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Abstract—A network calculus is developed for processes whose on various performance measures, such as delay survivor prob-
burstiness is stochastically bounded byeneraldecreasing func- apilities and mean delay.
tions. This calculus is useful for a large class of input processes, The EBB model can be expected to provide relatively tight
including important processes exhibiting “subexponentially b ds when the del bability distributi is i
bounded burstiness” such as fractional Brownian motion. 20UNGS W gn ? elay probability distribu |o!’1 curve Is linear
Moreover, it allows judicious capture of the salient features of OnN the logarithmic scale (the reasonable quality of the bounds,
real-time traffic, such as the “cell” and “burst” characteristics of  in such a case, has been validated in [8] and [15]). However, for
multiplexed traffic. This accurate characterization is achieved by g variety of models of real-time traffic, such as Markov modu-
setting the bounding function as a sum of exponentials. lated processes and other multiple time-scale processes, it has
_ Index Terms—Multiple time-scale traffic, network calculus, sta-  peen observed that the delay distribution in a multiplexer is
tistical bounds better described by two linear regions (see [11, Sec. 3.8] and

|. INTRODUCTION references therein). These regions are commonly termed “cell

N high-speed networks [11], the stringent quality of ser -Creegion” and “burst region” in the literature. As shown schemat-
'SP W [11] Ingent quatty vic ally in Fig. 1, the EB bound for such kinds of traffic may be

(QoS) requirements of real-time multimedia applications al¥ .
met by special services providing guarantees. A distinction r@ther loose, since the rate of decrease of the_EB bound caqnot
ceed the rate of decrease of the delay curve in the burst region.

made between deterministic and statistical services. The defgfS Il admissi h based EB bound theref
ministic service [3], [10], also called guaranteed service with call admission scheme based on 5 bounds may theretore
the Internet framework [12], is aimed at providing strict gua ead to significant network underutilization. However, it is not

antees on the QoS requirements while the statistical servicéng only drawback of the EBB model. It tums out that a large

intended to provide only statistical (probabilistic) guarantee%l.asS ghiraic Processes ot saﬂsfy . the chargctenza—
n of exponentially bounded burstiness. This class includes all

The main advantage of the statistical service over the determ hibitireub tiall ded bursti
istic service is that it can achieve a higher network utilizatiorﬁ,e processes exnibitingubexponentia Younde gurstiness,
at the expense of some minor quality degradation i.e., burstiness stochastically bounded by functions decaying

For services offering statistical guarantees, one is usually fhore slowly than any exponential. Many of the new models

terested in bounding the mean delay of the packets through ﬁ;ﬂeggested in the literature for characterizing network traffic pro-

network or the probability that the delay exceeds a certain valg&sSses have subexponentially bounded burstiness. One of these

For this reason, the concept of “exponentially bounded burs 10dels is the self-similar fractional Brownian motion (FBM)
' , [9], which has been shown to have good statistical fit with

ness” (EBB) was introduced in [15] (see also the closely relat
works [2] and [7]). A continuous traffic stream with instanta—Ocal area network (LAN) data. An FBM process has a subexpo-

neous rateR(t), is EBB with upper rate» and bounding func- nermally bounded burstiness since thg distribution of the de_lay
tion Ac—7 iffor all ¢ > 0 andf > s > 0 W in a buffer fed by such a process is bounded by a function
. - - behaving like a Weibull distribution [4], i.eRr (W > o) <
b
Pr {/ R(u) du > p(t — s) + a} < Ae™?? (1) Ae™® ,whereA, a > 0andl > b > 0.

s / In this work, we develop a new calculus in order to deal with
wherep, A, o > 0. The EBB calculus is based on an approprocesses which do not satisfy the EBB characterization. We
priate EBB characterization of the external processes feedghsider processes whose burstiness is stochastically bounded
the network. It is ShOWn'ln [15] that if all the |npUt processes Cﬁy genera| functions f(O') We refer to these processes as
a feedforward communication network (and glso some specigiochastically bounded burstiness” (SBB) processes with
nonfeedforward networks) are EBB, then, subject to throughmsunding functionf (o). We demonstrate the existence of a
conditions, so arell the traffic streams within that network andnetwork calculus for SBB processes. This calculus allows us
the network is said to be stable. This model enables compuigprove the stability of feedforward communication networks
tion of eXponentlal bounds (EB), at each buffer in the networhd by SBB processes (Subject to some conditions on the

bounding functions) and obtain upper bounds on the interesting
Manuscript received June 4, 1998; revised July 22, 1999. This work was siferformance measures. It turns out that the SBB calculus is also
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ng(“(wxx)) ll. BASIC RULES OF THESBB CALCULUS

The first step is to provide an SBB characterization for the
external processes feeding the network. The following theorem
states that if the amount of unfinished work (workload) in a
work-conserving system, transmitting at raigis SB with
bounding functionf (o) then the input process of the system is
SBB with upper ratep and bounding functiorf (o).
Theorem 1 (Characterization)Consider a system that trans-
mits at ratep, and assume it is work-conserving. Suppose that
X it is fed with a single stream of traffic rat&(¢), and letW (¢)
be the amount of data stored in the system at tintleW (¢) is
SB with bounding functiory (o) then the input process of the
exponentials and show that it leads to tighter bounds than thesgtem is SBB with upper rageand bounding functiorf(«).
provided by the EBB calculus. Proof: By the assumptions of the theorem, there exists a
bounding functionf (o) such thar (W (t) > o) < f(o), for
alle > 0and allt > 0. Let0 < s < ¢, then

EB Bound

Burst Region

Fig. 1. Cell/burst regions, typical delay curve distribution, and EB bound.

Il. MODEL AND DEFINITIONS

We assume that the system is started at time0 and that all the
network queues are empty at this time. The network queues are )
assumed to be of infinite size. Throughout this work we deriyinCce the system can transmit no more th@in- s) information
results only for discrete-time processgl(¢)}en (although units during the time frons to . Hence,
similar results hold for the continuous-time setting [13]). We in- t

re{ beso

t
We consider the same network model as introduced in [15]. { Z R(uw) > p(t — ) + g} C{W(t) > o}
u=s+1

troduce the notatioff” du)™ f(w) for denoting the:-fold inte- Z Ruw)>pt—s)+o
gration ofthe functiorf( ). Note that the result of the operation u=s+1
f du)” f (u) is a function of the variable. As an example, which establishes the theorem. 0

taking f( ) = e~ leads to( [ du)" f(u) = (1/a)"e™*". " Next, we show that the sum of two SBB processes is itself
We present now the following definitions. _ an SBB process. The case of any finite number of summed pro-

Definition 1. Let 7 representthe setofallthe functiofi®)  cesses is easily dealt by applying iteratively the theorem. Note
such that for any order, then-fold integral( /.~ du)" f(u) IS that the following statement holds regardless of the statistical

bounded forany > 0. _ . dependencies between the summed processes.
Definition 2: A stochas_tlc proc_esW(t_ is stochastically  Theorem 2 (Sum)Let R, () be SBB with upper ratp, and

bounded (SB) with bounding functiof(«) if bounding functionf; (o) and R»(t) be SBB with upper ratg,
i) flo) € F. and bounding functiotfz (o). ThenRy(¢) + R»(t) is SBB with
i) Pr(W(t) > o) < f(o) forallo > 0andallz > 0. upper ratep; + p» and bounding functiog(c) = fi(po) +

Definition 3: A discrete-time proces&(t) has a stochasti- f2((1 — p)o). The value ofp is any real number such that<
cally bounded burstiness (SBB) with upper ratand bounding p < 1.

function f(o) if Proof: Seto >0,0< s<tandletd < p <1 (in Section
) flo) € F. IV-B, we present one of the possible criteria for setting the value
t of p). Then, we have
iy Pr ZIR(U)Zp(t—S)+O'} < flo)forale >0 \ \
and aIIO+§ s < t. Pr{ Z Ri(u) + Z Ro(u) > (p1 + p2)(t—s) + O’}
In this case, we say thd(¢) is SBB, and refer to it as an SBB u=s5+1 u=s+1
process ¢
The requirement that the functigf{s) belongs taF comes = <{ Z Ry(u) 2 pu(t — s) +P0'}
from a relation, proven in the sequel, between the bounding w=s+1
function of the output process from a network element and the i
bounding function of the input process of that network element. { Z Ra(u) 2 p2(t — 5) + (1~ p) })

This relation involves the integrgﬂ;>O f(w) duwhichis required
to be bounded to avoid triviality. Since we do not makeriori, :

< > -
any assumption on the size of the network, it is required that for — Pr{ Z Byfu) Z pu(t = s) +p0}
any ordem the multiple integral /™ du)” f(w) be bounded. It R
can be ;hown that all Fhe expongntlglly decaylng functions as +Pr Z Ro(w) > pa(t — ) + (1 — plo
well as important functions (distributions) exhibiting subexpo- Nt
nential decay, such as Weibull, belong#0[13]. Finally, we < + 1 _ )
can assume, without any loss of the generality, fi{at) is not < Aulpo) + £2((1 = p)o) = glo)
increasing witho sincePr (- > o) cannot increase with. Itis easy to show that(o) belongs to the set of functiot. [

u=s—+1
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Now, we show that the output process framy work-con- By the assumption of the theorem
serving network element (buffer) fed by an SBB input process
is SBB and find a very simple relation between the bounding Pr {Rf;f > p(t —s) + g} < f(o) (5)
functions of these processes. We also show that in such a case
the workload in the buffer is SB. In the following theorem, W&,01ds for all integed < s < ¢ ando > 0. Thus substituting (5)
consider a single input process. Note that if there are mapy, (4), we get - -
input processes, they can be aggregated to a single one by em-
ploying Theorem 1. Nevertheless, the theorem can be easily ex- st
tended such that an SBB characterization is derived for each Pr {Rgo 2 plt—s)+ 0}
input—output stream (session) apart as we show in [13]. .

Theorem 3 (Input—Output Relation}-et R;,,(¢) be the ag- = Zf(g +(C=n)0)
gregate input traffic stream of a work-conserving element, trans- 1 o0
mitting at rateC'. Let W(¢) be the amount of data stored in the = flo) + —— Z flo+(C = p))(C —p). (6)
system and lef, () be the output traffic stream of the system. C—p i
If R, (t)is SBB with upper rate < C' and bounding function
f(o0), then Reminding thatf(c) is not increasing withr, the following
inequality holds:

=0

i) R,(t)is SBB with upper rate and bounding function

1 e g oo
g(o) = flo) + -, /U fu) du. Z flo+(C = p)i)(C —p) < / fwydu — (7)
i) W(t)is SB with bounding function =
1 0o based on the assumption tt@t- p > 0. Inserting (7) into (6),
glo) = flo)+ ropu / f(u) du. we obtain

1 oo
Proof: Pr{R;* > plt—5) + 0} < flo) 4 5 / ) du
i) Let d(s) be the random variable defined by () P o
= g(o).
d(s) = min{0 < u < s: W(s —u) = 0}.

The functi bel taF b th bel t
The quantityd(s) equals the time (number of slots) that ha e functiong(~) belongs ta7” because thaf(~) belongs to

passed since the last time the queue was empty prioLtting i) The proof of this part is very similar to the proof of part ).

t For details, see [13]. O
Rt = Z R(u) By applying inductively the above theorem, one can show that
u=s+1 if all the processes feeding a feedforward network are SBB, then
we have so are all the processes within the network (assuming that the
stability condition is satisfied) and the workload in each network
Pr{R>"> p(t—s)+o} element is SB.

= ES: Pr({Ry" > p(t—s)+ o} n{d(s)=1i}). (2)

2=0
Notice that{d(s) = i} implies that in each one of thetime A. Motivation: Tighter Bounds for Multiple Time-Scale Traffic

slotss — ¢ + _1, s—i+2,---, s Cunits (_)f inf_ormation have  Markov modulated processes have been extensively used for
been transmitted, and;-* > p(t—s)+o}impliesthatatleast yepresenting real-time traffic such as packetized voice traffic
additionalp(t — s) 4 o information units have been transmittedyq video traffic [11]. For these processes, it has been observed
from s tot. Moreover{d(s) = i} also implies that the queue ofyhat on the logarithmic scale, the delay distribution in a multi-
the work-conserving element was empty at time<, and then pjexer can be roughly broken into two linear regions (cell and
all the above information units have entered it frem < 1o ¢. st regions). This behavior is a typical characteristic of mul-
Therefore, tiple time-scale traffic [6], [14]. Consider, for example, a sta-
st _ . tionary Markov modulated arrival proceggt), t € N, feeding
({RO zplt=9)+ 0} " {d@ N L}) a buffer with service rat€’ = 1. The modulating chain is as-
C {Rfrf“ > p(t—s)+o+ Ci} . (3) sumed to have two states (say 1, 2) with transition probabilities
. , p12 = 1075 andpy; = 1/100. When in state 1, the source
Substituting (3) into (2), we get is producing independent and identically distributed (i.i.d.) ar-
Pr {R(s),t > ot — ) +a} rivals .4, distributed accor(_jing tr(A; = 0) = 7/8 and_
s Pr(A; = 2) = 1/8. When in state 2, the source is producing
< Z Pr {Rf;i,t > p(t—s+4)+o+(C— p)i}. (4) 1i.d.arrivalsA, distributed according tBr (A; = 0) =11/20 _
Pt andPr (A; = 2) = 9/20. The parameters of this Markov chain

IV. NETWORK CALCULUS FOR SUMS OF EXPONENTIALS
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are representative of multiple time-scale traffic [6]. Using stan 10° p= v <
dardz-transform techniques we can find the steady-state buffe ; R - E’é“‘ =SB

_1 ~ R

occupancy distribution ~~.

Pr(W =0) =0.857-¢ 197 1 2.410.107° . ¢ %27 (8) R

o)

Al
wherec represents the buffer size. For this example, the boun%w"‘-
on the survivor probability’r (W > o) computed following 2 §

the EBB approach of [15] is 107

Pr (W > o) < 70273, forallo > 0. (9)

This bound is loose. Using only two exponentials, we can pro 4 . . . .

i i H 0 5 10 15 20 25 30
vide a much tighter bound (corresponding, even, to the tru buffer aize

probabilities in this case)

Pr(W >0) < (1—107%) . ¢ 19460 4 174 . (702737
forallo > 0. (10) 107k

The comparison of the two bounds with the true probabilities 10
is shown in Fig. 2(a). The question is whether there exists ~
network algebra for sums of exponentials. The answer is, 0t§10-3-
viously, in the affirmative if we resort to our general definition &
of stochastically bounded burstiness and choose the boundii |
function as a sum of exponentials. Back to the example, on
can see thal¥’(t) is SB with bounding function

flo) = e 19467 L1074 . 702737 forallc >0 (11) 10 , , , , .
0 5 10 15 20 25 30
buffer size ¢
and, by Theorem 1R(¢) is SBB with upper ratep = 1 and (b)

bounding function as defined in (11) (the facted0—* ap-
Pea”ng b_efore. the first gxponennal in (10) has been Omltt%. 2. (@) Bounding a distribution (exact) with a single exponential (EB) and
in (11), since it is meaningless). Note that the random vatiith a sum of two exponentials (SB). (b) Bounds on the workload distribution
ableW (¢) is stochastically smaller than the random varidible of a multiplexer fed by two dependent processes: EB bound versus SB bound.
corresponding to the steady-state workload, since the buffer is

empty at timed and the arrival process is stationary (see, e.

1)) Fien, according to Theorem 2, (t) + R2(t) is SBB with upper

ratep; + p2 and bounding function

B. Basic Rules of the Calculus for Sums of Exponentials

N+M
The basic rules of the network calculus for processes with h(o) = Z Cie i
burstiness stochastically bounded by sums of exponentials are im1
easily derived from the theorems presented in Section Ill. The
first rule is related to the addition of processes, i.eRift) is  where
SBB with upper ratep; and bounding function
N v B; n, N+M>:>N+1
o) = Aje™7
/(o) ; 2 po, N>i>1
YT VA -pBiy, N4+M>i>N+1

andR(t) is SBB with upper rat@, and bounding function
and where the value gfis any real number such that> p > 0.
M The usual criterion for choosing is to maximize the asymp-
g(o) = Z Bje—%i° totic decay rate ofi(¢). Assuming thaivy = min; «; and
= Bar = min; 3;, then one should chooge= 3y /(axn + Bar)
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in order to maximize the smallest. The second rule deals(say two). Of course, there is a cost for such a convenience, that
with the calculus for an isolated network element. If a generil, looser bounds. One should seek to minimize this cost. In the
work-conserving multiplexer with service ra€é is fed by an sequel of this section, we introduce an “ad hoc” procedure which
SBB input proces;,, (¢) with upper ratep < C and bounding provides a simple way to derive bounding functions described
function f(s) = Eﬁil A;e~ % then, according to Theorem 3,by sums of two exponentials. In [13], we prove that the SBB
the output procesB,,(¢) is SBB with upper ratg and bounding calculus combined with this procedure offers better bounds than

function the EBB calculus, at each node of a feedforward network, pro-
vided that the SBB bounding function of each external arrival
N process is upper-bounded by the EBB bounding function.
glo) = Z Ai(14(C = p)tag e e The procedure that we are interested in is the following:
i=1 Given a (bounding) function consisting of a sum of an arbitrary

number of exponentials
and the amount of data stored in the multiple¥Xg(¢) is SB o
with the same bounding functigy(o). oy
flz)= Z a;e” %
=1

C. An Example
As an application of these results, consider a generféﬂdafunCtlon consisting of a sum of two exponentig(s) =

-Gz —Bax
multiplexer with service capacit¢/ — 3. The multiplexer is 01¢” " + b2e™7% such thatg(z) > f(x) for all z > 0.
fed by the sum of two input streams with unknown degre%learly’ there are an infinite number of functions that satisfy
of dependency. The first streaf, ;. () corresponds to the such a requirement. Among all these functions, we look for the

Markov modulated process described in Section IV-A. THEPUMal 0nego,(z) that is the “closest” off (x). For instance,
second streamRs. i (1), is a similar Markov modulated Y& MY defingy,i () as the function that minimizes the max-

process that is EBB with upper rateand bounding function IMum ofg(x) — f(x), thatis the absolute error, over the domain
0457 and SBB with upper rat¢ and bounding function [0_, o0). However, such a criterion does not ensure thgt(z)
¢~21970 4 194 . o~0.5430 Using the technique of [15], oneW|II have the same asymptotic decay ratefds). Therefore,

finds that the summed proceBs, (£) = Ry i (t) + Ra, in(t) is Ve prefer to define the optimal functiop,,.(«) as the func-
EBB with upper rate and bounding functiog - ¢=0-1827 and  tion that minimizes the maximum dbg (g(z)) — log (f(x))
that the workload distributiod’ (¢) in the multiplexer is EB which is equivalent to m|n|m|zmgth(_e maxim@&llativeerror be-
with bounding function12.989 - e=~91822 Using the network tweeng(x) and f(z). Unfortunately, it appears that the compu-

calculus for sums of exponentials, one deduces thatt) is thation quopﬁ_(xr)] is ad_g‘ficult ta:;k. We Slljggles_t, insteﬁq, asigllple
SBB with upper rate 2 and bounding function euristic which provides a suboptimal solution to this problem,

gsun(2). The heuristic is based on the observation that, on a
logarithmic scale, a function described by a sum of exponen-
tials behaves almost as a piecewise-linear function, where each
linear region corresponds to a dominating exponential. The first
andW () is SB with bounding function abovedisplayskip12ptStep of the ad hoc procedure is, thus, to bound the logarithm
of the original bounding function by a piecewise-linear func-
tion ¢(x). The functionf(x) is constructed by sampling some
points oflog ( f(x)) and connecting them by straight lines. The
line starting from the last point toward the infinity is chosen to

As one can see, from Fig. 2(b), the SB bound is up to four ordgfg, e 5 giope equal to the asymptotic decay(af). We remark
of magnitude tighter than the EB bound. Finally, we obtain fro%aw(x) > log (f(x)) due to the convexity dbg (f(z)). The

Theorem 3 that the aggregate output stream from the multipleX@f sy iction is illustrated in Fig. 3(a) for an example function

is SBB with upper rate and the same bounding function as forex(x) —e™* £ 1073 ¢~ 1 1076 . =025 The accuracy
W (). of the fitting depends, obviously, on an appropriate selection of
the sampling points. It turns out that only a few points are re-
quired for obtaining a good approximation, that is, two points
In this section, we present a refinement of the calculus féor each linear region and two or three others for each region of
sums of exponentials. The main current drawback of this catansition from one dominating exponential to another. The next
culus is that the number of exponentials required to bound thep is to bound(z) by another piecewise-linear functigfiz)
burstiness of the processes within the network is growing eaotnsisting of only two linear regions, as shown in Fig. 3(b). The
time that processes are summed. The example given in the m@cond segment @f«) has the same slope as the last segment
vious section illustrates this fact. Each one of the two originaf #(x). The point of intersection between the two lines;0f)
SBB processes has a bounding function described by a sunisofhosen such that the maximumggf:) — ¢(x) is minimized.
two exponentials. But, the aggregate process has a boundiig computation of(x) is easily carried out due to the piece-
function described by a sum of three exponentials. From bathise linearity of bott¢(z) andg(x). Now, letz, be the abscissa
theoretical and practical points of view, one may rather be intext the point of intersection between the two segmentg(of.
ested in limiting the number of exponentials to a fixed numbéthen, forz < z, (respectivelyg > zo) we have thalog (f(z))

e~1:2950 4 07350 | o 1g—4 . ,—0.1820

1772 . 671.2950' +2361 . 670.7350'_'_12'989 . 1074 . 670.1820"

D. Limiting the Number of Exponentials to a Fixed Number
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Fig. 3. (a) Plot, on a logarithmic scale, of a bounding functfon(z) consisting of three exponentials and of its piecewise-linear fitt{ng . The fitting is
achieved by connecting sampled pointsfof (). (b) the fitted functiorf(x) and its bounding function(x) consisting of two linear regions. Here, the abscissa,
xg, Of the point of intersection between the two linear regiong(af) is approximately equal to 22. (c) Replacing the original bounding fungtiQt) with a
bounding functiory..1,(x) consisting of a sum of two exponentials and with a bounding function consisting of a single exponential (EB bound).

is bounded by the first (resp., second) segmeni(ef). Thus bounds. Fortunately, this loss is limited to the region around the
f(z) < Ae=P= for v < wg and f(x) < Be 2% forz > z¢, intersection point. The result of the procedure for the function
where the parameter$; and B are directly obtained from the f..(x) = ¢=* + 1072 . ¢795% 41075 . ¢=9-25% s jllustrated in
expression fog(x). The value of the parametéris equal to the Fig. 3(c). For this example, we obtain

value of f(z) atz =0, i.e.,A = Zf\il a;, whereas the param-

eter/; is equal to the asymptotic decay ratefgf:), sayoy,. Goun(x) = 1.001 - ¢ 0% 4 5155.1076. ¢ 0257,

We recall that our goal is to boun{x) by a function consisting
of a sum of two exponentials. This goal is achieved by defini

the suboptimal solution as follows: om Fig. 3(c), we see that the replacementfgf(x) with a

bounding function consisting of a single exponential alters sig-
nificantly the shape of the original curve. A considerable im-
goun(z) = (A= B)e ™7 4 Be™ %" = bie™" +bye™™". provement is achieved by replacinfg,(z) with a bounding
(12) function consisting of a sum of two exponentials.

SinceA > B andg; > s, itis easy to see that,,(x) > f(x) V. DISCUSSION ANDOPEN PROBLEMS

for bothz < zo andxz > zo. We remark that this last step In this paper, we introduced a new network calculus, termed
introduces an additional loss in terms of the tightness of ti8&BB calculus, which provides statistical upper bounds on
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