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Abstract—A network calculus is developed for processes whose
burstiness is stochastically bounded bygeneral decreasing func-
tions. This calculus is useful for a large class of input processes,
including important processes exhibiting “subexponentially
bounded burstiness” such as fractional Brownian motion.
Moreover, it allows judicious capture of the salient features of
real-time traffic, such as the “cell” and “burst” characteristics of
multiplexed traffic. This accurate characterization is achieved by
setting the bounding function as a sum of exponentials.

Index Terms—Multiple time-scale traffic, network calculus, sta-
tistical bounds

.

I. INTRODUCTION

I N high-speed networks [11], the stringent quality of service
(QoS) requirements of real-time multimedia applications are

met by special services providing guarantees. A distinction is
made between deterministic and statistical services. The deter-
ministic service [3], [10], also called guaranteed service within
the Internet framework [12], is aimed at providing strict guar-
antees on the QoS requirements while the statistical service is
intended to provide only statistical (probabilistic) guarantees.
The main advantage of the statistical service over the determin-
istic service is that it can achieve a higher network utilization,
at the expense of some minor quality degradation.

For services offering statistical guarantees, one is usually in-
terested in bounding the mean delay of the packets through the
network or the probability that the delay exceeds a certain value.
For this reason, the concept of “exponentially bounded bursti-
ness” (EBB) was introduced in [15] (see also the closely related
works [2] and [7]). A continuous traffic stream with instanta-
neous rate , is EBB with upper rate and bounding func-
tion if for all and

(1)

where . The EBB calculus is based on an appro-
priate EBB characterization of the external processes feeding
the network. It is shown in [15] that if all the input processes of
a feedforward communication network (and also some special
nonfeedforward networks) are EBB, then, subject to throughput
conditions, so areall the traffic streams within that network and
the network is said to be stable. This model enables computa-
tion of exponential bounds (EB), at each buffer in the network,
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on various performance measures, such as delay survivor prob-
abilities and mean delay.

The EBB model can be expected to provide relatively tight
bounds when the delay probability distribution curve is linear
on the logarithmic scale (the reasonable quality of the bounds,
in such a case, has been validated in [8] and [15]). However, for
a variety of models of real-time traffic, such as Markov modu-
lated processes and other multiple time-scale processes, it has
been observed that the delay distribution in a multiplexer is
better described by two linear regions (see [11, Sec. 3.8] and
references therein). These regions are commonly termed “cell
region” and “burst region” in the literature. As shown schemat-
ically in Fig. 1, the EB bound for such kinds of traffic may be
rather loose, since the rate of decrease of the EB bound cannot
exceed the rate of decrease of the delay curve in the burst region.
A call admission scheme based on EB bounds may therefore
lead to significant network underutilization. However, it is not
the only drawback of the EBB model. It turns out that a large
class of traffic processes donot satisfy at all the characteriza-
tion of exponentially bounded burstiness. This class includes all
the processes exhibitingsubexponentiallybounded burstiness,
i.e., burstiness stochastically bounded by functions decaying
more slowly than any exponential. Many of the new models
suggested in the literature for characterizing network traffic pro-
cesses have subexponentially bounded burstiness. One of these
models is the self-similar fractional Brownian motion (FBM)
[5], [9], which has been shown to have good statistical fit with
local area network (LAN) data. An FBM process has a subexpo-
nentially bounded burstiness since the distribution of the delay

in a buffer fed by such a process is bounded by a function
behaving like a Weibull distribution [4], i.e.,

, where and .
In this work, we develop a new calculus in order to deal with

processes which do not satisfy the EBB characterization. We
consider processes whose burstiness is stochastically bounded
by general functions . We refer to these processes as
“stochastically bounded burstiness” (SBB) processes with
bounding function . We demonstrate the existence of a
network calculus for SBB processes. This calculus allows us
to prove the stability of feedforward communication networks
fed by SBB processes (subject to some conditions on the
bounding functions) and obtain upper bounds on the interesting
performance measures. It turns out that the SBB calculus is also
a powerful tool for obtaining much better bounds for multiple
time-scale processes. Since the function is general,
one can choose to bound the traffic burstiness with a sum of
exponentials instead of a single exponential, as is the case in
the EBB model. We develop a network calculus for sums of
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Fig. 1. Cell/burst regions, typical delay curve distribution, and EB bound.

exponentials and show that it leads to tighter bounds than those
provided by the EBB calculus.

II. M ODEL AND DEFINITIONS

We consider the same network model as introduced in [15].
We assume that the system is started at time and that all the
network queues are empty at this time. The network queues are
assumed to be of infinite size. Throughout this work we derive
results only for discrete-time processes (although
similar results hold for the continuous-time setting [13]). We in-
troduce the notation for denoting the -fold inte-
gration of the function . Note that the result of the operation

is a function of the variable . As an example,
taking leads to
We present now the following definitions.

Definition 1: Let represent the set of all the functions
such that for any order, the -fold integral is
bounded for any .

Definition 2: A stochastic process is stochastically
bounded (SB) with bounding function if

i) .
ii) for all and all .

Definition 3: A discrete-time process has a stochasti-
cally bounded burstiness (SBB) with upper rateand bounding
function if

i) .

ii) for all

and all .

In this case, we say that is SBB, and refer to it as an SBB
process.

The requirement that the function belongs to comes
from a relation, proven in the sequel, between the bounding
function of the output process from a network element and the
bounding function of the input process of that network element.
This relation involves the integral which is required
to be bounded to avoid triviality. Since we do not make,a priori,
any assumption on the size of the network, it is required that for
any order the multiple integral be bounded. It
can be shown that all the exponentially decaying functions as
well as important functions (distributions) exhibiting subexpo-
nential decay, such as Weibull, belong to[13]. Finally, we
can assume, without any loss of the generality, that is not
increasing with since cannot increase with.

III. B ASIC RULES OF THESBB CALCULUS

The first step is to provide an SBB characterization for the
external processes feeding the network. The following theorem
states that if the amount of unfinished work (workload) in a
work-conserving system, transmitting at rate, is SB with
bounding function then the input process of the system is
SBB with upper rate and bounding function .

Theorem 1 (Characterization):Consider a system that trans-
mits at rate , and assume it is work-conserving. Suppose that
it is fed with a single stream of traffic rate , and let
be the amount of data stored in the system at time. If is
SB with bounding function then the input process of the
system is SBB with upper rateand bounding function .

Proof: By the assumptions of the theorem, there exists a
bounding function such that , for
all and all . Let , then

since the system can transmit no more than information
units during the time from to . Hence,

which establishes the theorem.
Next, we show that the sum of two SBB processes is itself

an SBB process. The case of any finite number of summed pro-
cesses is easily dealt by applying iteratively the theorem. Note
that the following statement holds regardless of the statistical
dependencies between the summed processes.

Theorem 2 (Sum):Let be SBB with upper rate and
bounding function and be SBB with upper rate
and bounding function . Then is SBB with
upper rate and bounding function

. The value of is any real number such that
.

Proof: Set , and let (in Section
IV-B, we present one of the possible criteria for setting the value
of ). Then, we have

It is easy to show that belongs to the set of functions.
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Now, we show that the output process fromany work-con-
serving network element (buffer) fed by an SBB input process
is SBB and find a very simple relation between the bounding
functions of these processes. We also show that in such a case
the workload in the buffer is SB. In the following theorem, we
consider a single input process. Note that if there are many
input processes, they can be aggregated to a single one by em-
ploying Theorem 1. Nevertheless, the theorem can be easily ex-
tended such that an SBB characterization is derived for each
input–output stream (session) apart as we show in [13].

Theorem 3 (Input–Output Relation):Let be the ag-
gregate input traffic stream of a work-conserving element, trans-
mitting at rate . Let be the amount of data stored in the
system and let be the output traffic stream of the system.
If is SBB with upper rate and bounding function

, then

i) is SBB with upper rate and bounding function

ii) is SB with bounding function

Proof:
i) Let be the random variable defined by

The quantity equals the time (number of slots) that has
passed since the last time the queue was empty prior to. Letting

we have

(2)

Notice that implies that in each one of thetime
slots , units of information have
been transmitted, and implies that at least
additional information units have been transmitted
from to . Moreover, also implies that the queue of
the work-conserving element was empty at time , and then
all the above information units have entered it from to .
Therefore,

(3)

Substituting (3) into (2), we get

(4)

By the assumption of the theorem

(5)

holds for all integer and . Thus substituting (5)
into (4), we get

(6)

Reminding that is not increasing with , the following
inequality holds:

(7)

based on the assumption that . Inserting (7) into (6),
we obtain

The function belongs to because that belongs to
.
ii) The proof of this part is very similar to the proof of part i).

For details, see [13].
By applying inductively the above theorem, one can show that

if all the processes feeding a feedforward network are SBB, then
so are all the processes within the network (assuming that the
stability condition is satisfied) and the workload in each network
element is SB.

IV. NETWORK CALCULUS FORSUMS OFEXPONENTIALS

A. Motivation: Tighter Bounds for Multiple Time-Scale Traffic

Markov modulated processes have been extensively used for
representing real-time traffic such as packetized voice traffic
and video traffic [11]. For these processes, it has been observed
that, on the logarithmic scale, the delay distribution in a multi-
plexer can be roughly broken into two linear regions (cell and
burst regions). This behavior is a typical characteristic of mul-
tiple time-scale traffic [6], [14]. Consider, for example, a sta-
tionary Markov modulated arrival process , , feeding
a buffer with service rate . The modulating chain is as-
sumed to have two states (say 1, 2) with transition probabilities

and . When in state 1, the source
is producing independent and identically distributed (i.i.d.) ar-
rivals distributed according to and

. When in state 2, the source is producing
i.i.d. arrivals distributed according to
and . The parameters of this Markov chain
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are representative of multiple time-scale traffic [6]. Using stan-
dard -transform techniques we can find the steady-state buffer
occupancy distribution

(8)

where represents the buffer size. For this example, the bound
on the survivor probability computed following
the EBB approach of [15] is

for all (9)

This bound is loose. Using only two exponentials, we can pro-
vide a much tighter bound (corresponding, even, to the true
probabilities in this case)

for all (10)

The comparison of the two bounds with the true probabilities
is shown in Fig. 2(a). The question is whether there exists a
network algebra for sums of exponentials. The answer is, ob-
viously, in the affirmative if we resort to our general definition
of stochastically bounded burstiness and choose the bounding
function as a sum of exponentials. Back to the example, one
can see that is SB with bounding function

for all (11)

and, by Theorem 1, is SBB with upper rate and
bounding function as defined in (11) (the factor ap-
pearing before the first exponential in (10) has been omitted
in (11), since it is meaningless). Note that the random vari-
able is stochastically smaller than the random variable,
corresponding to the steady-state workload, since the buffer is
empty at time and the arrival process is stationary (see, e.g.,
[1]).

B. Basic Rules of the Calculus for Sums of Exponentials

The basic rules of the network calculus for processes with
burstiness stochastically bounded by sums of exponentials are
easily derived from the theorems presented in Section III. The
first rule is related to the addition of processes, i.e., if is
SBB with upper rate and bounding function

and is SBB with upper rate and bounding function

(a)

(b)

Fig. 2. (a) Bounding a distribution (exact) with a single exponential (EB) and
with a sum of two exponentials (SB). (b) Bounds on the workload distribution
of a multiplexer fed by two dependent processes: EB bound versus SB bound.

then, according to Theorem 2, is SBB with upper
rate and bounding function

where

and where the value ofis any real number such that .
The usual criterion for choosing is to maximize the asymp-
totic decay rate of . Assuming that and

, then one should choose
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in order to maximize the smallest . The second rule deals
with the calculus for an isolated network element. If a general
work-conserving multiplexer with service rate is fed by an
SBB input process with upper rate and bounding
function then, according to Theorem 3,
the output process is SBB with upper rate and bounding
function

and the amount of data stored in the multiplexer is SB
with the same bounding function .

C. An Example

As an application of these results, consider a general
multiplexer with service capacity . The multiplexer is
fed by the sum of two input streams with unknown degree
of dependency. The first stream corresponds to the
Markov modulated process described in Section IV-A. The
second stream, , is a similar Markov modulated
process that is EBB with upper rateand bounding function

and SBB with upper rate and bounding function
. Using the technique of [15], one

finds that the summed process is
EBB with upper rate and bounding function and
that the workload distribution in the multiplexer is EB
with bounding function . Using the network
calculus for sums of exponentials, one deduces that is
SBB with upper rate 2 and bounding function

and is SB with bounding function abovedisplayskip12pt

As one can see, from Fig. 2(b), the SB bound is up to four orders
of magnitude tighter than the EB bound. Finally, we obtain from
Theorem 3 that the aggregate output stream from the multiplexer
is SBB with upper rate and the same bounding function as for

.

D. Limiting the Number of Exponentials to a Fixed Number

In this section, we present a refinement of the calculus for
sums of exponentials. The main current drawback of this cal-
culus is that the number of exponentials required to bound the
burstiness of the processes within the network is growing each
time that processes are summed. The example given in the pre-
vious section illustrates this fact. Each one of the two original
SBB processes has a bounding function described by a sum of
two exponentials. But, the aggregate process has a bounding
function described by a sum of three exponentials. From both
theoretical and practical points of view, one may rather be inter-
ested in limiting the number of exponentials to a fixed number

(say two). Of course, there is a cost for such a convenience, that
is, looser bounds. One should seek to minimize this cost. In the
sequel of this section, we introduce an “ad hoc” procedure which
provides a simple way to derive bounding functions described
by sums of two exponentials. In [13], we prove that the SBB
calculus combined with this procedure offers better bounds than
the EBB calculus, at each node of a feedforward network, pro-
vided that the SBB bounding function of each external arrival
process is upper-bounded by the EBB bounding function.

The procedure that we are interested in is the following:
Given a (bounding) function consisting of a sum of an arbitrary
number of exponentials

find a function consisting of a sum of two exponentials
such that for all .

Clearly, there are an infinite number of functions that satisfy
such a requirement. Among all these functions, we look for the
optimal one that is the “closest” of . For instance,
we may define as the function that minimizes the max-
imum of , that is the absolute error, over the domain

. However, such a criterion does not ensure that
will have the same asymptotic decay rate as . Therefore,
we prefer to define the optimal function as the func-
tion that minimizes the maximum of
which is equivalent to minimizing the maximalrelativeerror be-
tween and . Unfortunately, it appears that the compu-
tation of is a difficult task. We suggest, instead, a simple
heuristic which provides a suboptimal solution to this problem,

. The heuristic is based on the observation that, on a
logarithmic scale, a function described by a sum of exponen-
tials behaves almost as a piecewise-linear function, where each
linear region corresponds to a dominating exponential. The first
step of the ad hoc procedure is, thus, to bound the logarithm
of the original bounding function by a piecewise-linear func-
tion . The function is constructed by sampling some
points of and connecting them by straight lines. The
line starting from the last point toward the infinity is chosen to
have a slope equal to the asymptotic decay of . We remark
that due to the convexity of . The
construction is illustrated in Fig. 3(a) for an example function

The accuracy
of the fitting depends, obviously, on an appropriate selection of
the sampling points. It turns out that only a few points are re-
quired for obtaining a good approximation, that is, two points
for each linear region and two or three others for each region of
transition from one dominating exponential to another. The next
step is to bound by another piecewise-linear function
consisting of only two linear regions, as shown in Fig. 3(b). The
second segment of has the same slope as the last segment
of . The point of intersection between the two lines of
is chosen such that the maximum of is minimized.
The computation of is easily carried out due to the piece-
wise linearity of both and . Now, let be the abscissa
of the point of intersection between the two segments of .
Then, for (respectively, ) we have that
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(a) (b)

(c)

Fig. 3. (a) Plot, on a logarithmic scale, of a bounding functionf (x) consisting of three exponentials and of its piecewise-linear fitting`(x). The fitting is
achieved by connecting sampled points off (x). (b) the fitted functioǹ (x) and its bounding functionq(x) consisting of two linear regions. Here, the abscissa,
x , of the point of intersection between the two linear regions ofq(x) is approximately equal to 22. (c) Replacing the original bounding functionf (x) with a
bounding functiong (x) consisting of a sum of two exponentials and with a bounding function consisting of a single exponential (EB bound).

is bounded by the first (resp., second) segment of . Thus
for and for ,

where the parameters and are directly obtained from the
expression for . The value of the parameteris equal to the
value of at , i.e., , whereas the param-
eter is equal to the asymptotic decay rate of , say .
We recall that our goal is to bound by a function consisting
of a sum of two exponentials. This goal is achieved by defining
the suboptimal solution as follows:

(12)

Since and , it is easy to see that
for both and . We remark that this last step
introduces an additional loss in terms of the tightness of the

bounds. Fortunately, this loss is limited to the region around the
intersection point. The result of the procedure for the function

is illustrated in
Fig. 3(c). For this example, we obtain

From Fig. 3(c), we see that the replacement of with a
bounding function consisting of a single exponential alters sig-
nificantly the shape of the original curve. A considerable im-
provement is achieved by replacing with a bounding
function consisting of a sum of two exponentials.

V. DISCUSSION ANDOPEN PROBLEMS

In this paper, we introduced a new network calculus, termed
SBB calculus, which provides statistical upper bounds on



212 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 1, JANUARY 2000

various performance metrics, at each node of a feedforward
network. We showed that the SBB methodology is superior
to previous approaches from several points of views. First, it
handles a larger class of input processes, including important
processes like fractional Brownian motion. It can also provide
much more accurate and realistic characterization of real-time
traffic, when the bounding function is chosen as a sum of
exponentials. This enhanced characterization can substantially
improve the utilization of networks implementing services
based on statistical guarantees. Finally, we showed that the
calculus for sums of exponentials can be implemented at low
complexity. For this purpose, we developed a new procedure
which provides a simple and efficient way to derive bounding
functions consisting of sums of two exponentials. This pro-
cedure ensures that the number of exponentials required to
stochastically bound the burstiness of the processes within the
network remains fixed and does not grow each time that SBB
processes are summed.

The basic theorems presented in Section III and the tech-
niques used for proving them should only be regarded as the
building blocks of the SBB calculus. We show in [13] that these
theorems can be further generalized and extended. For instance,
the concept of “exponentially bounded fluctuation,” developed
in [8] for characterizing the fluctuation of variable rate links, can
be extended to more general bounding functions. Also, if it is
known that the processes feeding the network are independent,
then tighter bounds can be derived [15]. Note that the analysis
we presented here assumes nothing about the service discipline
of the work-conserving element. For a specific element, a finer
analysis may result in tighter bounds. This is, for example, the
case for network elements implementing the WFQ (PGPS) ser-
vice discipline [10], [16], [17].

This work leaves several issues open for further research. For
instance, the problem of handling processes with a bounding
function for some . In such a case, the cal-
culus developed here cannot be used for feedforward networks
of arbitrary size since (see Definition 1). In [2], an ef-
ficient methodology for deriving tight exponential bounds for
in-tree networks is developed. The extension of that approach
to sums of exponentials and general bounding functions would
be especially useful.
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