IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 34, NO. 1, JANUARY 1988

101

Conflict Multiplicity Estimation and
Batch Resolution Algorithms

ISRAEL CIDON, MEMBER, IEEE, AND MOSHE SIDI, SENIOR MEMBER, IEEE

Abstract —The standard model of a multiple access channel with ternary
feedback is considered. When packets of a batch of & nodes initially
collide, it is assumed that no a priori statistical information about k is
available. A new algorithm is presented and analyzed that enables the
nodes to compute a statistical estimate of k. Combining the estimation
procedure with tree algorithms leads to batch resolution algorithms that
resolve conflicts more efficiently than any other reported to date. Both
complete resolution and partial resolution algorithms are presented.

I. INTRODUCTION

E CONSIDER the following standard model of a

multiple access channel. A large number of geo-
graphically dispersed nodes communicate through a com-
mon channel. Any node can generate and transmit data on
the channel. Transmissions start at integer multiples of the
unit of time and last one unit of time, also called a “slot.”
When k nodes transmit simultaneously, the success of the
transmission depends on k:

if k=0, then no transmissions were attempted;
if k=1, then the transmission succeeds;

e if k> 2, there is a conflict, meaning that the trans-
missions interfere destructively so that none suc-
ceeds.

Prior to the next slot, all nodes receive the feedback
0,1,2+, indicating whether the multiplicity of the conflict
is k=0, k=1, or k > 2, respectively. This is known as the
ternary feedback model.

Algorithms for successful transmissions of packets under
this model have been the subject of numerous papers
([1}-[10] and many others). The standard assumption used
in these studies is that the total arrival process of new
packets into the system forms a stationary Poisson process.
Under this assumption, conflict resolution algorithms that
yield a stable system for arrival rates under 0.462 and
0.487 packets per slot were suggested in [4] and [1], [2], [5],
respectively.

In this paper we take another point of view which does
not assume knowledge of the statistical characteristics of

Manuscript received August 25, 1986; revised March 15, 1987. This
work was supported in part by the Bat-Sheva de Rothshild fund. This
paper was presented in part at INFOCOM 86, Miami, FL, April 1986.

1. Cidon is with the Thomas J. Watson Research Center, P.O. Box 218,
Yorktown Heights, NY 10598.

M. Sidi was with the Thomas J. Watson Research Center, Yorktown
Heights, NY, on leave from the Electrical Engineering Department,
Technion, Israel Institute of Technology, Haifa 32000, Israel.

IEEE Log Number 8719313.

the generation process of new packets. Specifically, when k
is the number of nodes whose packets initially collide, we
assume that no a priori statistical information about k is
available. The set of k& nodes whose packets initially
collide is called a batch. We are interested in developing
algorithms that efficiently resolve conflicts among the
nodes of the batch.

A. Batch Resolution Algorithms and Their Efficiency

A Dbatch resolution algorithm is a distributed algorithm
performed by the nodes of the batch to successfully trans-
mit (resolve) the packets of the initial conflict (batch).
Batch resolution algorithms should be independent of k as
no a priori statistical knowledge on the actual batch size k
is known. Two types of batch resolution algorithms are
distinguishable:

1) complete resolution—all packets of the batch are
successfully transmitted,

2) partial resolution—only a fraction of the packets of
the batch are successfully transmitted.

The batch resolution algorithm is executed only once. It
starts with an initial conflict of k> 2 nodes (the batch)
and ends at some globally known point in time. The time
elapsed from the point when the algorithm starts until the
point it ends is called the batch resolution interval (BRI),
which is measured in slots. At the end of the BRI each
node in the network is aware that the BRI ended, and each
node of the batch knows whether its packet was success-
fully transmitted during this BRI or not.

An efficient batch resolution algorithm should resolve a
large number of packets from the batch using a short BRI
for each conflict multiplicity k. To compare different
batch resolution algorithms, it is convenient to use a single
asymptotic measure termed efficiency. Let L, be the
average length of a BRI given that it starts with an
initial conflict of multiplicity k, and let M, be the
average number of packets successfully transmitted dur-
ing this BRI (for complete resolution M, =k). The
efficiency of a batch resolution algorithm is defined as
E =liminf, _, _{ M, /L,}. We wish to devise batch resolu-
tion algorithms that are highly efficient.

Efficiency, as defined earlier, has a crucial significance
when nodes are accessing the shared channel in the obvi-
ous manner described in [4]. According to the obvious
access algorithm, batch resolution algorithms are sequen-

0018-9448 /88 /0100-0101$01.00 ©1988 IEEE

102

tially performed. After a previous BRI is ended, a new
batch, consisting of all packets that arrived to the system
during that BRI and all packets of the previous batch that
have not been successfully transmitted, is resolved. In
Section VI we show that, under weak conditions on the
arrival process, when the average arrival rate of new packets
is less than the efficiency, the system is stable and, there-
fore, the average rate at which packets are successfully
transmitted is equal to the average arrival rate.

Nonobvious access algorithms have been presented in
[1]-[4]. These algorithms can behave poorly when applied
to arrival streams with different statistics than those for
which they were tailored. This has been demonstrated in
[8] for a bursty arrival process. The reason is that the
parameters of the nonobvious access algorithms [1]-[4] are
finely tuned to the Poisson arrival process. (We note here
that the dynamic tree algorithm of [3] is also included in
this category.)

The first batch resolution algorithm (though described
and analyzed with the Poisson assumption on the arrival
process) was presented in [3]; it has efficiency of 0.346.
This algorithm was later modified in [4] to yield an ef-
ficiency of 0.375, and further optimized in [7] to yield an
efficiency of 0.381. A better batch resolution algorithm
with an approximated efficiency of 0.430 has been intro-
duced by Greenberg and Ladner [8]. In a later paper [10],
independently of our work, the algorithm of [8] has been
improved to obtain an efficiency as high as 0.468. All the
algorithms are complete resolution algorithms.

B. Objectives and Outline of Paper

Our main objective in this paper is to present two new
batch resolution algorithms. The first, presented in Section
IV, is a complete resolution algorithm and has an effi-
ciency as high as 0.468. The second, presented in Section
V, is a partial resolution algorithm (that can be trans-
formed into a complete resolution algorithm with the same
efficiency, as explained in Section V-C) and has an ef-
ficiency as high as 0.487.

Our algorithms are inspired by the hybrid algorithm first
introduced in [8]. They consist of two basic phases, an
estimation phase devoted to estimating the conflict multi-
plicity of the batch, and a resolution phase when the
conflict is resolved. The idea of estimating the conflict
multiplicity has been introduced by Greenberg and Ladner
in [8]. They suggested a rapid distributed estimation proce-
dure which enables calculation of an estimate k* to k and
uses O(log, (k)) slots on the average to do that when the
batch is of size k. This estimate yielded an algorithm with
efficiency of about 0.430. To increase the efficiency, the
estimation procedure of [8] has been slowed down [10] to
O(log , (k)) slots on the average where a is a parameter of
the algorithm (1< a <2), and it has been shown in [10]
that when a — 1, the efficiency of the resulting algorithm
approaches 0.468.- Asymptotic analysis of the first two
moments of the estimate k* has been presented in [10].

An important contribution in this paper is the introduc-
tion in Section II of a simpler estimation procedure com-

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 34, NO. 1, JANUARY 1988

pletely different from that in [8], [10]. For large k it is
slower than the earlier procedure and uses O(k) slots on
the average. Yet, even with our relatively slow estimation
procedure, only a negligible fraction of the BRI is devoted
to this phase. The simplicity of our estimation procedure
allows us to provide a complete characterization of the
probability distribution of k* (rather than the asymptotic
analysis of its moments). Another advantage of our esti-
mate is that it is tighter in the sense that its variance is of
O(k) (rather than O(k?) in [8], [10]), which enables us to
use the law of large numbers to prove its normalized
asymptotic accuracy and to increase the efficiency of the
overall resolution algorithm. Further comparison between
our estimation scheme and the estimation scheme of [8],
[10] is provided in Section VII.

The motivation for estimating the conflict multiplicity is
that the estimate k* can be utilized to help in efficient
resolution of the conflict between the nodes of the batch
during the resolution phase. Algorithms similar to those
presented in [1], [4] are applied, and since the estimate k*
is'quite accurate, it is possible to make this phase highly
efficient and thereby to compensate for the relatively slow
estimation phase. In addition, we address the issue of
further tuning of our algorithms so that they will also
perform well when k is not too large (see Section IV-C).

The most important property of the algorithms pre-
sented here is their robustness, namely, that their parame-
ters provide a high stability region for many arrival
processes. In Section VI we give some examples of specific
arrival processes and show that the efficiency of an al-
gorithm determines the stability region of the system.

II. BINARY TREE ALGORITHMS—A REVIEW

We start with a brief review of binary tree algorithms for
conflict resolution whose understanding will be helpful
when we will describe our batch resolution algorithms.

A. Basic Binary Tree Algorithm

We first describe the basic binary tree algorithm due to
Capetanakis [3] in a recursive fashion, as was done in [4].
Suppose that k& nodes transmit simultaneously to the chan-
nel. If the resulting feedback indicates that k is 0 or 1,
then there is no conflict (conflict is resolved). Otherwise,
each of the conflicting nodes tosses a (possibly biased)
binary coin, at which point nodes whose coins turned up 0
retransmit to the channel. This can result in a conflict that
these nodes now resolve. Next, nodes whose coins turned
up 1 transmit to the channel. A conflict can result that
these nodes now resolve. An example of a typical binary
tree that describes the evolution of the algorithm is de-
picted in Fig. 1(a). The slot numbers are written under the
circles in which the events appear.

Massey [4] introduced a simple way to implement this
algorithm with only two local counters per node. It has
been shown that an unbiased coin is optimal in this
algorithm that yields efficiency as high as 0.346.

CIDON AND SIDI: BATCH RESOLUTION ALGORITHMS

@
Fig. 1. Binary tree algorithms. (a) Basic. (b) Modified. (c) Clipped.

B. Modified Binary Tree Algorithm

Massey [4] and Tsybakov and Mikhailov [2] found a
simple way to improve the basic algorithm—by avoiding
sure collisions. The modified algorithm is identical to the
basic algorithm except that whenever nodes can infer at
some slot that a conflict must occur in the next slot, they
“skip” that slot by tossing the coin before the conflict
occurs. A typical example for such a situation is when a
slot with a conflict is followed by an empty slot, in which
case it is clear that the next slot will contain a conflict (see
Fig. 1(b)).

Let L, be the average number of slots required to
resolve a conflict among n nodes with the modified binary
tree algorithm. Let b be the probability that a coin tossed
at a node will turn up 0, and let Q,(n) = 7 ba-b)"!
be the probability that i of n nodes will turn up 0. Then it
is not difficult to see that L, can be computed recursively
via [4]:

Ly=L,=1 (1a)

L=1-0o(m)+ X O(m(L+ L), nz2. (1b)

When b= 0.4175 (the best bias as shown in [7]), we see
from (1) that L, =4.4143 and L, = 6.8847. As in [4] it can
be shown that

L,<Cn—1, n>4 (2)

where C,=2.623. We see from (2) that the efficiency of
the modified algorithm with a biased coin (b = 0.4175) is
0.381 [71.

Before proceeding, we should mention that both the
basic and the modified binary tree algorithms are complete
batch resolution algorithms. When they start with a con-
flict of n nodes, all n nodes transmit their packets success-
fully during execution. In the examples of Fig. 1(a) and
(b), we see that n=15.

C. Clipped Binary Tree Algorithm

The clipped binary tree algorithm has been indepen-
dently introduced by several authors [1], [2], [5]. It is
identical to the modified binary tree algorithm except that

103

(b) ©

it is stopped (the tree is clipped) whenever two consecutive
successful transmissions follow a conflict (see Fig. 1(c)).
This algorithm is a partial batch resolution algorithm since
not necessarily all nodes of an initial batch transmit their
packets successfully during its execution. Let LY be the
average number of slots required to perform the clipped
binary tree algorithm given that it starts with an initial
conflict of multiplicity n, and let MC be the average
number of packets successfully transmitted during its ex-
ecution. Let Q,(n) be as defined in the previous subsec-
tion. Then LS and MY are recursively computed via [5]:

L$=L%=1 (3a)
L8 =14 () LS+ Qy(m)(1+ L) + ¥ Q,(n) LS,
i=2

n>2 (3b)
(3c)

ME = Qy(n)ME +0y(n)(1+ ME)+ ¥ 0,(n) ME,
i=2

n>2. (3d)

ME=0; Mf=1

It is also very easy to see that LS < L,.

The clipped binary tree algorithm was originally de-
signed to deal with Poisson arrival process. It is stable for
arrival rates up to 0.4871 when b = 0.5. A slightly modified
version of this algorithm is stable for arrival rates up to
0.4877 [9]. However, its performance as a batch resolution
algorithm is poor. Its efficiency approaches to 0 when the
batch size increases.

III. THE ESTIMATION PROCEDURE

Suppose that an initial conflict of multiplicity k > 2
occurs, and recall that no a priori statistical knowledge
about k is available. We wish to devise a distributed
estimation procedure that generates a random function K*
of k whose value k* gives appropriate indication of the
value of k. Clearly, the procedure should not use too many
slots. The strategy that we adopt is to resolve a small
portion of the batch and to accumulate the number of
successful transmissions resulted. To that end, we let each

104

of the k colliding nodes transmit to the channel with
probability p > 0. Thus the k colliding nodes are parti-
tioned into two sets E and D, where E consists of those
that transmitted and D the rest. Clearly, |E|+|D|=k
where {A] is the cardinality of set A. If the resulting slot is
empty or contains a successful transmission, we conclude
that |E| =0 or |E| =1, respectively. If a conflict occurs, it
is known that |E|> 2, and then the nodes in E use one of
the complete batch resolution algorithms presented in Sec-
tions II-A and II-B to resolve the conflict between the
nodes in E. At the end of this part of the estimation phase
we know the exact value of |E| by accumulating the
number of successful transmissions during the resolution.
This value is called j. Then k* is computed via k*= j/p.

Remarks: 1) Note that during the estimation procedure,
all nodes in E transmit their packets successfully. Conse-
quently, only packets of D should be further resolved.

2) For simplicity and to attain an unbiased estimate, we
let k* =0 when j = 0. In the resolution phase the fact that
k = 2 will be taken into account.

Let J be an integer-valued random variable that ex-
presses the number of nodes in E. Given the batch size %,
J is binomially distributed with parameter p. Therefore,
we have the following.

Lemma 1: We have

D pa=jk)=(Klpa-p, 0 sk

2) E[Jlk]=kp

3) var(J|k) =kp(1— p).

From Lemma 1 and by using Tchebyceff’s inequality we

obtain the following.
Lemma 2: For any ¢ > 0 we have

J p(1-p)
| =
(k P ek

Let K* be a real-valued random variable that expresses
our estimate upon k. The following theorem states the
tightness of our estimate K* of k.

Theorem 1: The following hold:

Zelk) <

1) P(K*=k* k)= (’;)p’(l -p)kd, 0<j<k,
k*=j/p
2) E[K*|k]=k
K* 1-p

ek
The proof follows directly from Lemmas 1 and 2.

3) P 7—1‘2e|k <

As we see from Theorem 1, for sufficiently large batch
size (k — 00), our estimate K* of k is very tight. The next
crucial issue regarding the estimation phase is the average
number of slots required for its completion. This number
depends on the specific batch resolution algorithm that is
used by the estimation procedure. Again, the alternatives
are the basic binary tree algorithm or the modified binary
tree algorithm with unbiased or biased coin.

In this paper we assume that the modified binary tree
algorithm (MBTA) with a biased coin (b = 0.4175) is used.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 34, NO. 1, JANUARY 1988

Let L; be the average number of slots required to complete
the estimation procedure given that |E} = j. Then from (1)
we see that

Lo=L,=1 (4a)
J

Lj=1_Q0(j)+ Z Qi(j)(Li+Lj—i)’ jz2 (4b)
i=0

L,<Ccj+1, j20 (5)

where we recall that C, = 2.623.

Let L°(k) (k>2) be the average number of slots re-
quired to complete the estimation procedure with a batch
of k nodes. Then, we conclude the following from (5) and
Lemma 1.

Theorem 2: The following holds:
Lé(k) < pC k +1.

From Theorem 2 we see that when 0 < p <1, the aver-
age number of slots required to estimate k is quite small
compared to k. It is also easy to realize that on the
average, pk packets are successfully transmitted during
the estimation phase.

IV. A COMPLETE RESOLUTION ALGORITHM
A. The Algorithm

In this section we present a new complete batch resolu-
tion algorithm. We exploit the observation made by
Capetanakis [3] that binary tree algorithms are most effi-
cient for conflicts of small multiplicity and adopt his idea
of a dynamic tree to exploit the improved efficiency. To
further improve the resolution phase, the MBTA of [4] is
implemented.

By combining the estimation and the resolution proce-
dure, we construct a hybrid batch resolution algorithm
that consists of two phases. The first is devoted to estimat-
ing the batch size k according to our estimation procedure
presented in Section III. Recall that at the beginning of
this procedure the k colliding nodes are divided into two
sets E and D, and that the nodes of E transmit their
packets successfully during the estimation procedure. The
second phase of the hybrid batch resolution algorithm is
devoted to transmitting the packets of nodes in D success-
fully. To that end, all nodes in D pick a number in the
range 1,2,- - -, m uniformly and independently at random
as soon as the estimation phase ends. Here m is a global
parameter that is a function of the known number of
nodes in E, ie, m=m(j), and, therefore, can be com-
puted by all nodes. This divides the nodes of D into m
distinct groups which are then individually and sequen-
tially resolved using the MBTA. First, those that picked 1
are transmitted, and the resulting conflict is resolved using
the MBTA. Second, those that picked 2 transmit, and so
forth.

An appropriate choice of the function m(j) to compute
m is important in our hybrid algorithm. Evidently, our
estimate on |D|is k*— j, and we choose to compute m as

CIDON AND SIDI: BATCH RESOLUTION ALGORITHMS

a linear function of the estimate on |D}, i.e.,
m(j) = max {1,[a(k*— j) - B1} = max {1,[vj - BI}

(6)

where y=a(l— p)/p and [-] is the ceiling function. The
parameter « will be specified later so that the resolution
phase will be the most efficient for large k. The parameter
B is significant only when k is not too large, and its effect
will be discussed at the end of this section. Note that m is
an integer-valued random variable whose probability dis-
tribution can be derived from that of j. However, the exact
form of the probability distribution of m does not concern
us here.

B. Analysis

We are now ready to compute the average length of the
resolution phase Lj(k) given a batch size k and given that
|E| = j. It is clearly given by

Li(k) =m(j)l:g::(k B J)(ﬁ)‘

i

(pﬁ)L m(j)=1 (1)

where the L, are computed via (1) and the m(j) via (6).

When LJ(k) is averaged over j, we get L'(k)—the
average number of slots required for the resolution phase
(and, therefore, to resolve all packets of the batch com-
pletely) given k. We prove the following theorem regard-
ing L'(k).

Theorem 3: We have

limsup { L'(k)/k} <C,

k- o0
where C, = (1— p)(C, —0.488) = (1— p)2.135.

Proof (sketch): In the Appendix we give a rigorous
and formal proof of the theorem. Because of the many
Epsilons needed in the rigorous proof, it is quite messy.
Here we will sketch a less rigorous yet more insightful
argument that will present the main idea of the proof very
clearly.

Our point of departure is (7). From Lemmas 1 and 2
we conclude that for large k (k > o0), j=kp and k*=k
with very high probability. Therefore, m = a(k — j)
(B is negligible). Let n=k—~ j=k(1—~ p) and D,(n)

- (")(1 Jan){(1~(1/an))"~". Then

L(k) = an .‘;D,.(n)L,..

(8)

In (8) we replaced approximate equality with very high
probability by a strict equality. From (1) and (2) we recall
that L= L,=1, L,=4.4143, L,=6.8847, and L,<C,i—1,

105
i > 4, where C, = 2.623. Consequently,

LK) < an éou,.(n)(c,,i—n

3
+an), D(n)(L,—C,i+1)
i=0
=Cnn—an[1-V(n)]
where V(n) =X3_ D(n)A, and A,=L,— C,i +1.
For large n (recall that as kK — co, n — c0), we obtain
from (9)

)

3 A
Vin)=e Vo) —. (10)
i il

Therefore, we conclude from (8) that for large k,

; -y
L’(k)sk(l—p){CM—a(l—e_V"‘ Y l'—‘;l)] (11)

i=o b

Using the values of A; (A;=2, A;=—0.623, A, =0.1683,
A, =0.0157), we calculate the value of « that minimizes
the right side of (9). This value is a=0.786, and we get

L'(k) <k(1- p)(C,—0.488) (12)
and therefore,
limsup { L"(k)/k} <C,.

k—o0

Q.E.D.

Let L! be the total average number of slots required to
resolve a batch of size k with the complete resolution
algorithm of this section. Then L% =1+ Le(k)+ L'(k)
(the 1 counts the slot of the initial conflict of the batch),
and therefore, from Theorems 2 and 3 we conclude the
following,

Theorem 4: We have
E = liminf {k/L} } >1/[C,—0.488(1- p)].

k—oo

Consequently, the efficiency of our complete resolution
algorithm is as high as 0.468 (by 8.8 percent better than
that in [8] and the same as that in {10]), and it becomes
better as p becomes smaller. The result expressed in Theo-
rem 4 shows that for large k the average number of slots
required to resolve a conflict of a batch with k nodes is
about 2.137k. For comparison we recall that this number is
2.890k, 2.623k, and 2.342k for the basic tree algorithm,
for the modified tree algorithm, and for the hybrid al-
gorithm of [8], respectively.

Note that the optimal value of a that should be used is
0.786. This means that when the nodes of D are divided
into m groups, each group would contain 1.27 packets on
the average when the estimate on the number of nodes in
D is accurate.

C. Effect of B

The parameter 8 has no effect on the efficiency of the
algorithm when k — oco. However, it can be adjusted so
that the algorithm will have good performance for small

106

values of k. This is done by keeping m small for small
values of j. To show the effect of 8, we plot the ratio
{k /L)) versus k in Fig. 2. In that figure we used a = 0.786
and p=0.1 (from Theorem 4 we see that in this case
liminf, , _{k/L}} > 0.457). From the figure we see that
B =8 is a good choice when p =0.1.

0.45

0.35

0.30 |]]]
2 20 40

100

Fig. 2. Effect of B.

V. A PARTIAL RESOLUTION ALGORITHM
A. The Algorithm

In this section we present a partial batch resolution
algorithm that is based on the clipped binary tree al-
gorithm (CBTA). This algorithm is identical to the com-
plete resolution algorithm presented in Section IV except
that the nodes of D, after being divided into m distinct
groups, perform the CBTA instead of the MBTA. This
means that, first, those that picked 1 are transmitted and
the resulting conflict is resolved using the CBTA. Second,
those that picked 2 transmit, and so forth.

B. Analysis

We now compute the average length of the resolution
phase L(k) given a batch size k and given that |E|= j.
As in (7) it is given by

Li(k) =m(j)fg:(k7j)(;1%)i

]

1 k—j—i
Al=— LS, m(j)=1 (13
[-507))=t 0
where the LY are computed via (3a) and (3b) and m()
via (6).
When Li(k) is averaged over j, we get L'(k)—the
average number of slots required for the resolution phase
given k. We prove the following theorem regarding L'(k).

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 34, NO. 1, JANUARY 1988

Theorem 5: Let I; 21 be some finite integer. Let AC =
L¢ —C,i+1. Then
limsup { L"(k)/k} <C,(a)
k — o0
where

I AG
1—e Ve)

[P
i=0 -«

C(a)<(1-p)|C,—a

J

Proof: We give here only an informal proof. The
formal proof is similar to the proof of Theorem 3. Simi-
larly to (8), we have here n = k(1— p):

L'(k)=an). D,(n)LE. (14)
i=0

1

Therefore,

L7(k) = an __iop,.(n)(cui _1)

+an Y., D(n)(LE-C,i+1)
i=0

<Cn—an[1-V(n,1,)] (15)

where V(n, I,) =T D(n)AS.
In (15) we used the fact that A% <0 for i >1. We recall
that for large n,
L AG

AY
V(n,11)=e_1/"z ; 'i’
i—pila

(16)

and, therefore, for large k,
L AG

1-e /=y E)] (17)

i=0

L(k)<k(l-p)|C,—a

and Theorem 5 follows.

Recall that we are dealing with a partial resolution
algorithm. As such, not all packets in D are successfully
transmitted during the resolution phase. Let M/ (k) be the
average number of packets successfully transmitted during
the resolution phase given a batch size k and given that
|El= j. Then

k- j . 1 4
. k—j
w0 -m() % (*7) 55
! i=1 i m (J)
1 k—j—i
1= — ME, m(j)=1 (18)
(m(J))
where the M® are computed via (3c) and (3d) and m(})
via (6).
When M;(k) is averaged over j, we get M'(k)—the
average number of packets successfully transmitted during

the resolution phase given k. We prove the following
“theorem regarding M'(k).

Theorem 6: Let I, >1 be some finite integer. Then
liminf { M"(k)/k} > C/(a)

k — o0

CIDON AND SIDI: BATCH RESOLUTION ALGORITHMS

where
I G

C/(a)=a(l-p)e™ /¥ -

;' i
j=1 1"

Proof: We again briefly sketch here an informal proof.
Similarly to (8), we have here
M'(k)=an), D,(n)MF (19)
i=1
where n = k(1— p). Therefore,
L, aG

—=. (20)

M'(k)>ak(1—p)e /"), —
o1 il

Q.E.D.

To complete the analysis of the partial batch resolution
algorithm, we recall that L°(k) < pC,k +1 and that dur-
ing the estimation procedure an average of kp packets are
successfully transmitted. Therefore, the total average num-
ber of slots required to execute the algorithm for a batch
of size k is L2 =1+ L°(k)+ L'(k). The average number
of packets successfully transmitted during its execution is
M2 = kp + M'(k). Consequently, we have the following.

Theorem 7: Let C(a) and C/(a) be computed as in
Theorems 5 and 6, respectively. Then

p+C/(a)
pC,+C(a)’

The lower bound on the efficiency can be maximized by
appropriately choosing a. We note that here the optimal
value of a depends on the value of p (in the complete
resolution algorithm the optimal « is independent of p).
In Table I we summarize the values of the optimal a for
various values of p along with the corresponding values of
the lower bound. We also added a column indicating the
fraction of packets successfully transmitted. To compute
these numbers, we use [, =/, =15.

E = liminf { M2/L}} >

k— oo

TABLE I
? Optimal a Lower Bound liminf, , { M, /k}

2-107! 0.807 0.457 0.928

107! 0.798 0471 0.918

1072 0.791 0.485 0.908

1073 0.790 0.486 0.907

1074 0.790 0.487 0.907

-0 0.790 0.487 0.907

We conclude from the table that the efficiency of the
partial resolution algorithm introduced in this section is as
high as 0.487. Note also that about 91 percent of the
packets in the batch are successfully transmitted during its
execution.

C. From Partial to Complete Resolution Algorithm

Interesting, the partial resolution algorithm introduced
and analyzed in this section can be modified into a com-
plete resolution algorithm with efficiency higher than 0.468.

107

In fact, it is possible to devise a complete resolution
algorithm with efficiency arbitrarily close to 0.487.

The idea is the following. After applying the algorithm
as described in Section V-A, there remain some nodes of D
whose packets were not successfully transmitted. At this
point we can apply the modified binary tree algorithm
(described in Section II-B) on these remaining nodes, and
as a consequence, all nodes of the initial batch will trans-
mit their packets successfully. Thus the algorithm has been
transformed into a complete resolution algorithm.

To calculate the efficiency of this complete resolution
algorithm, let P(ilk) be the probability that, given that the
batch is of size k, i of the k nodes have not transmitted
their packets successfully when the partial resolution al-
gorithm has been executed. Then the total average number
of slots required for the complete resolution algorithm just
described is given by

k
Li=L1+ Y P(ik)L, (21)
i=0 .

where the L, are calculated via (1). Using (2), we have

k
LE<Li+ Y P(itk)(Ci+1)=L:+(k— M2)C,+1,
i=0

(22)
and simple calculation shows that the efficiency E =

liminf, , {k/L}} of this algorithm is as high as 0.475.
If instead of applying the MBTA, the partial resolution
algorithm is reexecuted on those nodes in D that have not
transmitted their packets successfully, then only about one
percent of the nodes of D would remain with packets. We
may now apply the MBTA on these remaining nodes. The
result is a complete resolution algorithm with efficiency as
high as 0.485. Obviously, efficiencies arbitrarily close to
0.487 can be obtained. The foregoing result shows that for
large k the average number of slots required to resolve a
conflict of a batch with k nodes is about 2.054k, faster

than any other known algorithm.

VI. StABILITY CONDITION

To devise multiple access algorithms, one needs to specify
the rules according to which nodes access the channel and
the rules for resolving conflicts. In this section we assume
that the obvious way to do that is used. A complete batch
resolution algorithm is used to resolve conflicts. When a
BRI ends, a new BRI with those packets that arrived
during the previous BRI is started [4]. Let L(i) (i=
1,2,---) be the length of the ith BRI. We say that a
system is stable if L* <oo exists such that E[L(i)] < L*
for all i. We state a general condition that the arrival
process should fulfill so that the system would be stable
and show that this condition is closely related to the
efficiency of the underlying batch resolution algorithm
that is used. Some examples are also given. We consider
only the infinite user population model (for a finite user
population it is possible to have complete utilization of the
channel by using TDMA, for instance).

108

We start with the following Lemma.

Lemma 3: If for all i there exist T”, j*, € > 0 such that
E[L(i+DL()=jl<(—¢€)j for all j> j* and E[L(i
+D|L(i)=j]<T for all 0 < j< j* then the system is
stable.

Proof: Let T=max{T’, E[L(0)]}, where E[L(0)] is
the expected length of the first BRI (without loss of
generality we may assume that E[L(0)] =1). Then for all i
we have

T3

E[L(i+1)] = tOE[L(i+1>:L<i)=j]P{L(i)=j}

j=
+ ¥ E[LG+D)IL(i) =]
J=j*+1
-P{L(i)=j}
<T+(1-¢€)E[L(i)].
The recurrence in (23) implies that

(23)

i+1

E[L(i+1)] < [§OT(1—6)'=T(l—(l—e)i+2)/e

foralli. (24)
Q.ED.

Let N, ,,, be the number of packets arriving to a system
during (¢, + 7), and let P(k;t;7)=Pr{N, ,, . =k}, k=
0,1,2,---. Then the following theorem states a stability
condition for a system.

<T/e=L*<oo,

Theorem 8: Let a system operate with a complete reso-
lution algorithm with efficiency E. Then the system is
stable if 7*,8 > 0 exist such that

E[N, ;1. < (E~8)T, (25)

Proof: For complete batch resolution algorithms we

have that for any §’> 0 some B> (0 exists such that for

any k, L, <k/E'+ B where E'=E —§' and E is the
efficiency of the algorithm. Let 8’ < 8. We then have

forall ¢, 7> 7*.

E[L(i+1)|L(i))=j] < sng[LNWh:j]

[o2]
=sup Y, L P(k;t;7)
t k=0

< sup i (k/E'+ B)P(k;t;7)

t k=0
1
-an| L1+
<(1-¢€)j, forall j> j*

where the last inequality follows from (25) with € = 0.5(8
—&8"/E’ and j*=max{7* B/e}. Similarly, using the
fact that if v, < r,, then N, ,,, <N, ., it is easy to show
that for j< j* E[LG+D|IL3()=jl<(—-€)j*=T.
Using Lemma 3, the proof then follows.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 34, NO. 1, JANUARY 1988

Theorem 8 states a rather general condition for sta-
bility. For stationary processes this condition implies
that the system is stable whenever A < E where A=
limsup, _, , E[N, ,,.]/7, or in other words, that the system
is stable whenever the average arrival rate is less than the
efficiency. However, in general, there is no need to assume
stationarity.

Some examples of classes of processes are those with
interarrival time distributions, such as Poisson, renewal,
deterministic, etc. In addition, the incoming traffic can be
bursty. For instance, the number of packets arriving at the
system at any arrival point might be a random variable,
i.e., with probability p(/) (I=1,2,---) I packets arrive at
an arrival point. In these examples, when the interarrival
time distribution is not known (such as in a general
renewal process) or when the distribution p(/) is not
known, then at the beginning of a BRI nothing is known
about the batch size k. Here is where the importance of
batch resolution algorithms of the kind proposed in this
paper becomes apparent.

VII. DiscussioN

A new class of multiple access algorithms has been
presented in this paper. The most important feature of
these algorithms is their robustness, i.e., that their parame-
ters are not tailored for any specific arrival process, and
therefore, their performance (efficiency) is independent of
the specific arrival process into the system. Intuitively, the
efficiency of an algorithm is the rate at which packets are
successfully transmitted when the system is highly loaded
(service rate at heavy traffic). Therefore, it is not surprising
that the system is stable whenever the average arrival rate
is less than the efficiency.

The algorithms are based on an estimation phase that
enables the nodes to estimate quite accurately the conflict
multiplicity (batch size). The estimation phase is followed
by a resolution phase that exploits the result of the estima-
tion phase to efficiently resolve the conflict. For any given
estimate, the algorithms presented in Sections IV and V
can be applied. If the estimate of the batch size is asymp-
totically accurate and the estimation phase is asymptoti-
cally short (compared to the resolution phase), then the
overall algorithm would yield the same efficiency as our
algorithms.

The efficiency of an algorithm is not the sole measure of
interest. Other performance measures of interest include
the expected length of a BRI for finite batches, the ex-
pected delay of a packet for various arrival processes, etc.
In the following we compare the performance of our
algorithm with the performance of other algorithins when
k is finite. To that end we evaluated the ratio {k /L% } for
k =12,10,100 (see Table II) for the modified binary tree
(from (1)), for the hybrid algorithm of [8] (from simulation
results presented in [8, table 4]), and for our algorithm
with the indicated parameters. Clearly, our algorithm out-
performs all the others, except the modified binary tree
algorithm for very small values of k. Unfortunately, the

CIDON AND SIDI: BATCH RESOLUTION ALGORITHMS

TABLE 11
Modified Binary ~ Hybrid Algorithm Our Algorithm
k Tree Algorithm of [8] p=01; =8
2 0.453 0.374 0.410
10 0.396 0.396 0.407
100 0.383 0.418 0.449

values of L} for finite values of k for the algorithm in [10]
(for a <2) are not available. Yet, to see the effect of
decreasing a in the algorithm of [10], we computed the
expected length of the estimation phase of thatalgorithm
for a=1.5, 1.1, and 1.01. The respective expected lengths
are 4.55, 14.2, and 91.4 (slots) when k =10. Assuming that
the estimate is completely accurate and that one packet is
always transmitted successfully during the estimation phase
of [10], we obtain a lower bound on the expected length of
the BRI. For a=1.5, 1.1, and 1.01, the respective lower
bounds on the expected BRI lengths are 28.1, 37.8, and
115 (slots) when k =10. This illustrates the main drawback
of the estimation procedure of [10], that for any finite k,
when a —1 (to increase the efficiency), the expected length
of the estimation phase increases, and this increase cannot
be compensated during the resolution phase.

For our algorithm we can compute the expected length
of a BRI for any finite k. From Fig. 2 we see that when
p=0.1, the expected length of a BRI is 24.5 for k=10
(even for B =0). From Theorem 2 we see that for any
finite k, the expected length of our estimation phase as a
function of p is always bounded. This is not surprising;
our estimation procedure is itself a batch resolution al-
gorithm. The drawback of our estimate is that for any
finite k, as p gets smaller (to increase the efficiency), the
estimate becomes less accurate. However, it is very easy to
realize that this will not cause any problems; we can
always ignore the information obtained from the estima-
tion phase if we see that |E|= j is small (say 1 or 2).

Finally, we note that for any value of p > 0 used in our
estimation phase, the estimate obtained is asymptotically
tight. We also note that the efficiencies of our algorithms
are not very sensitive to small variations. in p. Therefore,
in practice, one can use p = 0.1 without having consider-
able deterioration in the efficiency of the algorithm and
also having good behavior of the algorithms for small
batches.

APPENDIX
Proof of Theorem 3

Our points of departure are the following equations:

aor=n 50 -

L'(k) = E[Li(k)] (Alb)

where n=k — j, m=max{1,[aj(1-p)/p—B]), and E[-]is
the expectation operator.

Let e(¢) and e°(¢) denote theevent {(p —€)k < j<(p + €)k)
and its complement, respectively. Using Lemma 2, we conclude
that for any € > 0: P{e‘(€)} < p(1— p)/€%k.

(Ala)

109

The event e(¢) implies the following inequalities:

n=(1-p—)k<n<(l-p+e)k=n. (A2a)
If §=e(1— p)/p, then
ak(1-p-8)-B<m<ak(1-p+8)+1. (A2b)

Using the foregoing, if & = 28, then some K, (K,
=[(1/a8) max { B,1}]) exists such that if k> K, and e(e)
holds, then
m=a(l-p-8)k<m<oa(l—p+8)k=m.

Note that § >0 as e~ 0.

Let us denote by Li(kle(¢)) and Lj(kle°(¢€)) the average
length of the complete resolution procedure given the events e(¢)
and e‘(e), respectively. It is clear that for each ¢> 0,

Lity = () B[- (k)]

(A2¢)

+ P(eH(9) | g5 (e (9)
<1. max {}-L}(k|e(c))>

J€e(e)

p(1-p) ax {%L}(kle‘(f))>- (A3)

ek jee(e)
It follows that

limsup lch’(k) < limsup max { L’(k]e(c))}

k— oo k—oo JE

+limsup—~—p(;—p)
k—o0 €k

max {17 (kie). (a9

jEe(e)
Since (A4) holds for all €> 0, then

1
lim sup kL’(k) < limsup limsup max { L’(kle(c))}

k — o0 €0 k—oo JE

1-
+ limsup limsup ———— P-p)
k— 0 €k

ax{ L(ke(). (a9)

j€e(e)

€e—0

In the following we derive an upper bound for the first term of
the right side of (A5). Let us define A, =L, — C,i +1. For all j
and k using (Ala) given e(¢),

——L’(k|e(c))——2()()i(l——l”;)n_iL,. (A6)

i=0
If k> K,
nC, m m 3 1Y) 1\" ¢
< ——+— =] (1-— .
k k k,-;o(’)(m) (1 m) A

Using Ay =2, A, =—0.623, A, =0.1683, and A, = 0.0157,

110

Using the equality lim, _, , (1—(1/ak))*~<=¢"?/4 and by let-
ting k — o0,

1
limsup — L:(k
imsup (k)

<(1-p+€¢)C,~a(l-p-8)

(1-p-8)(1-p-¢ 1-p+e
T (1= p49) exl)(_m(l—p—ﬁ))AI
1-p—ce¢
rasr el -5
(oo,)
2a(1-p-8)) 6(a(1-p-8))’
(A7)
Letting € — 0, we conclude that
1
Limsup limsupE[-I;Lj’-(He(e))] <(1-p)C,—a(l-p)
€e—>0 k—o
3 A
H1-p)e Y SE (ag)
i—o ai!

We turn now to calculate an upper bound for
limsup, _, ,, (1/k) L}(k|e‘(¢)). To that end, we use the inequali-
ties L, <Ci+lfori>0, m<k(l-p)/p+1, k— j<k for all
J> and obtain that for each j,

1 - m o1 T\
Z L (kle (e))s;ii‘:o(i)(;) (1—;) (C,i+1)
s%+%cus(l;p) +1+4+C,. (A9)

Now by using Chebyshev’s result, P{e(¢)} < p(1— p)/€*k, we

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 34, NO. 1, JANUARY 1988

conclude that for each ¢ > 0,

. ¢ 1 r <
hknls:pP{e (()_}E[;Lj(k'e (‘))]

r(1-p)
< limsup —————
k —>s:p €2k (

Substituting the results of (A8) and (A10) into (AS5) completes the
proof of Theorem 3.

1-p
—+1+C,| =0. (A10)
P

REFERENCES

[1] R. G. Gallager, “Conflict resolution in random access broadcast
networks,” in Proc. AFOSR Workshop Commun. Theory Appl.,
Provincetown, MA, Sept. 1978, pp. 74-76.

B. S. Tsybakov and V. A. Mikhailov, “Free synchronous packet
access in a broadcast channel with feedback,” Probl. Peredach.
Inform., vol. 14, no. 4, pp. 32-59, Oct.—Dec. 1978.

J. I Capetanakis, “Tree algorithms for packet broadcast channels,”
IEEE Trans. Inform. Theory, vol. IT-25, pp. 505515, Sept. 1979.
J. L. Massey, “Collision resolution algorithms and random-access
communications,” Univ. California, Los Angeles, Tech. Rep.
UCLA-ENG-8016, Apr. 1980; also in Multi-User Communications
Systems (CISM Courses and Lectures Series), G. Longo, Ed. New
York: Springer-Verlag, 1981, pp. 73-137.

G. Ruget, “Some tools for study of channel-sharing algorithms,” in
Multi-User Communications Systems (CISM Courses and Lectures
Series), G. Longo, Ed.: New York: Springer-Verlag, 1981, pp.
201-231.

A. G. Greenberg, “Conflict resolution in random access broadcast
networks,” in Proc. 14th Ann. ACM Symp. Theory of Computing,
1982.

M. Hofri, “Stack algorithms for collision-detecting channels and
their analysis: A limited survey,” Israel Institute of Technology,
Department of Computer Science, Tech. Rep. 266, Feb. 1983.

A. G. Greenberg and R. E. Ladner, “Estimating the multiplicities
of conflicts in multiple access channels (preliminary report),” Proc.
Foundation Comput. Syst. (FOCS), pp. 383-391, 1983.

J. Mosely, “An efficient contention resolution algorithm for multi-
ple access channels,” Lab. Inform. Decision Syst., Mass. Inst.
Technol., Cambridge, Rep. LIDS-TH-918, June 1979,

A. G. Greenberg, P. Flajolet, and R. E. Ladner, “Estimating the
multiplicities of conflicts to speed their resolution in multiple access
channels,” J. ACM, vol. 34, no. 2, pp. 289325, April 1987.

2

Bl
4

[51

l6]

n

(81

91

[10]

