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Mixing Collision Resolution Algorithms
Exploiting Information of
Successful Messages
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Abstract — Algorithms for accessing a slotted-time collision-type broad-
cast channel are considered under a Poisson infinite-user model, where
each user observes the channel and determines for each slot whether idle
or success or collision has occurred. The highest throughput previously
achieved for this model is 0.4878. We introduce a new scheme which does
not exceed the limitations of the system model, yet achieves a throughput
of 0.4892. Extra information is added to the message that can be used only
when the message is received successfully. One form of such extra
information is described, and a new algorithm that exploits it is proposed.

1. INTRODUCTION

ONSIDER the following usual model for multiaccess
communications: An infinite number of independent
users are transmitting messages of equal length over a
slotted-time broadcast channel; the number of messages
generated by all users collectively in each slot is Poisson
distributed with mean A. If only one message is trans-
mitted in a slot, it is received successfully; if two or more
messages are transmitted in the same slot, then a collision
is said to occur, the contents of all collided messages is
completely destroyed, and the messages must be retrans-
mitted at some later time. Each user observes the channel
and determines at the end of each slot whether that slot
was idle or if there was a successful transmission or a
collision has occurred. For this model, a number of colli-
sion resolution algorithms (CRA) have been introduced in
the literature [1]-[6], and the highest throughput achieved
so far is 0.4878 [6]. In this paper we introduce a new
scheme which does not exceed the limitations of the sys-
tem model, yet it achieves throughput higher than 0.4878.
It is clear that in the foregoing system, when a message
is received successfully, the information contained in the
message is available to all users. However, in the al-
gorithms introduced so far the information contained in a
successfully transmitted message is not considered, and no
use is made of the fact that this information is available.
The new scheme we propose utilizes this fact by adding
extra information to the message and exploiting this infor-
mation when the message is received successfully.
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It should be clear that this scheme is safely within the
limitations of the system model since the information
contained in a successfully transmitted message is anyway
available to all users. No assumption of the system model
is violated—the extra information is treated exactly in the
same manner as the rest of the information of the message;
that is, it is exploited only when the message is received
successfully. This is nothing more than a fuller exploitation
of the available features of the system. (If one includes in
the previous model the assumption that it is not allowed to
consider the contents of a message, then our scheme is
viewed as a minor extension of that model.)

However, it is not clear at all whether the throughput
can be increased beyond 0.4878 in such a way (the users
are independent, and each of them can have at most one
message in a lifetime). It is also not clear what kind of
information should be added to the message to increase
the throughput.

In Section II we introduce a type of information that
can be added to the message, and in Section III we
propose a new algorithm which exploits this information
obtained during successful transmissions. As opposed to
all previously presented algorithms, the algorithm pro-
posed here is a mixing algorithm which is neither a degen-
erate intersection algorithm (DIA) nor a first-come first-
serve algorithm (FCFSA) [7]. In Section IV we show that
this scheme does indeed increase the throughput beyond
0.4878. |

II. SET MARKER IN MIXING ALGORITHMS

In general, a CRA selects at the beginning of each slot a
subset A of the time axis, and all messages that arrived
during this subset are transmitted in that slot. This is
referred to as enabling the subset A. We define a mixing
algorithm to be a CRA that at some step enables a subset
A that satisfies the following: '

N
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4) it is known that the number of messages contained
in A, is greater than zero, for all 1 <i < N, except
possibly some single .

This is referred to as mixing the subsets 4, i=1,2,---, N.

The information we propose to add to the message
refers to mixing algorithms and is as follows: whenever the
enabled subset A4 satisfies 1)-4), each transmitted message
contains the index j of the subset 4, (1< j < N) to which
the message belongs (this requires [log, N bits). In par-
ticular, in ‘this work we propose a mixing algorithm that
mixes only two subsets 4, and A,. The associated infor-
mation to be added to the message is then a single bit that
indicates to which of the two subsets, A, or 4,, the
message belongs. We refer to this bit as a set marker.

The following notations are used in the sequel. The
number of messages that arrived during some subset A4 of
the time axis is denoted by [A]. If [4A] =1, and A is a mix
of the subsets A, and A,, and the single message that
arrived during A belongs to A,, then it is denoted by
[4,U A4,]=14, (and by 14, if the message belongs to
A,). A subset A for which [A] =2 is called a collision
interval.

III. AN ALGORITHM UTILIZING THE SET MARKER

A. Operation of the Algorithm — General Description

Consider two time axes. The first, called the arrival axis,
shows the Poisson arrival instants. The second, called the
transmission axis, is segmented into consecutive intervals
called collision resolution intervals (CRI), each consisting of
an integral number of slots. At the first slot of the ith CRI
the algorithm enables a subset E, of the arrival axis. If no
collision occurs in this slot, the ith CRI terminates and a
new CRI starts immediately thereafter. If a collision oc-
curs, the algorithm initiates a collision resolution process
(CRP) whose termination defines the termination of the
ith CRI. Next, the algorithm enables a new subset E,_,,
and so on. In this way the arrival axis is entirely searched.

At the end of each CRI the arrival axis can be seg-
mented into disjoint intervals such that each interval be-
longs to one of the following categories. 1) an interval for
which it is known that all messages that arrived during it
have already been successfully transmitted; 2) an interval
for which nothing is known about the number of messages
that arrived during it, beyond the knowledge of the Pois-
son distribution.

Definition: The new intervals pool (NIP) at the begin-
ning of some slot of the ith CRI is the continuous and
ordered (according to increasing time index) union of all
intervals of category 2) at the end of the (i —1)-st CRI
minus certain intervals as determined by the algorithm
from the beginning of the ith CRI until that moment.

A new interval is defined to be a continuous interval of
the NIP, starting at the initial instant of the NIP. E, is a
new interval whose length is x (where x is a parameter to
be optimized for achieving maximum throughput). In Fig.
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Fig. 1. Arrival axis at end of CRI (typically), and selection of E,.

1 a typical picture of the arrival axis at the end of a CRI is
shown, and the selection of E, is demonstrated.

B. The Collision Resolution Process

Before describing the CRP formally, it will be helpful to
give an informal description. Referring to Fig. 2, E is the
collision interval to be resolved. In the first step, the
process enables the subinterval E’ together with F which
is a new interval (mixing).
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Fig. 2. Mixing collision interval with new interval,

o If the outcome is [E'U F] = 0, then there is no need to
treat £’ and F any longer (all messages contained in them
have been successfully transmitted). It is also clear now
that [E — E’] = 2, and the process is repeated for (E — E’).

¢ If the outcome is [E’'U F] =1F, that is, the transmis-
sion was successful and the set marker indicated that the
message belongs to F (ie., [E’] =0 and [F] =1), then the
situation is similar to that of the previous case and the
same action is taken.

® If the outcome is [E'U F]=1E’, then the situation is
again similar, but now [E — E’] >1 and the next step is to
enable this interval. If [E — E’]=1, then the process
terminates, and if [E — E'] > 2, then the process is re-
peated for this interval.

® If the outcome is [E'U F]> 2, then in the next step
the process enables E’. If [ E’] = 0, then there is no need to
treat this interval any longer; it is also clear now that
[E—E’l>=2 and F=2, and the process is repeated for
each of these intervals. If [ E’]'=1, then there is no need to
treat this interval any longer; it is also clear now that
[E—E'l=1 and F=z=1, and each of these intervals is
enabled. If it contains only one message, then it is not
treated any longer; otherwise, the process is repeated for it.
If [E’] = 2, then it is easy to see that now nothing is known
about the number of messages contained in each of the
intervals (E — E’) and F, beyond the knowledge of the
Poisson distribution, and both are merged into the NIP.
The process is repeated for E’.

We now give a formal description of the CRP. The
process accepts in its input a subset E of the arrival axis
which is known to be a collision interval. During the
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process, additional intervals, each of which is known to be
a collision interval, are generated. The process appends,
and later on deletes, some of these intervals to a list named
collision intervals list (CIL) (in a first-in first-out manner),
as specified in the CRP description. At the beginning and
at the end of the process the CIL is empty. The process
also deletes and/or merges certain intervals to the NIP.
While merging intervals is specified explicitly in the CRP
description, deleting is done according to the following
rule.

Rule: A new interval which is contained in an enabled
subset in some slot is deleted from the NIP at the begin-
ning of that slot.

The process is defined by the following sequence of
steps.

The Collision Resolution Process:

1) Enable a right subinterval £’ of E whose length is
|E’| = q|E| (0 < g <1) together with a new interval F
whose length is y,

If [E'UF]={0 or 1F}: Denote (E—E’) by E
and Gorto (1) '

If [E'UF]=1E": Denote (E—E’) by E” and
GOTO (5)

If[E'U F]=2: cgoT0 (2)

2) Enable £,

If [E’]=0: Append F to the CIL; denote (E — E)
by E and Goto (1)
If [E']=1: corO (3)
If [E']=2: Merge (E — E’) and F into the NIP;
denote £’ by E and Goto (1)
3) Enable (E — E),
If [E— E’]=1: Denote F by E” and GoTO (5)
If [E— E’]=2: Denote { E — E’) by E and GOTO
Q)]
4) Enable F,
If [F]=1: cgoto (1)
If [F]=>2; Append F' to the CIL and coro (1)
5) Enable E”,
If [E”}=1: coTO (6)
If [E”]=2: Denote E” by E and GoTto (1)
6) Check the CIL:
If it is empty: Terminate
Otherwise: Take the next interval from the CIL,
denote it by £ and Goto (1).

IV. PERFORMANCE ANALYSIS

Let L, denote the mean length of a CRI that exactly N
messages were transmitted in its first slot, and let M,
denote the mean fiumber of successfully transmitted mes-
sages during that CRI. From the operation of the al-

gorithm it is clear that
Ly=L,=1 M,=0 M, =1. (4.1)

For N> 2, E contains exactly N messages at the begin-
ning of the CRP. Let i and j be the number of messages
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contained in E’ and F, respectively (see Fig. 2). Then from
the operation of the algorithm it follows that for N > 2

Ly=1+P(i=0)P(j=0)Ly+P(i=0)P(j=1)L,
+P(i=1)P(j=0)(1+Ly_,)

£ P(i=0) Y P(j=k)(Ly+ Ly)

18

+P(i=1) P(j=k)2+Ly_,+L,)

1

+ % P(i=r)(1+L,)

My=P(i=0)P(j=0)M,+P(i=0)P(j=1)(1+ M,)
+P(i=1)P(j=0)(1+M,_,)

k

(4.2)

+P(i=0) Y P(j=k)(My+ M)

+P(i=1) i P(j=k)(1+M,_,+M,)

LY P(i=r)m, (43)

where
pii=r)=(Y)qa-9)""

e M(Ap) ek
P(j=k)=——"7—"%—1

r=0,1,--,N (4.4a)

k>0. (4.4b)

Equation (4.2) is explained as follows. The 1 is the
first slot of the CRI in which the initial collision is
detected. When i= j=0or i=0 and j=1, the CRI lasts
1+ (L, —1) slots more on average—one slot to detect i
and j plus L, —1 slots on average to resolve the collision
among the N messages contained in (E — E’) (one slot less
since the collision is known in advance). When i =1 and
j =0, the CRI lasts 1+ L,,_, slots more on average—one
slot to detect / and j plus L,_; slots on average to
resolve the N —1 messages contained in (E — E') (N~1>
1, and therefore it is also required to enable (E — E’)
itself). When /=0 and j=k >2, the CRI lasts 2+ (L, —
1)+(L, —1) slots more on average—two slots to detect
that i+ j=2 and i=0, plus Ly, —1 and L, —1 slots on
average to resolve the collisions (which are known in
advance) among the N messages contained in (E — E)
and the & messages contained in F, respectively. The case
when i =1 and j =k =1 is explained similarly, except that
now it is required to enable the intervals themselves before
resolving them as in the case when i =1 and j = 0. Finally,
when i=r 22, the CRI lasts 2+ (L, —1) slots more on
average—two slots to detect that i+ j>2 and i > 2 plus
L,—1 slots on average to resolve the collision (which is
known in advance) in E’. Equation (4.3) is explained
similarly.
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By rearranging the terms in (4.2) and (4.3), we obtain
that each of the equations is of the following form:

N
xy= 2, P(i=r)x,+ P(i=1)x,_,
r=2
+P(i=0)xy+[P(i=0)+ P(i=1)]
Y P(j=K)x,+by, N2
k=2
where in (4.2),
by=2-P(i=0)+P(i=1)
J1-P(j=0)+P(j=1)] 2 (4.6a)

(4.5)

and in (4.3),

by=P(i=1)+P(j=1)[P(i=0)+ P(i=1)] £ b{™.
(4.6b)

Equation (4.5) defines an infinite system of equations in
x, that can be rewritten as

Xy = ZaN,ixi+bNéFN(X)’ (4-7)

i=2

N>2

where X = {xy}%_, and ay ; and b, are defined by (4.5)
and (4.6).

Clearly, each of the sequences { L, }%_, and { M, }%_,
is a solution of the respective system of equations (4.7).
Employing a similar approach to that in [8], we state the
following theorem.

Theorem: 1f
2q(1-q) > z(1~e7%),
then the following hold. .

a) The system of equations (4.7) has a solution X'=
{x§}%=2 which satisfies 0 <x}, <aN, N>2 where a=
4/[2¢(1~ q)— (1~ ™)}

b) X’ is unique in the class of sequences X that satisfy

00
lim max ) ay |x]=0.
k—oo N<k /_p

o) If for all N>2, by =b{" (b, =b{"), then for all
N=2, Ly=x} (My=x}).

The proof of this theorem is given in the Appendix.

It follows from the theorem that for all ¢ and :z satisfy-
ing (4.8), L, and M, do not increase with i more rapidly
than linearly. On the other hand, for z not large, ay
decrease very rapidly with increasing i for i> N (like
il=i"). Hence an approximate solution for Ly and M,
for 2 < N < K, where K is some integer, can be obtained
by solving the finite system of equations obtained from the
given infinite one by discarding all equations and un-
knowns commencing with K +1 (K is determined accord-
ing to the desired accuracy).

L, and M, discussed earlier correspond to a CRI in
which exactly N messages were transmitted in its first slot;
that is, the new interval E, (whose length is x) that
corresponds to the CRI contains exactly N messages. We
denote the corresponding averages over N (which is Pois-

(4.8)

(4.9)
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son distributed with parameter W £ Ax) by

o0 eW N Wi N

L=} Ny v M= >z
N=0 : N=0
Let M(s) denote the random variable which is the
number of successfully transmitted messages during the
first s CRI’s, and let L(s) denote the random variable
which is the number of slots required to transmit them.
The throughput of the algorithm is defined as T=
lim, , {E[M(s)]/E[L(s)]}. By using the fact that Pois-
son arrivals in disjoint intervals are independent, it is easy
to show that T=M/L. Numerical optimization over
g, z, W for achieving maximum throughput yields the fol-
lowing results: throughput = 0.4892 for W =1.24, ¢ = 0.26,
z=0.66. Note that the throughput achieved is higher than
0.4878. Note also that ¢ and z do satisfy (4.8).

e
My (410)

V. DISCUSSION AND SUMMARY

We introduced a new scheme in which extra information
added to the message is exploited when the message is
received successfully. We proposed a type of information
to be added to the message and a new algorithm which
exploits this information obtained during successful trans-
missions. This algorithm mixes a collision interval with a
new interval and achieves a throughput of 0.4892. The
highest throughput previously achieved for the model dis-
cussed was 0.4878. An algorithm in which a new interval is
mixed with an interval that is known to contain at least
one message, and an algorithm in which two collision
intervals are mixed have also been considered, but in both
cases the throughput achieved was less than 0.4878. In [10]
it is shown that by enabling a small interval that is known
to contain at least one message together with a new inter-
val, the throughput of the 0.487 algorithm {4] can be
increased by 3.6 X107,

Note that our scheme can be viewed as a channel coding
scheme in the sense that extra information added to the
message is exploited to improve the performance of the
system.

In the algorithm presented the bookkeeping concerning
collision intervals and new intervals requires an un-
bounded amount of memory. To overcome this difficulty,
we first observe that the bookkeeping concerning new
intervals differs substantially from that for collision inter-
vals. The memory needed for new intervals can be reduced
to that needed for keeping a single point of the arrival axis
simply by appropriate shifting of clocks (without any
degradation in the throughput). To bound the amount of
memory required for collision intervals, one must limit the
size of the CIL and resolve collision intervals that other-
wise would have been appended to the CIL by the 0.487
algorithm [4] whenever the CIL becomes full. This leads to
a degradation in the throughput; in the worst case (i.e.,
CIL of size zero) it reduces to 0.4881, which is still higher
than 0.4878.

An algorithm that exploits the same type of extra infor-
mation obtained during successful transmissions, when the
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number of colliding messages in each collision is known, is
introduced in [11]. It is shown there that the throughput
achieved by this algorithm is 0.5533, which exceeds the
highest throughput previously achieved for this case
(0.5324).

Throughout the computation of the throughput the set
marker has not been separated from the message. There-
fore, the result obtained is asymptotic with the message
length. However, since the message length in the model is
arbitrary, this presents no difficulty. Moreover, since the
set marker is only a single bit, this does not cause any
practical difficulty either.

The improvement achieved in the throughput is small,
but note that the set marker and the algorithm proposed
are only an example of a scheme in which extra informa-
tion added to the message is exploited when the message is
received successfully; they are not necessarily the optimal
choice. The importance of our result resides mainly in the
fact that it proves that the throughput can be increased by
such a scheme.
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APPENDIX

Here we give the proof of the theorem stated in Section IV,
employing a similar approach to that in [8].

Proof of a)

First we show that the existence of X© = {x®)2_, with
x>0, N>2 that satisfies (4.9) and satisfies Fy,(X©) < x©,
N =2, implies that (4.7) has a solution X’ = {x} }%_, satisfying
0 <xjy <x{’, N>2. Indeed, consider the sequence X, j=
0,1,2,--- defined via x{{*V = Fy (X)), N=2. It follows by
induction that for every N > 2 the sequence x{/’, j=0,1,2,--
is nonincreasing, and since ay ;, by = 0, we have that for every
N2>2, x{{) >0 for all j>0. Hence the following exists:

m x{)=x, O<x}<x@®,

Joo

Nz2.

We will show that X" = {x} }%_, is a solution of (4.7). Consider
the following equality:

[ o]
xl(vjﬂ) = Z aN.i‘xlgj) + by,
i=2

N22.

In passing to the limit as j — o0, in the right side a term-by-term
passage to the limit is admissible, for the series at the right
converges uniformly as regards j since it is majored by the series
with constant terms Y2 ,a, ;x (9], p. 22). Thus on effecting
this passage we find that

o
T ’
Xy = Z ay ;x + by,
i=2

N=>2;

ie.,, X' is indeed a solution of (4.7).

Next we show that if (4.8) holds, then X = (x©}%_, with
x§{) =aN, N>2 where a=4/[2q(1 - ¢q)— z(1— ¢ )], satisfies
the previous conditions on X©. Clearly, this completes the proof
of a).
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To show this, let x{? = cN, N >2 with arbitrary ¢. Substitut-
ing this into (4.5), we obtain after some calculations that

Fy(XO)=xQ —[c(By—Ay)—by], N=2 (A1)
where

By 2 N[1-g—P(i=0)— P(i=1)]+2P(i=1)

Ay 2[P(i=0)+ P(i=1)]z(1—e7?).

It is clear now that if By ~ Ay > 0 and ¢ > by, /( By — Ay ) for all
N =2, then all the required conditions are met, ie., x{ >0,
N>2, XO satisfies (4.9), and Fy(X©) <x{, N> 2. Clearly,
this is ensured if B, >0 and ¢ > B,, where B, and B, are a lower
bound on By — Ay and an upper bound on by /(By — Ay),
respectively, over all N > 2.

B, and B, are obtained as follows:

By —Ay=N[l-g—P(i=0)—P(i=1)]+2P(i=1)
—[P(i=0)+P(i=1)]z(1—e77)
2N[1-g—-P(i=0)-P(i=1)]+2P(i=1)
—z(1-e*)2h(N)—z(1-e%), N=2 (A2)
(V) =N[1-q-(1-)" - Ng(1-q)" ]
+2Ng(1-g)¥ !
=N(1-¢){1-(1-g)" [(N-3)q+1]}
£ N(1-¢)g(N), N=2.
g(N) satisfies
g(N)—g(N-1) =(1-q)" (N -3),
and g(2) = g, and therefore, for all 0 < g <1, g(N) is a positive
nondecreasing function for N > 2. Hence A(N) is an increasing
function for N >2 for all 0 < g <1, and therefore, h(N) = h(2)

=2g(1— g) for all N > 2. Substituting this into (A.2), we obtain
that for all N> 2,

By —Ay>2q(1—q)—z(1-e %) 2B,
To obtain an upper bound on b, /(By — A,), we note that
by <4 for all N> 2, and therefore, for B,> 0, i.e., 2¢q(1— q) >
z(l—e™ %),
by 4
< e
By — Ay 29(1-q)—2(1-¢7%)

N2>3

>

B

=a=B,.
Hence if (4.8) holds and ¢ > a, in particular, ¢= a, then X© =
{(xQ )%, with x{Q=cN, N2, satisfies the required condi-
tions. Q.ED.

Proof of b)

Assume that (4.7) has two solutions {x{’}%_, and {x?}%_,
satisfying (4.9). Then their difference dy = x{ —x@, N>2,
satisfies dyy =X% ,ay ;d;, N> 2. Since {x{'}%_,, j=1,2 satisfy
(4.9), it follows that for all €> 0 and k; > 2, there exists k > k;
large enough such that for all N <k,

e ) 1
Z aN,ilxi(j)lsaeﬂ j=1727
i=k
and therefore,
o0 [+ 0]
1 2
L oayldl< X ay (X1 1x?) <e
i=k i=k



536

Hence
k-1
|dN'< Z aled|< Z aNt|d|+E
i=2
We now construct an upper bound x(o) on |dy| 2<N<k by
letting

xQ=aN, N=22,a.>0

where «, is chosen such that x{’ > |d,| for 2 < N < k, and such
that equality holds for some 2 < N, < k. Then for all 2 < N < k,

k—1

ldyl< Y ay |d|+e< Z ay x4+ e< Z ay |x01+ ¢
i=2 i= i=2
Z aNl (0)+€_x(0) [a((BN—AN)_e]

where the last equality is obtained similarly to (A.1), and 4, and
B, are defined there. It is clear that for 2q(1— ¢q) > z(1 — e™%), if
a,>€/[2q(1— q)— z(1— e 7)], then |dyy| < x forall 2 < N < k,
and this contradicts our choice of &, (such that equality holds for
some 2< N, <k) Hence a <e¢/[2q1—¢q)—z(1—e ?)], and
since € and k, are arbitrary, it follows that |d, | =0 for all N > 2.

Q.ED.

Proof of ¢

We prove here only for Ly. The proof for M, is entirely
similar.

Let [, denote the random variable which is the length of a
CRI that exactly N messages were transmitted in its first slot.
Clearly, Ly = E[l,].

Let &k 21 be some integer. For all N > 2 define

1% £ min( 1y, k)

Ly 2 B[],
The following holds for every N>2 and k >1:
im 4 =1L,

ko0

II>

Ly <Ik*1 <L, (A3)

Ly <k<B<BN (A4)

where 8 £ max (k, a), and a is defined in part a) of the theorem.
From the operation of the algorithm, it follows that for every
k=>1,

Lk <F,(L,), N>2 A5
N N k

where
L, = { Lli\;/ } N=2"
Lemma: For every k >1,

Lk <xy, N>2.

Proof: For every k=1,
{IN" )R-z J=012,

consider the sequence LY’ =
defined via LS‘O) — Lk; Lll‘\,(/+l) _
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Fy (LY, N >2. It follows from (A.5) by induction that for every
N > 2 the sequence L), j=0,1,--- is nondecreasing. On the
other hand, it is clear from the last part of the proof of a) that
Fy(Y)<BN, where Y= {y,}%., with yy, =8N, N>2. It fol-
lows from this and from (A.4) by induction that for every N > 2,
L) < BN for all j > 0. Hence the following exists:

lim L& = xy N>2.

Joo

It can be shown in a similar way to that in the proof of a) that
X" ={x§ Yy—2 is a solution of (4.7). Since 0 < x}} < BN, N>2,
it follows that X" satisfies (4.9). It follows now from the unique-
ness of the solution that xj = x} for all N> 2; hence L% <xj,
for all N = 2. This completes the proof of the Lemma.

It follows from the Lemma and from (A.3) that L, < x}, for
all N>2, and therefore, { L, }%_, satisfies (4.9). On the other
hand, {L, }%_, is a solution of (4.7). It follows now from the
uniqueness of the solution that L, = x4, forall N>2. Q.ED.
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