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ABSTRACT

A class of discrete-time priority queueing systems with Markov modulated ar-
rivals is considered. In these systems, N queues are served by a single server ac-
cording to priorities that are preassigned to the queues. Packet arrivals are modeled
as discrete-time batch processes with a distribution that depends on the state of an
independent common two-state Markov chain. This allows to cover a wide range
of applications in computer and communication systems when the parameters of
the arrival processes are not fixed in time, but vary according to the state of the
underlying Markov chain.

We derive the steady-state joint generating functions of the queue lengths dis-
tributions of this class of systems. From the latter, moments of the queue lengths
as well as average time delays can be obtained.

A numerical example provides some insight into the behavior of such systems.
Also, the effect of the transition rate between the states of the modulating Markov
chain on the average time delays in the system is investigated for different patterns
of loads on the queues of the system.
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338 KHAMISY AND SIDI
1 INTRODUCTION

Discrete-time queueing systems have been receiving increased attention in recent
years due to their usefulness in modeling and analyzing various types of communi-
cation systems. Packet switched communication networks with point-to-point links
between the nodes, where data packets are of fixed length, motivated most of these
models, since the fixed packet length assumption induces their discrete-time na-
ture. These models usually assume that the input processes are independent from
slot to slot and identically distributed in each slot. This assumption, though being

mathematically convenient and elegant, covers only a narrow range of applications.

One modeling device that is becoming increasingly popular is Markov modulation
where basic parameters of processes like arrival intensities or service-time distribu-
tions, are not fixed in time but may vary according to the state of an underlying
discrete-time Markov chain or a continuous-time Markov process. For example,
Bruneel [1] and Daigle et. al. [4] consider a single class discrete-time queueing
system with Markov modulated arrivals. Burman and Smith [2] consider a single
class infinite-server continuous time queueing system in which the input process is
a non-homogeneous Poisson process with rate proportional to the queue length pro-
cess. Other examples can be found in Lucantoni [6], and Neuts [8, 9]. In general,
Markov modulation allows to generalize many standard queueing systems and also

to incorporate a variety of practical models.

In this paper, we consider a class of discrete-time priority queueing systems with
Markov modulated arrivals, where the distributions of the arrival processes to the
system depend on the state of an independent common two-state Markov chain
(the modulation process). This allows for generalizations that cover a wide range
of applications where the arrival processes are not fixed in time but vary according
to the state of the underlying Markov chain. Some examples arise in the study
of packet arrivals to a local switch from N sources, where packets are transmitted
,one at a time, on a common channel according to pre-assigned priorities to the
sources. The distribution of the arrival processes to the queues may change with
time. Another example is, when only some sources are given permission to load
their packets during some period of time and others are not given this permission.

We restrict ourselves to a two-state Markov modulating chain because it greatly
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facilitates the analysis and the presentation. The generalization for any finite-state
Markov chain is possible using the same techniques, but is very complicated. Also,
the ideas and techniques used here can be extended and used for the analysis of other
class of systems containing dependent discrete-time queues such as in Morrison [7]
where a system with two queues in tandem has been considered and in Sidi and

Segall {10] where an N-class priority queueing system has been considered.

The paper is organized as follows. In Section 2, we describe the model along
with the assumptions and several definitions and notations used throughout the
paper. In Section 3, we present the steady-state analysis of the class of systems
under consideration. In particular, we develop a method for deriving the steady-
state joint generating function of the queue lengths when the two-state modulating
Markov chain is in one of it’s states. We also give the ergodicity condition for the
system. The corresponding moments can be derived from the generating function,
and average time delays can be obtained by using Little’s law. In Section 4, we give
an example that provides some insight into the behavior of systems with common

two-state Markov modulated arrivals.

2 MODEL DESCRIPTION

Consider a discrete-time queueing system in which the time axis is divided into in-
tervals of equal size, referred to as slots. The slots correspond to the transmission
time of a packet, and all packets are assumed to be of the same fixed size. The
system consists of N queues each having an infinite buffer, and packets arrive ran-
domly to the queues from N sources that in general may be correlated. Moreover,
the distributions of the arrival processes depend on the state of an homogeneous
discrete-time Markov chain with two states, called the Modulating Markov Chain
(MMC). Transitions between the two states of the MMC can take place 6nly at slot
boundaries. The transition probabilities of the MMC are independent of the queue
lengths. Let s(t) € {0,1},=10,1,2,..., be the state of the MMC at time 1+ (just

after the slot boundary). The one-step transition matrix for this Markov chain is
gi\'en by [ PP J, where P; 21 P;. We assume that 0 < P; < 1, j = 0,1,
o Fo

since if P; = 0 for some j the case degenerates to non-modulated arrival pro-
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cesses analyzed in Sidi and Segall [10]. The limiting probabilities of the MMC
are m; = P;/(Po+ P), j =0,1.
Let Af(t), 7=0,1,i=1,2,...,N, t = 0,1,2,..., be the number of packets
entering queue 7 from its corresponding source during the time interval (1,1t + 1],
;YN
given the MMC's in state j at time t+. The input process {Af(t)}A_1 y3=0,1,¢t=
0,1,2,...,is assumed to be a sequence of independent random vectors with integer-

valued elements. Let T} 2 {t{,t%,. o} tf; € IN, be a subset of times in which the

. N
MMC is in state j, j = 0,1. Then, the input process {Af(t)}._l, t € T}, is assumed

to be a sequence of identically distributed random vectors. Let the corresponding

probability distribution and generating function of the input process given the MMC
is in state 7, j = 0,1, be (we define 2 2 (21522,...,2N)):

ai(ity - yin) = Pr{Aj(t) = i1, ... ,A4(t) =in}, ik =0,1,2,..., 1 < k < N

N )
Fi(z) = E {H N0 } lzl<1,i=1,2,...,N,

i=1
where F;(z), j = 0,1, is an analytic function in the polydisk lzil < 1,71=1,2,...,N.
Furthermore, we assume that F}(z), j = 0,1, is analytic on lzil=1,i=1,2,...,N.
Note that the arrival processes considered are rather general, and allow correlation

among the arrivals to the different queues within a slot.

Next we describe the departure processes from the queues. All queues are served
by a single server and service can start only at the beginning of a slot. No more than
one packet may be served in any given time slot. The queues are served according
to a fixed priority. Specifically, queue i (1 £t < N)is served only when queues
1,2,...,4— 1 are empty and the one at queue i is nonempty. The buffers at the
queues are infinite. Finally, we assume that packets indeed arrive at every queue

with nonzero probability.

3 STEADY-STATE ANALYSIS

3.1 System Evolution and Preliminaries

To describe the evolution of the contents of the queues, we need several definitions.

Let Li(t),1 <i< N,t=0,1,2,... be the number of packets atl queue 7 at time
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t+ and let U(Li(t)) (1<i< N,t=0,1,2,.. ) be 2 binary-valued random variable
that takes value 1if L;(t) > 0 and 0 otherwise. Let Ai(t) (1<i< N, t=0,1,2,..)
be the number of packets entering queue 1 from its corresponding source during the
time interval (¢, ¢ 4 1). Using these definitions, it is easy to see that the system
under consideration (the queue lengths) evolves for ¢t = 0,1,2,... as follows. For
1<i<N,
i-1

Li(t+1) = Li(t)+ Ai(t) - U(Li(2)) H1 1= U(Ln(t)) (1)
Clearly, {L1(t), La(t), ..., Ln(2), s(1)}, t =0,1,2,..., is a vector Markov chain.
We are primarily interested in the queue lengths distribution when the MMCis in
some state. Let I7(t) (j = 0,1, t = 0,1,2,...), be a binary-valued random variable
that takes value 1 if s(t) = j and 0 otherwise. Assuming that the vector Markov
chain is ergodic (we shall derive the condition for this later), let us consider the
steady-state joint generating function of the queue lengths distribution when the

MMCis in state j, j = 0,1, namely

Gi(z) & Jim E{ﬁ zf“‘)ﬂ(t)} (2)

=1

For notational convenience, let us define the following operators on Gi(2), j= 0,1:

6Gi(z) - Gi(2)| . 1<igN (3)

zy=mzp=eemzy =0

We shall sometimes denote the constants EnG7(z) by G7(0). With the above

notations we prove in Appendix A the following theorem.
Theorem 1 The following holds:

- Bo(z) PoFi(z) | | &G°2)
Z( !+1 ] PIFO(Z) 103122) J [E; (~) J

G%(z)
[ Gl(z) J 1= 27 [PoFy(z) + Py Fo(2)] + 27 2(1 — Py — P)Fo(2)Fi(z2)

where we define 23}, £ 1 and Bj(z) = Fy(2)[Proj - (1 Py — Pz F_i(2)],
j=0,1.
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In (4), we encounter a common phenomenon in dependent queues, namely, that
the generating functions G7(z), j = 0, 1, are expressed in terms of several boundary
functions. In order to uniquely determine G¥(z), j = 0, 1, we will have to determine
the boundary functions &G7(z), 7 = 0,1, i = 1,2,...,N. In what follows, we
develop the method for obtaining these boundary functions. Along this process we
mainly use the analytic properties of the generating functions G*(z), j = 0, 1, within
the polydisk |z <1, i=1,2,...,N.

Before proceeding we derive the steady-state probability that all queues are
empty, i.e., G(0) & G°(0) + G(0). This probability should be positive to guarantee
stability.

Theorem 2 For1 < i< N, let

ioa 5@ , j=0,1 (5)
0z; zn=zp=...=2y=1
I—— 7.'01'?+7r17",1
Then  G(0) = 1*—2,]‘\;1 Ty
Proof: For 1 <1< N — 1 define
G2 [ +a6'@)|, (6)
Zip1=TZ 42T TINT

If we substitute z; = 1 for j = 1,2,...,i— 1,74+ 1,...,N and let z; — 1 in (4),

then using the normalization condition G’O(g)Lnmz:mzmz1 = 7p, we obtain (using

L'Hépital’s theorem) the following set of equations:
Gl(l) = 1- T1
Gi(1)-Gi1(1) = -r; 2<i<N-1 (7)
Gn-1(1) - G(0)

N

Here we have a set of N linear equations with the N constants G;(1), 1 <i< N-1,

and G(0) unknown. By subsequent substitutions we obtain:
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i N
G)=1-3"rm ; G@O=1-3r (8
n=1 i=1

and the theorem is proved.
Note that Theorem 2 implies that the condition for steady-state is E,’il ry < 1.

Next, we obtain the boundary functions {;Gj(g), J=01,1= L2,...,N. In
order to facilitate the analysis and the presentation, we first consider the case of two

queues and then proceed to the general case of N queues.

3.2 A Two-Node System

Equation (4) for N = 2 implies:

G(21, 27) _ Bo(21, 27) FoFy(z1, z)
G2, 22) T | PiFy(z, z2)  Bi(z1,2)

G%0,22) G°0,0) | [ 21 — »-1 .
[GI(O,Zz) Gl(o,o)”f_zgl1 ]Is (21,22)  (9)

where Bi(21,22) = Fj(zl,zg)[ﬁl_j -(1- P~ P])ZI_IFI_J'(ZI,ZQ)], 7 =0,1 and
K(z,2) 2 l—Zfl[FoFl(Zl,22)+P1F0(21,22)]+31—2(1-P0-P1)F0(21,22)F1(21,22)-

In order to proceed, we shall need the following lemma.
Lemma 1 For a given lza] < 1, the Jollowing equation in 21,
2}~ zl[ﬁoFl(zl,zg) + P1Fy(z, 2)]+ (1 - Py - Pl)F()(Zl,Zz)Fl(Zl,ZQ) =0 (10)
has ezactly two solutions 2tk = 216(22) , k=1,2, in the unit circle |z} < 1.

Proof: The assumption that packets do arrive at all queues implies that there exists
a state s € {0,1} such that a,(13,12) > 0 for some i1 and some 75 > (. Therefore,

for |21] = 1 and |2,] < 1

|Fy(z1,22)] = 2> ay(in )22y | < 5° 3 asr(t1,9)] 21" 2o
11=0 i,=0 11=0 15=0

o0 oo

< 20N aulini) =1 (11)

11=0 i=0
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In order to proceed with the proof of the lemma we shall need the following claim.
Claim 1 For given |z3| < 1, the following equation in z

(21 - ?oFl(zl, 22)) (21 - —plFO(zlv 22)) =10
has ezactly two solutions in the unit circle |71 < 1.

The proof of the claim is as follows. Let |2z;| = 1 and |z, < 1, then
|ﬁ0F1(21,22)] <Pop<l= lz1] I?IFQ(ZI,ZQ)I <P,y<1= L]
Hence, applying Rouche’s theorem (see Appendix B), the following equations in 2y,
21~ PoFi(z1,2) =0 ; 2 — PyFo(z1,25) = 0

has each a unique solution in the unit circle |21] < 1. Therefore the claim is proved.

To prove the lemma, let |2;] = 1 and |2;| < 1. Rearranging (10), we obtain
(21 ~ PoFy(21, 22)) (21 "'?11'10(21,22)) ~ PoP1Fo(21, 22) Fi(z1,22) = 0
Then,

(21 = PoFi(21, ) (zl_ — P1Fo(21,29))|
= (2l = PolFa(z1, 20)I) |21 = PoFi(en, )| |1 = PuFo(an, 2)|
> (Ia1l = Pol (e, 20)1) (1] = Pl Fo, 20)])
> (1= Po)(1-P)) = FP > PoP1|Fo(zy, 20) Fy(21, 23))

where, in the first inequality we have used the triangle inequality and in the last
two inequalities we have used (11). Hence, applying Rouche’s theorem, the proof of
the lemma is completed.

We are now ready to determine the boundary functions Gi(0,2), 7=0,1, and

the constants G7(0,0), j = 0, 1.

3.2.1 Determination of the Boundary Functions Gj((),zg), ji=0,1.

Let 2y, k = 1,2, denote the two solutions of (10). Here we assume that 211 # 212

We also assume that Py + P, # 1 (the case where Py + P, = 1 is referred later).
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Since G°(z1,22) is analytic within the polydisk |z;| < 1, i = 1,2, then in this disk
whenever the denominator of G% zy, z;) vanishes, the numerator must also vanish.
Since the denominator of G%(zy, z,) vanishes at 21, k = 1,2, we have from (9) the

following two equations

Bo(21i,22) - {(z77" = 211)G°(0, 22) + (1 - 2,7)G°(0,0)} (12)

+PoF1 (216, 22){(25" — 211 )G (0, 22) + (1 — 251)G*(0,0)} = 0, i=1,2

from which the boundary functions Gj(O, 22), 7 = 0,1, can be expressed as a function
of G¥(0,0), j = 0,1. (For 21,1 = 212, G%(21, 22) is analytic in the disk || < 1, i =
1,2, and therefore the numerator must have a zero of order 2 at 2;,;, and one
obtains two equations from which G7(0,2;), 7 = 0,1 are expressed in terms of
G4(0,0), 5 =0,1).

It is important to note that when the numerator of G%(z1, 2;) vanishes at 21 ks
k = 1,2, also the numerator of G(24, z;) vanishes at these values. Hence, the two
equations obtained from G(zy, z;) (in a similar way as from G%(z,, z;) above) are
the same as (12).

For the case Py + P; = 1 (the non-modulated case), we have from (9):

G%(z1, 22) _ | PoFolz1,22) FoFi(z1,22)
Gl(z1,22) Py Fo(z1,20) PiFi(21,22)

x

(0, 2 0 =1 _ =1 ]
[ glgg:zzg glggzgg } X { 2 2—11 ] x K72, z3)

where (2, 22) 2 1- Zi_l[?()Fl(Z],ZQ) + _FlFo(Zl, 22)]

Note that, in this case,
PoGY(21,29) = P1G%(21,2) (14)

By (11) and Rouche’s theorem we can prove that for given |z;| < 1, the following
equation in 2y, .

21 — [PoFi(z1,22) + Py Fo(z1,20)] = 0

has a unique solution in the unit circle |21| < 1. Let 21,1 = 21 1(22) denote this unique

solution. Then, by similar arguments as before we have the following equation,
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Fo(z1,1,22) - {(237 = 211 )G°(0, z2) + (1 — 2, 1)G(0, 0)}

+ Fi(z1, 2){(237" = 201)GH(0,22) + (1 - 2;1)G*(0,0)} = 0 (15)
Now, from (14) for 2; = 0 and (15) the boundary functions Gj(O,z2), j=0,1, can
be expressed as a function of G'j(0,0), 7=0,1.
3.2.2 Determination of the Constants G7(0,0), j = 0,1
To determine the constants G?(0.0), j = 0,1, we shall need the following lemma.

Lemma 2 Under the assumption of steady-state (rq + r3 < 1), the following equa-

tion in z,
2% - 2[PoFy(z, 2) 4+ Py Fy(z, 2)+ (1= Py — P)Fy(2,2)Fi(2,2) = 0 (16)
has ezactly two solutions 2y = oy , k = 1,2, within the unit circle jz| < 1.

The proof of Lemma 2 appears in Appendix B.

One of the solutions of (16) is clearly o = 1. The other solution is denoted by
o1, where 07 # 1 and is a real number (otherwise if (16) has a zero of order 2 at

z =1 then, it can be shown that the steady-state condition is violated).

Theorem 3 For Po+ Py # 1, let oy be the unigue solution (which is # 1) of (16).
Then the following holds:

[ G(0,0) ] B G(0,0)
G'(0,0) Fo(o1,01)[P1 — (1 = Po — Py)o7 Fy(01,01)] — PoFi(0y,01)

X

—FPoFy(oy,01)
Fo(O'l,Ul)[Pl - (1 — PO - Pl)Ul_lFl(O’l,Ul)]

where G(0,0) = 1 — 71 — ry (see Theorem 2 for N = 2).

Proof:  Since G%z,2) is analytic within the disk |z] < 1 then within this disk
when ever the denominator of G°(z, z) vanishes, the numerator must also vanish.

Since the denominator of Gz, z) vanishes at o; we have from (9) that
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Fo(d],Ul)[le—(1—P0—P1)UI1F1(01,0'1)} G0(0,0)+P0F1(0'1,Ul)Gl(O,O) =0 (17)

From (17) and the fact that G(0,0) = G°(0,0) + G'(0,0), we have two equations
from which the constants G#(0,0), j = 0,1 are obtained. It is important to note
that Fj(oy,01) # 0 for j = 0 and j = 1, otherwise 0y = 0 and the system is
unstable (a;(0,0) = 0 for j = 0,1). The above two equations have only one solution,
G4(0,0), 7 = 0,1, otherwise it can be shown that G(0,0) = 0, a contradiction with
the steady-state assumption. This completes the proof of Theorem 3.

For the case Py + Py = 1 the relation PoG'(z1,20) = P1G%(z1,29), for z; =

zo = 0 is used for the calculation of the constants G(0,0), = 0,1.

After the constants G7(0,0), j = 0,1 have been obtained, we obtain the bound-
ary functions G’(0,2;), 7 = 0,1, from (12). Then the joint generating functions

G(z,22), J = 0,1, are uniquely determined.

Having obtained the joint generating functions G(21,2), j = 0,1, we can derive,
at least in principle, any moment of the queue lengths at the quenes when the MMC
is in state 7 € {0,1}. Specifically, if we denote by Lf, i = 1,2, § = 0,1, the
average queue length at queue i when the MMC'is in state j in steady-state, then

L] — an!Zh"’:!
1

P . Denote by L; and r;, i = 1,2, the average queue length and

23 =22=1

the arrival rate, respectively, at queue ¢ in steady-state, then L; = L9+ LY r =

J

9 4 r! where r], j = 0,1, was defined in (5). Assuming that packets arrive at

the queues only at the end of a slot and then using Little’s law [5] we may also
obtain the average time delays at queue ¢ (the average number of slots that a packet
spends in the queue from its arrival epoch until it departs the system), denoted
by T; from T; = L;/r;. The total average time delay in the system is obtained by
applying Little’s law to the whole system, and is given by T' = (L1 + L2)/(r1 + r9).
If the arrival of a packet within a slot is uniformly distributed, then one should add
an extra half a slot to the delays that we are computing. The total average delay
T is clearly a function of the transition probabilities Py and P; of the MMMC. For
Py = P, = P, 0 < P <1, the steady-state probabilities 7;, j = 0,1, are equal. In
this case it is of interest to investigate the influence of the transition rate between

the states of the MAMC on the total average delay T'. This will be demonstrated by

the examples given in Section 4.
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3.3 The N-Node System

In order to uniquely determine G’(z), 7 = 0,1 for the N-node system we have to
determine the boundary functions f;G’j(g), j=0,1,i=1,2,...,N.

By a straightforward expansion of Lemma 2 and Theorem 3 from Section 3.2 to

a system with N queues, we can prove that for Py + P, # 1 the following holds:

[ G°(0) J _ G(0)
G') | Fo(a)[P1 = (1 - P — P)oy Ry (o)) - PoIi(ag)

X

[ ‘POFI(Q_) (18)

Fo(a)[Py = (1= Py — Py)o7  Fi(a))

where G(0) = 1 ~ 2{11 ri and ¢ denotes the vector z with z; = ¢y, 1 < 7 < N,

where o1 # 1 is the unique solution within the unit circle |21] €1 of the equation,
2% = 2[PoFy(zn) + P1Fo(zy)] + (1 = Po — P1)Fo(zn) Filzy) = 0

The vector 2y denotes the vector z with z; = z, 1 £i < N. Also notice that o is
a real number. For the case Py + P; = 1 we have, as in the two queue system, that

PGl(z) = P, G°(z), from which the constants G’(0), j = 0,1, can be obtained.

3.3.1 Determination of the Boundary Terms £Gi(2),j=0,1,1<i< N-1
To proceed we need the equivalent to Lemma 1 for the N-node system.

Lemma 3 Let 2; denote the vector z with 2y, 1 <1 < ¢ replaced by z;. Then for
each i, 1 <i < N — 1, and for given [zl < 1, i< I< N, the following equation in

21,

23 ~ 21[PoFy(2;) + PrFo(z)) + (1= Py — P)Fo(2) I (z) = 0 (19)
has ezactly twe solutions zl(';c = szi(z;“,z,-”, vy 2N), k= 1,2, in the unit circle
,le < 1.

The proof of Lemma 3 is very similar to the proof of Lemma 1 in Section 3.2,

and will not be given here.

Now, for 1 <! < N —1 we have immediately the following corollary:
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Corollary 1 Let z{l‘}c, k = 1,2, denote the two solutions of (19) with i replaced by

I. We assume that z{l)l # 2{1)2 and Py + Py # 1. Then, we have for k = 1,2
N .
Sz — 2 DFo(z)(Py = (1= Po— Pu)ay  Fi(2))6G%(2)

i=l!

+ PoFi(21)6:G'(2)]

=i, = 0 (20)
This is true since G%(z;), 1 <1 < N, is analytic in the polydisk |zl <1, 1<i<N.
Then in this polydisk whenever the denominator of G°(z;) vanishes, the numerator
must also vanish. Since the denominator of G%(z;) vanishes at zﬂ, k = 1,2, then
(20) follows from (4). Hence, in (20) we have two equations I;rom which the boundary
functions £G¥(z), j = 0,1, can be expressed in terms of all the boundary functions
&Gi(2), =0,1, 1+1<i< N,

Since G7(0), j = 0,1 has already been obtained in (18), then by backward
recursive substitutions of §G%(z), j = 0,1, I = N -1,N - 2,...,1, in (20) we
obtain £Gi(z), 7 = 0,1, i = N —-1,N —2,...,1, in this order. Thus all the
required boundary terms have been obtained, and the joint generating functions
Gi(z), j = 0,1, have been uniquely determined.

For the case P+ Py = 1, we have from (4) that PyGY(2) = PAG°(z), from which
it follows that,

PGl (z) = PtiG(2), 1<isN

This case and the case where zg{)l = 251)2 for some 1 < 1 < N — 1, are similar to

the equivalent cases in the two-queue system and are a straight{forward extensions

of them.

4 NUMERICAL RESULTS

In this section, we use a simple example that provides some insight into the behavior
of a priority queueing system with Markov modulated arrival processes. The exam-
ple network consists of a two queue system. The joint generating functions of the
arrival processes to the queues of the system, given the modulated Markov chain is

in some state j, j = 0,1, is given by:
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Fi(z1,22) = ofp2f + oz + oz + odzyzy + 1 — o, —al —a)—of

i.e., during each slot, given the AMMC is in state J, two packets arrive to queue
1 with probability a{Q. With probability af,i = 1,2, a packet arrives to queue i.
With probability o a packet arrives to both queues 1 and 2 and, with probability
1~ a{z - a{ - a% — o’ no packet arrives to the system. The steady-state condition
is mo[af + o + 2(af; + %)) + mi[a} + ad + 2(al, + )] < 1. Let Tb,i = 1,2, denote
the average time delay at queue i. and let 7' denote the average time delay in the
system. For af; = o}, = a} = a} = 0.1,6° = o! = 0.05, Py = 0.9, P, = 0.15 the
quantities 71, T, and T are plotted in Fig. 1 as a function of af for of = 0.1, and in
Fig. 2 as a function of o for af = 0.1. It can be seen from Fig. 1 that the average

time delays 73, T, and T increases as af increases, except that for small values of a9,

Ty and T decreases as af increases. Similar behavior is observed in Fig. 2 except

that T} is the same for all values of a3 because queue 1 isn’t affected by queue 2.

The effect of the transition rate between the states of the MMC on the average
time delay in the system is demonstrated in Fig. 3, where the average time delay
T is plotted as a function of Py = Py = P for al = 03,0, = 04,0y = o = o} =
o3 = 0.1,al, = @' = 0.05. From Fig. 3 it can be seen that the average time delay T
is a monotonically decreééing function of P, and for P = 1 this delay is minimized.
Note that, in the last example, the average arrival rate to the system, given the
MMC is in state 0 (1.4), is significantly larger than the average arrival rate to the
system, given the MMC is in state 1 (0.4). Hence, the effect of the transition rate
on the average delay in the system is obviously seen in Fig. 3. Intuitively, by fast
transitions between the two states of the MMC, in our example, we avoid the built
of very long queues in the nodes of the system. Next, we demonstrate the effect of
the transition rate between the states of the MMC on the average time delay in the
system T for several differences of the loads in the two states of the MMC. In Fig.
4, the average time delay in the system, T, is plotted as a function of Py = Py = P
foral = al = a® = o = 0.01,ay, = 0.4,a9 = aj = 0.1 and for various values
of ai,. It can be seen from Fig. 4 that the decreasing rate of T' as a function of
P, decreases as o, increases, i.e., as the difference between the arrival rates to the

system in states 0 and 1 of the MMC decreases.
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Appendix A

Proof of Theorem 1.

N LW

Consider the evolution equation (1) and let Gi(z) = E{]:-L_1 ;

j=0,1. Then,

%,(z) = E {ﬁ A 00 4 1)}

=1
N
= Pr{s(t)=0}-E {H PR (s(t) = 0)}
i=1
N .
+ Pr{s(t)=1}-E {Hzf-‘““)ﬂ(t + Di(s(t) = 1)}
=1

N

= PyFo(z)Pr{s(t) = 0}E { 1=

t=1

+ P()F](Z)PT{S = 1}E{H

Li)=-U L) 12 1-U(Lm ()]

353

o},

(21)

I(S(t) = 0)}

i(O=UL) [T2, 1-U(Lm(1) )( (1) = 1)}

where in (21) we used (1) and the fact that the state of the MMC at time ¢+ 1 and

the vector of arrival processes {A,-(t)}fil, given that the MM Cis in state j at time

t, both are independent of the queue lengths. Now, for 0 < k < N let the event
that L;(t) = 0 for 1 < ¢ < k and L41(t) > 0 be denoted by Q(t). Then from (21)

we obtain

N
Gin(z) = PiFo(2) ) Pris(t) = 0,2u(1)}

k=0

X

N 0 ) =1
5 {HziL'“) ULi) [T, 1~U(Lm(®)]

1=1

s(t) =0, Qk(t)}

N
+ PoFi(2) ) Pr{s(t) = 1,Q(1)}
k=0

s(t) = 1,9,@)}

X

N . _ X t1 -
£ {HZ.-L'“) UL [T, =U (L ()]

t=1

(22)
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k=0 i=k41

N N
= ?IFO(_Z_) Z Z;_:IP'T{s(t) =0, Qk(t)}E { H ziL&(t)

s(t) = U,Qk(t)}

N N
+ POFI(E)Z‘k-i-lPr{S(t) =1 Qk(t)}E{ H Z;-Li(t)

k=0 t=xk4-1

s(t) =1, Qk(t)}

where in (22) we used the definitions of the random variables U;(L;(1)),1 < i < N,

and the definition 2;,1“ = 1. Now using the definition of G?(z) we have

N-1
Piko(z) 3 =il [ t(2) by mimmnym0 — G2 - =---=2k+1—°J

=0

it

G?+1 z)

Eed

N-1
+ RRG) X s [HE Y e TRy

Z1=zpImee=2p gy =0]

-+

?IFO(E)G?(E) lzl =2y =z =0 + POF] (_Z_)th(g) I,z’:z;_—_--»_—zN:O (23)

Letting ¢ — oo in (23) and using the definitions in (2) and (3), we have
G2) = ' [PiFo(2)GO(2) + PoFy(2)G(2)]

N
+ X (55 = 5P Ro(2)6G0(2) + PoFy (2)6:G(2)]
k=1

In a similar way we may obtain G! (2),

i

G'(2) 1 [PFo(2)G°(2) + PoFi(2)G(2)]

N
DGty = T DIP R (2)66%2) + PoFi(2)6:G(2)]

k=1

+

Therefore, rearranging the above two equations, Theorem 1 follows.

Appendix B

Proof of Lemma 2

Rearranging (16) we obtain the following equation in z:

(2 had ?oFl(z,z))(z - .p]Fo(Z,Z)) - POP1F0(Z, Z)FI(Z,JJ) =0 (24)

To prove Lemma 2 we apply Rouche’s theorem [3].
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Rouche’s Theroem: Given two functions f(z) and g(2) analytic in a region R,
consider a closed contour C in R; if on C we have f(z) # 0 and | f(2)| > |g(2)|, then
f(z) and f(2) + g(z) have the same number of zeros within C.

To apply this theorem we identify

f(2)
9(z)

(z — PoFy(2,2))(z — P1Fo(z,2))
—PoPlF()(Z, z)Fl(z, Z)

The region R is the disk of radius 1+ € (i.e. |2| < 1+ ¢) for some € > 0. If e is
small enough, f(z) and g(z) are both analytic in R since they are analytic in z <1
(by definition). Also, because ¢ is strictly positive we can find some é such that
€ > § > 0 so that |z| = 1 +§ is an appropriate contour for Rouche’s theorem. If € is

small enough, then on this contour, |z| = 1+ §, we have for j = 0,1,

Z Z aj(il,iz)z(ir!-h) < Z Z aj(il,i2)|z}(i1+i2)

t.] =0i2=0 i]:O t'2=0

[ee] o0 i ,
SEPIDIICRACE

i1 =01i,=0

|Fj(2,2)]

i i‘aj(imz)(l + (i1 + i2)6 + 0(6))

l.l =0 1'2 =0

14 (ri +3)6 + 0(6) (25)

where HI(T)I+ 0(6)/6 = 0. Using (25) we have

[f(2)) |z — PoFi(z, 2){lz — P1Fo(2,2)]

(21 = Pol Fi(2, 2)])(|2l = Pl Fo(z, 2)]) (26)

v

For P; > 0, j = 0,1, we can choose ¢ > § > 0 such that
Po > [Po(ri +73) ~ 1J6+0(8) Py > [Py(r] +12) = 16 + 0(8)
which implies that for |z} = 1+ 6,

PRzl <lel ,  i=0,1. (27)
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Using (25)-(27) we have,

V@ 2 (146=Po(1 4 (r} + rh)s + 0N+ 6~ Pr(1+ () + r9)8 + 0(6)))
PoPy+ (Po+ Py = PoPi(r] +r}) — PPy (rd + 12))6 + 0(6) ,

1]

lg(2)| FoPy[Fo(z, 2)||Fi(z,2)| < PPy + PoPy(r + 3 + 71 + r1)6 + 0(6) |

I

Using the steady-state condition r; 4 r, < 1 (or equivalently Py(r{ + Q) + Py(r} +
r3) < Py + P;) we have from the above two equations that, | f(z)| > |g(z)| implying
that f(z) and f(z) + g(z) have the same number of roots within |z} = 1+ 6. Now
applying Rouche’s theorem to = — FjFl_j(z,z) =0, j = 0,1, on the contour |z] =
146, it follows from (27) that f(z2) has exactly two roots within |z} = 14 6. Let

6 — 0% then Lemma 2 is proved,
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