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ltandom access algorithms to a common channel with maultiple reception capability by receivers and an n-ary
feedback channel are presented. The algorithms belong to the class of splitting algorithms. It is shown that
the throughput of these algorithms is 1.5-3% higher than the throughput of the best known algorithm with
ternary feedback channel.

1. Introductién and Channel Model

The problem of sharing a common channel by a number of users was extensively addressed in the liter-
ature (see {1,2] and references therein). Various access algorithms to the channel were presented and their
performance was analyzed. Most of them assumed that when two or more users transmit simultaneously, a
collision occurs, and retransmission of colliding packets is needed.

In [3] algorithms with multiple reception capability were presented. They utilize the fact that there are
situations where simultaneous transmissions of at most n — 1 packets is possible by the use of coding to
tesolve collisions at the recciver. The algorithms in [3] assumed a ternary feedback channel where at the
end of each transmission slot in the direct channel all the users are notified whether it was a successful
transmission, a collision or an idle slot.

In this paper, we assume an n-ary feedback channel which, in the case of a successful slot, indicate the
exact number of succeeding packets. It is shown that algorithms that utilize this fact can gain 1.5-3% in
throughput when compared to [3].

Consider the following model for multiaccess communication: An infinite number of independent users
are transmitting packets of equal length T' over a slotted-time broadcast channel with length of slots equals
to T'. The number of new messages generated collectively by all users in each slot is a Poisson flow with
intensity A packets per slot. The numbers of new packets generated in different slots are independent,.

In the event of less than n packets being transmitted simultaneously in the same slol, the receiver
decodes all of them successfully and all the users are informed via a feedback channel on the number of
packets that were transmitted. If n or more packets are simultaneously transmitted in the slot, a collision
occurs and all colliding packets must be retransmitted. In the case of a collision, the assumption is that

the receiver cannot decode even the number of colliding packets, and therefore the feedback just indicates
that a collision occurred.

2. Description of the Algorithun

1. Consider two tinie axes. The first, called the arrival axis, shows the Poisson arrival instants
of the packets. The second, called the transmission axis, is segmented into consecutive intervals called
collision resolution intervals (CRI). In the first slot of the ith CRI, the algorithm enables transmission of
all packets that arrive in a fix-length interval in the arrival axis. If no collision occurs in this slot, the ith
CRI terminates and a new CRI starts immediately. If a collision occurs, the algorithin initiates a collision
resolution process (described below) whose termination defines the termination of the ith CRI.

2. The Collision Resolution Process (CIRP). Let a be the collision interval in the arrival axis to
be resolved (see Fig. 1). Since a is a collision interval, it is known to contain at least n packets. First,
the algorithmn enables the packets that arrived at the left part of a of length aa. If a collision occurs, the
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Fig. 1. Diagram of the algorithm. Here, S; is a simultancous transmission of i packets, and L is an internal
variable of the algorithin.

CRP starts again for the interval aa (i.e., enables all packets in an interval of length a’a), and the right
part of a is disabled and is returned to the arrival axis. If no packet is transmitted, the CRP starts for the
interval (1 — a)a (i-c., enables all packets in an interval of length a1 — a)a), and the left part is considered
as resolved. If i < n packets succeed, then the algorithm enables all packets in the second parl of the
interval. But since in this step the algorithm is re-initiated for an interval that (statistically) contains less
packets than the optimal value, an interval l; from the arrival axis, whose length depends on the value of ¢,
is added to the enabled interval. When all packets succeed, the CRP terminates and a new CRI starts. Ifa
collision occurs in the enabled interval of length (1 — a)a+ i, then only the packets in the (1 — a)a interval
are enabled. A collision of this interval starts a CRP of basic length (1 — a)a and a success leads to the
transmission of all the packets that were previously in the interval of length I;. A success here terminates

the CRI, while a collision starts a new CRP for the interval of length I;. The algorithm is graphically
suminarized in Fig. 1.

3. Analysis of the Algorithm. Let a 2 \T be the interval length. Denote by T (a) the average
number of slots needed to complete a CRI of length a, and let N*(a) be the average number of packets
successfully transmitted during this CRI. Let T(a) be the average number of slots in a CRP for an interval
of length a, and N(a) the average number of packets successfully transmitted in that CRP. Also, assuimne
that W, is the random number of arrivals in an interval of length a. :
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1+ T(a)~ i Pr {W, =i} T(a),

n-1

N*(a) = N(a)= ) Pr{W,=i}(N(a)-i).
i=0
" We derive functional equations for T(a) and N(a) based on the CRI depicted in Fig. 1.

T(a) =1 + Pr{Wsq>n|W, >n}- T(an)

+ Pr{W,, =0|W, >n} - T((1 - a)a)

n—-1

+ Y Pr{Waa = i|W, > n}-
i=1
[ Pr {Whcay + W) <n—1|Wy>n, W,, =1}

+ Pr{vV(l—-a)u 2n|Wy > n, Wy, = i} - (2+ (- a)a))

+ Pr{Wi_a)a < n, W, <1, (W(l_a)a + W) > n|W, >0, W,, = i} -3

+ Pr{Wu_aye <n, Wi, 20, |Wo > 0, Wye =i} - (34 (L)),

N(a) = Pr{Waoa>n|W,>n}- N(aa)

+ Pr{Wa, =0[W, >n} - N((1- ala) |

n—-1
+ > Pr{Waa = i|W, > n}-
i=1 1
i+ D Pr{(Waaya+ Wi) =5lWa > n, Wag=i}-j
j=n—i
+ Pr {W(l_a)a > n|We 2> n, Wae =i} - N((1-a)a)
2(n-1)
+ Z Pr {(W(l—-u)a + VVI.) =7 W(l—(x)a <n, W, < TLIW,, >n, Wae = 1} ]
j:n
n-1

+ Z Pr {W(l—a)a = j) I/Vl" > "IWG 2n, Waa = 1} (.7 1 N(l'))]

j=n—i

Conditional probabilities Pr{.} from (2.3) and (2.4) are easy derived from the Poisson distribution. For

example,

Pr{Waa > n|W, > n} = F(n,aa)/F(n, a),

where
A i—1 '
F(i,a) =1- Zp(j,a),
=0
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p(j,a) = 7%’ /j. (2.7)
The throughput R of the algorithm is defined as

R = N*(a)/T"(a)- (2.8)

The functional equations (2.3)-(2.4) are solved by discretization of the interval @ into equal length
segments 7. This yields a set of linear equations with a finite number of variables T(ir)and N(it) (0 <i < T,
I taken big enough), where T'(a) (N(a)) is replaced with the closest T(ir) (N(ir)). By making the
discretization finer (i.e., taking smaller 1), the discretization error can be reduced below any desired value.
The optimization procedure for a,a, and I; yields the optimal values shown in Table 1.

Table 1.
Throu-
n gll[)llt a 84 ll lz l3 14 15 16 17 18 lg 110
21 0.4743 | 1.19 | 0.500 | 0.12
3] 0.9758 | 1.81 | 0.5644 | 0.0 .625
4| 15237 1 2.49 | 0.572 {1 0.0 | .259 | 1.04
5| 2.1103 | 3.19 | 0.587 | 0.0 .032 | 0.85 | 1.47
61 27224 1 3.90 | 0.603 | 0.0 [0.0 | 0.59]1.38] 1.925
7| 3.3542 | 4.62 | 0.613 | 0.0 0.0 |0.43] 1181190 | 2.39
8 " 4.0027 | 53510627 | 0.0 {0.0 [033]1.03]1.78 2.44 | 2.88
9 | 4.6656 | 6.08 | 0.640 | 0.0 | 0.0 0.27 | 0.92 | 1.65 2.38 1299 3.39
10 | 5.3414 | 6.82 | 0.653 | 0.0 00 0221084154 |2.28]298]3.55]3.92
11 | 6.0290 | 7.57 | 0.666 | 0.0 0.0 |0.19]0.78 | 1.46 2.19 | 2.92 | 3.60 | 4.145 4.47J

3. Improved Algorithms

1. From Table 1 it is clear that there are situations where the algorithm presenied in Section 2 is not
efficient and can be easily improved.

For example, consider the case where n = 4 and in the first slot of the CRI a collision occurs. According
to the algorithin the packets arriving in interval aa are enabled for transmission in the second slot, and
assume that one (i = 1) packet is transmitted. Next (in the third slot), the packets in (1 — a)a + 1y are
enabled, and a collision is assumed to occur again. Following the algorithm, the packets in the interval
(1 — &)a should be transmitied in the next (fourth) slot. Since Iy =0, a collision will definitely occur and
therefore the next slot is a wasted one.

As a second example of the inefliciency of the algorithm, suppose that in the second slot of the above-
mentioned case of CRI, two packets (instead of one considered earlier) succeed, and consider the following
situation where a collision occurs in the next (third) slot, when the packets in the interval of length
(1 — @)a + I were enabled for transmission. Since ly is almost zero, there is a high probability that by

omitting it, a collision still occurs in the next slot when the packets in the interval of length (1 — o)a are
enabled for transmission.

These examples show that it is possible to propose the following improvement to the algorithm.

Let b(n) denote the maximal number of succeeding packets in interval aa, for which it is not worthwhile
to add a “fresh water” interval of length ly(,) to the one of length (1 — a)a. In the event that b(n) or less
packets succeed, no “fresh water” will be added and only packets from the interval of length (1 — a)a will
be enabled. If a success occurs the CRI terminates, and if a collision occurs a new CRP starts with basic
length (1 — a)a. L

When the number of succeeding packets in the first interval of the CRP is more then b(n), the algo-

rithm proceeds as that from Section 2. The algorithm with this improvement is called simplified improved
algorithm.

73



BEGIN

S.E
L
(m

cnp L
L \{/ E
laad-¥4

C
Y

S.
-~ Ay
m’g: 77 ((I oc)L) W

lurg maz =2 Lurg maz =/

(1~} L+ I ] L (/—u)z—]—(i»{ L_(’~d)m-
c

_{i-—(/-oc ) (W*L[/— «)
Si

{ (1) ~—1; ]

m
Q ~ definition of m that gives max U, " l/

[

END

o
—

Fig. 2. Diagram of the improved algorithm. Here, argmax=1 means that the incquality U,.“)((l -a)ll) >

U,.(z)((l — a)L) holds and argmax=2 means that the reverse inequality is true. Other blocks are the same
as in Fiq. 1.

A further improvement to the algorithm can be obtained if the functions Ui(l)(a) and U;(z)(a) ofiand a
are introduced instead of the function b(n). The algorithm enables the interval (I-a)Lif U,-(l) ((1=a)L) >

U'.(Z) ((1 = a)L), and the interval (1 — )L with additional “fresh water” interval otherwise. The functions
should be chosen so that the throughput of the algorithm is maximized.

Instead of using the two functions U-('")(a) (m = 1,2), we can equivalently work with one indicator
function g¢(3,a) that equals to 1 when UM > U(2) and 0 otherwise. However, we decide to introduce the
two functions U,-(m)(a) because they are used in the equations below (see (3.10) - (3.13) ).

To see intuitively that using the two functions U‘(l)(a) and U‘(z)(a) can indeed increase the algorithm
thioughput, recall (see [4]) that in the part-and-try algorithm, addition of “fresh water” yields a throughput
increase only if the length of the interval (to which “fresh water” is added) is small enough. But in the part-
and-try algorithm, a fixed “fresh water” interval was added, regardless of the length of the splitt interval,
thus causing a decrease in the throughput.

Finally, another improvement that we make is to use the function afa) instead of the constant a and
to use the functions I;(a) instead of I;.

The algorithm with these improvements is called improved algorithm.

The improved algorithm is described in Fig. 2.

2. Now we give the equations for T'(a) and N (a) for the improved algorithm, replacing the conditional
probabilities for W; by their expressions in terms of the Poisson functions (2.6) and (2.7). We starl with
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the equation for T'(a),

T(a) = 1+ T(aa)F(n, aa)/F(n,a) + T ((1 - a)a) p(0, ca)F (n, (1 - a)a) /F(n,a)
n-—1
+ 2 T; (1 — a)a) p(3, aa)F (n — i,(1 — @)a) /F(n,a), (3.1)

where Tj(a) as a function of a and i is given by
Ti(a) = 1+ T(a)F(n,a)/F (n —i,a) (3.2)

when “fresh water” is added, and
Ti(a) = 14 (1+T(a)) F(n,a)/F(n—1i,a)

n-1

+ Y 1+ )G (n =5 /F (n i) (3.3)

j=n—~t

otherwise.
The equation for N(a) takes the following form:

N(a) = N(aa)F(n, aa)/F(n,a) + N ((1 - a)a) p(0, aa)F (n, (1 - a)a) /F(n,a)

—

n-—

+ (i 4+ N; (1 - a)a)) p(i, aa) F (n—1i,(1—a)a) /F(n,a) , (3.4)
i=1

where N;(a) as a function of a and ¢ is given by

n—1
Ni(a) = N(a)F(n,a)/F (n —i,a)+ Y jp(j,a)/F (n—i,a) (3.5)
j=n—i
when “fresh water” is added, and
n—1 n-1

Ni{a) = N(@)F(na)/F(n—ia)+ ) S G+ k(G alp(k, )/ F (n - j,a)

j=n—1i k=n—itj

n—1

+ Y G+ M) p(a)F (n-5,k) /F((n-1),.9) (3.6)

j=n-—i

otherwise.

The throughput of the improved algorithm is given as before by (2.8), where T"(a) and N*(a) are given
by (2.1) and (2.2).

Maximization of the throughput over parameters a, a(a) and I;(a) is carried out in the following way.
We define the function V*(a) by

* P » I
V*(a) = (N*(a) — RT*(a)) F(n, a). (3.7
As in [5], it is easy to see that the maximum throughput R is the solution to the equation

max V*(a) =0, (3.8)

a
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and V*(a) can be expressed by the equation

n—-1

V*(a) = Z ip(i,a) — R + V(a),

=0

where V(a) is a solution to the functional equation

V(e) = max[V(aa)F(n,aa)+V ((1- a)a) p(0, aa) F (n, (1 — a)a)

a(a)

+ Y ip(i,0a)F (n — i, (1 - a)a) — RF(n,a)],

i=1

where

Ui(a) = max (Ui(l)(a), U,-(Z)(a)),

n-1
U'(l)(a) = V(a)+ .Z.]p(J, ) - RF(n—i,a)
n-1
U = max \V(@)+ Y Ui()ntie)
1 Z (]_R) (]! )F(n .7)1)
j=n-i
n-1 n-1

+ Z Z (7 +m)p(j,a)p(m, k) = RF (n - i,q)

J=n—i m=n—itj

The parameters a,a(a) and l;(a)
(3.8), (3.10), and (3.13) respectively.

Equation (3.10) can be solved by iterations as in [5].

3. The simplified improved algorithm is described by Fig. 3.

The equations for T(a) and N(a) take the following form:

T(a)=1 + Pr{Waa > n|W, > n} - T(aa)
+ Pr{W,, = 0|W, > n} - T((1- a)a)

b(n)

+ Z Pr{Waq = i|W, > n} [1+ Pr {Wi—a)a 2 1|Waa = i, W, > n}T((1 - a)a)]

i=1
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(3.10)

(3.11)

(3.12)

(3.13)

that give maximum R are the same as those that yield maximum in
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Fig. 3. Diagram of the simplified improved algorithm. Here, S5; > b(n) means that the number of
successfully transmitted packets in a slot is greater than b(n). Inequality S; < b(n) has the same meaning.
Other blocks are the same as in Fiq. 1.
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n—1

+ > Pr{W,, = i|W, > n}- (3.14)
i=b(n)+1
() Pr {(W(l-—a)a + I/Vh) S n-— 1|Wa 2 n, Waa = 1,}

+

Pr{Wit-aye 2 nlWa > 1, Waq =i} - (24T ((1 - a)a))

-+

Pr {W(l—a)a <n, W, <n, (W(1—~a)a + 1/Vl.) > nIWa 2n,Wae = 2} -3

+

Pr{Wu_aya <, Wi, > n,|Wy >0, Woa =i} - (3+ T,

= Pr{Waa >n|W, > n} - N(aa)
+ Pr{Waa =0|W, > n} - N((1-a)a)

b(n) n-1
+ ) Pr{Wae =i|W, > n}fi + > Pr{Wiaye = §|We > 1, Wap =i} - j
i=1 J=n~i

+Pr{W1_aya 2 n|Wo > n, Wo, = i} - N ((1 - a)a)]

n-1

+ 3 Pr{Woq = i|W, > n}- ’ (3.15)
i=b(n)+41

n-1
i+ Y Pr{(Wacaya+ Wi) =5IWa 20, Wau=i) - j
j=n—i
+ Pr {W(l—a)a 2 TLII’VG >n, Wye = 1} - N ((l - a)a)
2(n-1)
+ Z Pr {(W(l—a)a + VVI,) = j) W(l~a)a <n, "VI. < nIWa >n, Waa = 1'} : J

j=n

(n-1)
+ Z Pr {I/V(l-a)u = j) I/VI.' > nIWa >n, Waa = 1‘} (] + N(la))]

j=n-—i

The equations for T*(a) and N*(a) given by (2.1) and (2.2) and the throughput R given by (2.8) remain
as before. Optimization over a,a,l;, and b(n) yields the results in Table 2, showing improvements of up to
1.5% in the throughput.

Table 2.
Throu-
n ghput a a b(ﬂ.) 13 13 14 15 IG 17 lg lg 11()
2| 0.4867 | 1,27 [ 0.487 1
3] 0.9903 | 1.87 | 0.515 1 0.59
4| 1.5391 | 2.55 | 0.535 2 | — 1.007
5| 2.1212 | 3.22 | 0.565 2 — 0.81 1.445
6 | 2.7282 | 3.92 | 0.588 2 — 057 | 1.36 | 1.89
7| 3.3569 | 4.63 | 0.606 2 — 0.42 1.17 | 1.89 | 2.37
8 | 4.0038 | 5.35 | 0.623 2 — 0.33 1.02 | 1.77 | 2.43 | 2.86
9| 4.6660 | 6.08 | 0.638 3 — — 0.91 | 1.65 ] 2.37 | 2.98 | 3.38
10 } 5.3416 | 6.82 | 0.653 3 — - 0.84 | 1.54 | 2.28 | 2.98 | 3.55 | 3.92
11| 6.0290 | 7.57 | 0.666 3 — — 0.78 | 1.46 1 2.19 293 3.60 | 4.14 4.47 |
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Fig. 4. Ratio of troughputs for the simplified improved algorithm and the best known algorithm for ternary
feedback and n-conflict.

4. Discussion and Summary

An algorithm based on an n-ary feedback is proposed. In Fig. 4. the ratio between the simplified
improved algorithm and the best results known for a ternary feedback {3], which in the case of a success
does not provide information on the number of successful packets, is plotied. The improvement in the
throughput grows with n up to 3% for n = 11. However, the performance of the algorithm is still below
the upper limit for a ternary feedback {3].

It is an open question to find how large, is the throughput of the optimal algorithm for a channel with
n-ary feedback in comparison with the throughput of the optimal algorithm for a channel with ternary
feedback.

So, ‘using (3.1)-(3.6) and the optimization procedure (3.7)-(3.13), it is interesting to find numerical
results for the maximum throughput R for the improved algorithm.
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