare the performance of the above schedulers with other existing loop schedulers. Our proposed
scheduler achieves significantly superior smoothness performance with almost no degradation in intra-class fairness.
This highlights the importance of class-awareness in the scheduler design for class-based scenarios. In addition,
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we also demonstrate the equivalence between our proposed metric and the existing smoothness measure based on
balancedness, since the relative performance of the schedulers is similar under both types of metrics.
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