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Splitting Algorithms in Noisy Channels
with Memory

ILAN KESSLER, STUDENT MEMBER, IEEE, AND MOSHE SIDI, SENIOR MEMBER, IEEE

Abstract —Multiaccess networks are considered in which the shared
channel is noisy. We assume a slotted-time collision-type channel, Poisson
infinite-user model, and binary feedback. Due to the noise in the shared
channel, the received signal may be detected as a collision even though no
message or a single message is transmitted. This kind of imperfect
feedback is referred to as error. A common assumption in all previous
studies of multiaccess algorithms in channels with errors is that the
channel is memoryless. We consider the problem of splitting algorithms
when the channel is with memory. We introduce a two-state first-order
Markovian model for the channel and analyze the operation of the tree
collision-resolution algorithm in this channel. We obtain a stability result,
i.e., the necessary conditions on the channel parameters for stability of the
algorithm. Assuming that the -‘ability conditions hold, we calculate the
throughput of the algorithm. Extensions to more general channel models
are discussed.

I. INTRODUCTION

N A MULTIACCESS network many independent geo-

graphically distributed users share a common communi-
cation channel. During recent years, splitting algorithms
have received considerable attention as a means of coordi-
nating the access of the users to the shared channel. The
common model for a multiaccess network considered in
studies of splitting algorithms consists of the following
assumptions [13]: 1) an infinite number of independent
users transmitting messages of equal length over a slotted-
time collision-type channel; 2) the number of messages
generated by all users collectively in each slot is Poisson
distributed with mean A; and 3) binary feedback, ie., at
the end of each slot each user obtains a feedback which
indicates whether a collision has occurred in that slot (at
least two messages were transmitted), or whether there was
no collision in the slot (no message or a single message was
transmitted).

In most studies it is assumed that the common channel
used by the users for transmitting their messages (the
forward channel) is free of interferences that can cause
incorrect feedback. In practical radio channels, however,
the received signal may be detected as a collision even
though either no message or only a single message is
transmitted. Possible reasons for this are atmospheric noise,
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multipath fading, enemy jamming, etc. This kind of imper-
fect feedback is referred to as error.

Splitting algorithms in channels with errors were consid-
ered in [1]-[5]. The algorithms in [1]-[3] are based on the
tree collision-resolution algorithm (CRA) [6], [7]. The algo-
rithm in {4] is based on the 0.487 algorithm [8], [9], and the
algorithm in [5] is a stack algorithm [10].

A common assumption in all previous studies of multi-
access algorithms in channels with errors is that the chan-
nel is memoryless, ie., given the number of messages
transmitted in each slot, error events in different slots are
independent (each occurs with the same probability). This
is, of course, a simplifying assumption since the phenom-
ena mentioned above as possible causes of errors can be
with memory. The effects of memory on splitting algo-
rithms, as well as on multiaccess systems in general, are
not known. In particular, it is not clear what the effect of
memory on the stability of the algorithms is, and how the
memory affects the throughput of the algorithms within
the stable region. '

In this paper, we examine the operation of the tree CRA
in channels with errors when the channel is with memery.
In Section II we introducge Hur model for the channel and
give a ccacise déscription of the tree CRA. In Sections
III-V we analyze the operation of the tree CRA in this
channel. Finally, in Section VI we make some remarks
about possible extensions of the analysis to more general
channel models.

1I. THE MoODEL

We adapt the common assumptions 1)-3) (presented in
Section I) to our model. In this section we introduce our
model for the channel and give a concise description of the
tree CRA [1].

A. The Channel Model

An error is defined as the event in which when either no
message or only a single message is transmitted, the re-
ceived signal is detected as a collision, and therefore all
users obtain a “collision” feedback. Note that if an error
occurs when a single message is transmitted, the transmit-
ting user knows that his message was not received success-
fully and therefore must retransmit it at some later time.

Our channel model, which is a version of Gilbert chan-
nel [12], is as follows (extensions are discussed in Section
VI). In each slot the channel can be in one of two states—
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b (for “bad”) and g (for “good”). When the channel is in
state b, if either no message or only a single message is
iransmitted, then an error occurs with probability p, or p,,
respectively. When the channel is in state g, no errors
occur (with probability 1). Let X, be the state of the
~ channel at time (slot) n. The sequence {X,, n>0} is
assumed to be a homogeneous Markov chain with state
space E = {b, g} and transition matrix

P ry 1-r,
e 1-rn |
The elements of this matrix will be denoted by p (i, j),
i, j € E. The state diagram of this chain is shown in Fig. 1.

Ty

Fig. 1. State diagram of channel

Note that with the above notation, when the channel is
in state z, z € E, the next state is g with probability », and
b with probability 1— r,. This will henceforth facilitate the
notation.

When 1—7, and r, are relatively small, the model
simulates a bursty channel. When r, = r, £ r, the model
corresponds to a memoryless channel where the probabil-
ity of an error is (1—r)p, or (1—r)p,, according to
whether no message or a single message is transmitted in
the slot.

B. The Tree Collision Resolution Algorithm [1]

Consider two time axes. The first, called the arrival axis,
shows the Poisson arrival instants. The second, called the
transmission axis, is segmented into consecutive intervals
called collision resolution intervals (CRI’s), each consisting
of an integral number of slots. At the first slot of the ith
CRI, the algorithm enables an interval E;=[a,, b;) of the
arrival axis. If no collision occurs in this slot, the ith CRI
terminates. If a collision occurs in this slot, say the kth
slot, all users involved in the collision split into two subsets
(e.g., by each flipping a coin), in such a way that a user

. belongs to the first subset with probability g € (0,1). The
first subset transmits in slot k+1, and if there is no
collision in that slot, the second subset transmits in slot
k +2; if a collision occurs in slot k +1, then the first of
the two subsets splits again, and the second subset trans-
mits in the next slot after the collision among the users of
the first subset has been resolved. A collision is said to be
resolved at the moment when all users know that the
colliding messages have all been successfully retransmitted.
The ith CRI terminates at the moment when the collision
among the users that transmitted in its first slot has been
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resolved. The (i +1)st CRI starts in the next slot after the
ith CRI has terminated. The interval E, =[a,, b,) is deter-
mined as follows: a,=0, b,=A, and for all i=1, a,="
b,_;, b,=min(b,_,+ A,t,), where ¢, is the current time
and A is a parameter (that is chosen so that the algorithm
is optimal with respect to some criterion, e.g., throughput).
In this way the arrival axis is entirely searched and re-
solved.

It is well-known that the evolution of each CRI can be
represented by a binary tree [1]. Also, the above tree CRA
can be described equivalently as a stack algorithm [15].
This description is the same as before except that now the
mechanism for resolving collisions is described as follows.
Each user independently utilizes a counter. A user that has
a message transmits it if and only if the value of his
counter is zero. When the user is first enabled the counter
is set to zero, and is afterwards updated at the end of each
slot according to the feedback obtained, as follows. If the
value of the counter is greater then zero, then the user
increments it by one for a “collision” feedback and decre-
ments it by one for a “noncollision” feedback. If the value
of the counter is zero, then a “noncollision” feedback
indicates that the message was successfully transmitted
and the user thus leaves the system; if a “collision” feed-
back is obtained, then with probability ¢ the value of the
counter is not changed and with probability 1-—-g it is
incremented by one. Now, consider an infinite stack with
cells numbered 0,1,2,---. The above counters can be
referred to as pointers to this stack. Thus one can refer to
the number of messages in each cell at every slot, and the
algorithm can be completely described by the content of
the stack at each slot.

III. PRELIMINARIES

In the next two sections we analyze the operation of the
tree CRA in the channel introduced in Section II. We first
consider the special case p, = p; =1, since the simplicity of
this case enables one to get more insight into the problem.
Then we generalize the results for the case p,=p;,=p
where 0 <p <1, and thereafter give the modifications
needed to extend the results for the case p,+# p; where
0 <pg, o<1

The analysis proceeds in two steps. In the first step, a
stability result is obtained. That is, we derive the necessary
conditions on the channel parameters r,, r,, and p; for
stability of the algorithm. In the second step, assuming
that the stability conditions hold, we calculate the through-
put of the algorithm.

Throughout the analysis, we assume that 0 < T 1y <1.
The cases where this assumption does not hold are degen-
erate. Some of these cases are not interesting (for instance,
r, =0 or r, =1) and others (for instance, r, =1, r, > 0) can
be handled easily (using the ideas and techniques pre-
sented).

We now present some additional notation. Consider the
stack that represents the evolution of the algorithm. Let
y{ be the number of messages in the ith cell of the stack
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at slot n, and for all n > 0 denote Y, = (3@, y®, y@, .. ).
The process {(X,,Y,), n> 0} is a Markov chain satisfying

P(Xn+l ’Yn+1=y|X=l Ynzy)
=p.(i, )P(Y, 1= yIX,=i,Y,=y) (3.1)

for every n, i, j, y, y’. Equation (3.1) reflects the fact that
the evolution of the channel states is not influenced by the
algorithm.,

IV. THE SPECIAL CASE p, = p; =1

The case p,=p,=1 corresponds to the situation in
which whenever the channel is in state b and either no
message or a single message is transmitted, an error occurs.
The unique feature of this case is that in the last slot of
each CRI or sub-CRI the channel state is g, and therefore
at the beginning of each CRI or sub-CRI the channel state
is g (or b) with the same constant probability, indepen-
dent of the past.

A. Stability

Consider the binary tree that represents the evolution of
some CRI in an error-free channel. It is well-known that
the expected number of vertices of this tree is finite. When
there are errors in the channel, the binary tree that repre-
sents the evolution of the CRI can differ from the error-free
tree if and only if an error occurs in a slot that corresponds
to a leaf of the error-free tree, in which case a new subtree
evolves from that leaf. We shall refer to such a subtree as
an error tree. It follows that the expected number of
vertices in the binary tree that represents the evolution of
the CRI is finite if and only if the expected number of
vertices of each error tree is finite. Thus, for any k >1,
consider the kth error tree that evolves during the opera-
tion of the algorithm, and denote by 7, the slot that
corresponds to its root. Let /, be the length of the sub-CRI
that corresponds to this error tree. From the operation of
the algorithm, it follows that given Xy, the random vari-
able /, depends only on the channel states during that
sub- CRI and is independent of the coin tosses and the
channel states in the past (before T}). Since Xy, = b for all
m > 1, it follows that the random variables {/,,  m> 1} are
identically distributed.

We wish now to obtain the distribution of the channel
states in certain slots of the sub-CRI, as follows. The state
of the channel in the slot that corresponds to the root of
the error tree is b and hence the root has two sons. We
shall refer to the subtree that evolves from the son that
corresponds to slot 7, +1 as the right subtree, and to the
other subtree as the left subtree. Since the slot that corre-
sponds to the root of the right subtree is T, +1, the state
of the channel in this slot is g with probability p (b, g) =
r,, and b with probability p, (b, b) =1— r,. Observe that if
the state in slot 7, +1 is b, then the right subtree is again
an error tree.

To determine the distribution of the channel states in
the slot that corresponds to the root of the left subtree, we
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observe that similar arguments cannot be employed. The
reason is that the number of slots that elapse between T,
and the slot that corresponds to the root of the left subtree
is a random variable which is determined by the evolution
of the algorithm and the channel states up to that slot.
Thus let T} be the slot that corresponds to the root of the
left subtree. As will be seen shortly, it is enough to
consider only the finite case, i.e., when T} <co. Thus
suppose that T,/ < co. Now, any sub-CRI must terminate
with a “noncollision” feedback, and therefore we have
X, 1= g Since T}/ —1 is a stopping time for { X, n > 0},
it follows by the strong Markov property of { X,,n >0}
that P(Xr, = j)= p.(g, j), j € E. Again, note that if the
state in slot 7/ is b, then the left subtree is an error tree.

Let ¢ be the probability that the length of the sub-CRI
that corresponds to the kth error tree is finite, ie., ¢ =
P(l, <0). We have

=[r,+(1-r)0][r,+(1-1,)0].

The explanation for (4.1) is the following. The error tree is
finite if and only if the right and left subtree are both
finite. The first term is the probability that the right
subtree is finite. This occurs if and only if either 1) or 2)
occurs: 1) the state of the channel in the slot that corre-
sponds to the root is g (this occurs with probability r,); 2)
the state of the channel in the slot that corresponds to the
root is b (this occurs with probability 1—r,) and the
subtree that evolves from the root is finite (given that the
subtree starts in state b this occurs with probability ¢ since
the subtree is again an error tree). The second term is the
probability that the left subtree is finite given that the
right subtree is finite. This occurs if and only if either 1) or
2) occurs, except that now the probabilities are r, and
(1—r,)¢, respectively.

Solvmg (4.1) for ¢ we obtain ¢, =1 and ¢,=r,r o/
((A=r,)1—r,)). Since ¢ must satisfy 0 <¢ <1, it follows
that a sufflclent condition for ¢ =lis r,r, > (1—r,)1-r )
Let »(b) and »(g) be the invariant probablhtles of { X,
> 0}; we have v(b) =(1—-r,)/(1- r,+r,)and »(g)= 1—
v(b). Then the last 1nequahty is equlvalent to »(b) <1/2.
Thus we have proved the following.

Proposition 1: 1f v(b) <1/2, then P(l, <o0)=1.

We wish now to calculate L® 2 E(1,), i.e., the expected
length of the sub-CRI that corresponds to the kth error
tree. To that end, suppose first that P(/, <co0)=1. Then
we have

L =1+n,[14r,+(1-r,)L"]

(4.1)

+(1- rb)[Lb +r+(1- rg)Lb]. (4.2)
The explanation for (4.2) is the following. The 1 is the first
slot of the sub-CRI. The second term corresponds to the
case in which the state of the channel in the second slot of
the sub-CRI is g. This occurs with probability r,, and then
1) the (expected) length of the sub-CRI that corresponds
to the right subtree is 1; 2) the expected length of the
sub-CRI that corresponds to the left subtree is 1 if the
state of the channel in its first slot is g (this occurs with
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probability r,), and is L’ if the state of the channel is b
(this occurs with probability (1 - r,))- The third term cor-
responds to the case in which the state of the channel in
the second slot of the sub-CRI is b. This occurs with
probability 1—r, and then 1) and 2) above apply -except
that now the 1 in 1) should be replaced by L°.

Now, if P(/, <o) <1, then L’ =00 and (4.2) is still
satisfied. Thus (4.2) is always true, regardless of the value
of P(l, <o0).

Equation (4.2) is of the form x =x(2— ~r)+(r,t+r,
+1). The solutions of this equation are xo — 00, X; =00,

=(rptrn+l)/(r,+r,-1)= 1+1/[A—r,+r)1/2—
v(b))], where the last solution is valid if and only if
v(b) #1/2. The algorithmic parameter L’ is a solution of
the equation that satisfies L°>1. Thus L’# x, and it
remains to determine to which of the the two solutions, x,
or x,, the algorithmic parameter L’ corresponds. We have
the following.

Theorem 1: If v(b) <1/2, then

1/(1-r,+r,)

D=

<co.

If v(b)=1/2, then L’ =

The proof of Theorem 1 is given in the Appendix.

Let 7, (i > 0) be the last slot of the ith CRI. As noted
before, the expected number of vertices of the binary tree
that represents the evolution of any CRI is finite if and
only if the expected number of vertices of each error tree is
finite. Recalling that L®= E(/,) for all k >1, we have the
following,

Corollary 1: E(71;) <oo for all i >0 if and only if »(b)
<1/2.

The algorithm is said to be stable if it has a positive
throughput (see the next subsection). A necessary condi-
tion for the stability of the algorithm is E(7,) <oo for all
i 2 0, since otherwise the expected length of some CRI is
infinite and hence the throughput is zero. Thus we have
the following.

Corollary 2: 1f v(b)>1/2, then the algorithm is unsta-
ble for all A > 0.

As will be evident later, Corollary 2 holds also if p, €
[0,1] (and py=1). Thus this is a generalization of the
well-known result in the memoryless case: the algorithm is
unstable if the probability that an error occurs in an idle
slot is equal to or greater than 1,2 (recall that the memo-
ryless model is a special case of our Markovian model).

Remark: Corollary 1 implies that if »(b) <1/2, then
P(1,<o0)=1 for all i>0. It can be further shown that
P(1,<00) =1 for all i >0 if and only if »(b) <1/2.

B. Throughput

By Corollary 1, the expected length of each CRI is finite
if and only if »(b) <1/2. We now assume that this condi-
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tion holds and proceed to calculate the throughput of the
algorithm. For any i >0 consider the ith CRI. Let a, be
the number of messages that were transmitted in the first
slot (T;) of this CRI, and let /; be its length. It is clear that
given a; and Xp, the random variable /, depends only on
the results of the coin tosses performed in the algorithm
and the channel states during that CRI, and is indepen-
dent of the coin tosses and the channel states in the past.
For z € E, denote L = E[/,|a, = n, Xr.=z]; ie, L} is the
expected length of the ith CRI given that n messages are
transmitted in its first slot and the state of the channel in
this slot is z. We have

rg+rb+1

Lg=LE=1 Li=Lt=1I"=
o 0o re+r,—1

(4.3)
rg)sz—j]

(1" rg)Lgﬂ‘]}’

n>2,zeE (4.4)

Li=1+ Z Qn(]){ [Lp+rLe +(1-

+(1-r)[Ll+r,LE +

g n—j

where

0.(0)=(])ea-a)~.

The explanation for (4.4) is the following. The 1 is the first
slot of the CRI. At the end of this slot, the n colliding
messages split into two subsets in such a way that with
probability Q,( /) the first subset contains j messages and
the second subset contains n — j messages. In the second
slot of the CRI, the first subset is transmitted. The state of
the channel in this slot is g with probability 7, and b with
probability 1—r,. If it is g, it takes L# slots on average to
resolve the collision among the j messages. It then takes
Lg , or L -, slots on average to resolve the collision
among the n — j messages of the second subset, according
to the channel state in the first slot (denote this slot by T')
of the resolution of this collision. As noted before, any
sub-CRI must terminate with a “noncollision” feedback
and hence X;_,=g. Since T—1 is a stopping time for
{(X,,Y,), n =0}, it follows by the strong Markov property
of {(X,,Y,), n=0} and (3.1) that P(X,= g)=r, and
P(Xy=0b)=1-r,. The last term is explained similarly.

By rearranging terms in (4.4) we obtain a somewhat
simpler expression:

L:=1+ Y 0,(/)[rnLi+(1-r)L?
Jj=0

+r,LE  + (l—rg)L,'j_j], n>2,ze€E. (4.5)
Solving (4.5) for (L§, L?), we obtain
C,B,—G,B AC,— AC
Lf: 1~2 21 LZ——— 1~2 2>1 (4,6)
A B, — A, B, A,B, - A,B,
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where
A,=1-[0,(0)+0,(n)]r,
B =—[0,(0)+0,(n)](1-r,)
C=1+[0,(0)+ Q,(n)][r, +(1-r,) LE]
¢ T 0L+ L)+ (- (1 4 28]
—[2.(0)r, + 0, (n)r,]
B,=1-0,(0)(1-r,)-0,(n)(1~r,)

C,=1+0,(0)[r, + (1= r,) LE] + 0, (n)[r, + (1 —r,) LE]

n—1
+ Z Qn(j)[rbL_/g-l_(l— rb)Lb+ rgLf—j
Jj=1

+(1- rg)Lﬁ_j].

Equation (4.6) is a recurrence equation for which the
initial conditions are given by (4.3).

Now, let L(z) = E[/;| Xy, = z]. Then the Poisson arrivals
imply that

o ,—AA n
L= § (47)
n=0 n!

Let /(k) and m(k), k =1, be the length of the k first
CRI’s and the number of successfully transmitted mes-
sages during them, respectively. The throughput of the
algorithm is defined as T=1lim, _  { E[m(k)]/E[I(k)}}.
Let m;, i =0, be the number of successfully transmitted
messages during the ith CRI. From the operation of the
algorithm it follows that E(m;)=AA for all i >0. Let T;
(i = 0) be the first slot of the ith CRI (T;=0). That is,
T,=t,_,+1forall i>1 (recall that 7, is the last slot of the
ith CRI). Each CRI must terminate with a “noncollision”
feedback, and therefore X, = g for all i > 0. Since for all
i>0, 7, is a stopping time for {(X,,Y,), n>0}, it follows
by the strong Markov property of {(X,,Y,), n=0} and
(3.1) that P(X;.=j)=pJAg, ), JEE, for all i=1. In
other words, {)'( ., i>1} 1s an independent identically
distributed (i.i.d) process. Hence, for all i >1,

E(1) = E[E(11X;)]
= E[L(X;)] =r,L(g)+(1—r,)L(b).
Thus the throughput is

[,Zm]_ . k(AA)
] T e k- [r,L(g)+(1—r,)L(b)]

zeE.

T= klim T
[z
AA

T L(g)+(1-r)L(b)

Numerical results are given in Fig. 2, where the through-
put is plotted versus r, for various values of »(b) (for
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s
Fig. 2. Maximum throughput versus », for various values of »(b).
Marked points correspond to memoryless case (i.e., r, =7, =1—»(b)).

g =1/2). We observe that for a constant value of »(b), the
throughput increases as r, increases, and vice versa. Thus,
for example, for values of r, that are higher than the
corresponding value in the memoryless case (i.e., 1 — v(b)),
higher throughput than that in the memoryless case is
achieved. In other words, the shorter the average time the
channel spends in state b once it enters this state, the
higher the throughput achieved. An intuitive explanation
for this phenomenon is the following. Consider the binary
tree that corresponds to some CRI in an error-free chan-
nel. The channel can enter state b in a slot that corre-
sponds either to an internal vertex or to a leaf, but only in
the latter case will there be a degradation in the through-
put. If the time the channel spends in state b is long
enough, then even if this state is entered in a slot that
corresponds to an internal vertex, the burst will reach a
slot that corresponds to some leaf. Moreover, if the chan-
nel is in state b in a slot that corresponds to a leaf, then a
consecutive b state occurs also in a slot that corresponds
to a leaf, and each “damaged” leaf reproduces at least two
more leaves—a sort of an avalanche phenomenon. Note
that, for a constant »(b), a shorter average time spent in
state b once it is entered implies also a shorter average
time spent in state g once it is entered.

V. THE GENERAL CASE

In the general case, the state of the channel in the last
slot of each CRI (or sub-CRI) is not necessarily g as it is
in the special case p, = p; =1, and therefore the analysis i is
somewhat more complicated.

A. The Case p,=p,=p where 0 <p <1

We first note that the channel model can be described
equivalently as follows. When the channel is in state b, an
error occurs if and only if ¥, =1, where {V,, n>0} is a
Bernoulli process with parameter p which is independent
of { X,, n>0}. We shall hereafter be using this descrip-
tion.
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For any k >1 consider the kth error tree that evolves
during the operation of the algorithm. As in the previous
section, we need the distribution of the channel states in
the slots that correspond to the roots of the right and the
left subtrees of the error tree. For the right subtree we
have, as in the previous section, P(X7 1= J)=pu(b, )),
JEE, since the state of the channel 1n the slot that
corresponds to the root of the error tree is b. The distribu-
tion of the channel states in the slot that corresponds to
the root of the left subtree is not as in the previous section,
since in this case the state of the channel in the last slot of
each sub-CRI is not necessarily g. Thus let us first obtain
an expression for the probability that the channel state in
the last slot of the sub-CRI that corresponds to the error
tree is z, z € E. Denote this probability by w?(z). We
have

wP(g) =p{[rn+1-r)w()][r,+(1-r)w(g)]

+(1=r)wh(B)[r, +(1—-r)wi(g)]}. (5.1)
Equation (5.1) is explained in a way similar to (4.1), where
we note that the error tree terminates in state g if and only
if an error occurs in the slot that corresponds to its root,
its right subtree terminates either in state g or in state b,
and its left subtree terminates in state g. Here the strong
Markov property of {(X,,V,), n> 0) is used.
Clearly, P(/, <o0)=w?(g)+ w®(b). Substituting w?(b)
=¢ — w”(g) in (5.1) yields the following equation:

a[w”(g)] +bwb(g)+c(¢)=0 (5.2a)

where
a=p(1-r)(r,—r,),
b= p[(l— ry)(1=2r, + rg)+ ry(1

—rg)]—l,

c(¢) =pr,[(1-r)o+r,]. (5.2b)
We also have
=(1~p)+p{rr+r(1-1)¢
+(1=1)[wh(g)(r,+(1-1,)¢)
+(6—wh(8))(r, +(1-1)9)]}- (53)

Equation (5.3) is explained in a way similar to (4.1) and
(5.1). Rearranging terms in (5.3) we obtain
A9’ + B(w"(g)) o +C(wP(g)) =0  (5.4a)

where

A=p(1-r)%  B(w"(2))=p[r(2-1r—r,)
+wh(8)(1=n)(r,~ )] -1,

C(wb(g)) =1+ p[r,,rg—1+ w?(g)(1- ry)(r,~ rb)].
| (5.4b)

We consider f1rst the case r, # r,. Solving (5.4) for ¢ we
obtain ¢, =1 and ¢,= C(w”( 8))/A. Substituting ¢ =
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a[wh(g)]*+ Bwb(g) +v=0 (5.5)

where a=a(l—r,), B=b(l—r)—ar, y=r[1—p(1—
r,)), and a,b are given by (5.2b). Thus the system of
equations

ax*+bx+c(y)=0
Ay*+B(x)y+C(x) =0,

where a, b, c(-), 4, B(-),C(-) are given by (5.2b) and
(5.4b), has the following four solutions:

—(b+my(2a), =1
= —(b—yb>~4ac(1) )/(2a) y,=1
== (BB —4ar)/ ). y=C(x;)/4
=—(B-VB ~4av)/(20),  y=C(x,)/A.

(5-6)

Lemma I: a) For 0<y<1 the equation ax?+ bx +
¢(y) = 0 has two real roots; for r, > r(r, < rb) the greatest
(smallest) root is in (0,1], and the other root is not in [0,1].
b) The numbers x, and y, given by (5.6) are not both in
the interval [0,1)].

The proof of Lemma 1 is given in the Appendix.

Since ¢ and w®(g) must both be in the interval [0,1], it
follows by Lemma 1 that either ¢ =1 and w’(g)=x, or
¢ = C(x3)/A4 and w®(g) = x,. Hence a sufficient condition
for P(l, <o0)=1 and wb(g)=x; is C(x;)— A>0. (If
C(x3)— A=0, then ¢$=1; hence by (5.2) and Lemma
1-a), we have w®(g) = x,.) Substituting for x5 the expres-
sion given by (5.6) yields C(x;)— A= F+ G where F 21
+B/QA = r) = pll = ryr + (1= 1)) and G

\/ B —4day /20— r,)). By straightforward calculations,
we obtain (F+G)YF—G)=D[1/2— pr(b)] where D =
—2p(1—ry)1—r,+r,)<0. Since F+G>F—G it fol-
lows that if pr(b)<1/2 then F+G =0, ie, C(x;)~
A=0.

Consider now the case r,=r,=r. In this case B(-) and
C(+) in (5.4) are constants and we have C — 4=1-2p(1 —
r) =1-2pv(b). Therefore, if pr(b) <1/2 then C— A>0
and hence ¢ =1. Substituting ¢ =1 in (5.2) we obtain

wo(g)=pr/(1—p(1-r)).

Thus we have proved the following proposition.

Proposition 2: 1If pr(b) <1/2, then P(I, <o0)=1 and

- 51—<b+\/b2—4ac(1) ),

+
\ - r,#r,
w’(g) = or
1-p(1-r)’ BT

where a, b, ¢(-) are given by (5.2b).



1040

As in the previous section, to obtain an expression for
L® we first suppose that P(/, <o) =1. Then we have

L =1+ p{r,[1+r,+(1-r,)L’]
+(1- r,,)[Lb-i- wh(g)[r, +(1- r,) L?]
+(1=w(g)[r+(1-r) L*]]}. (5.7)

Equation (5.7) is explained in a way similar to (4.2) and
(5.1). As in the previous section, (5.7) holds always, regard-
less of the value of P(J, < c0). Solving (5.7) we obtain that
either L’=c0 or L?=1+2p/(C(w’(g))— A)2 U where
C(-) and A are given by (5.4b) (the second solution is
valid if and only if C(w®(g))— 4 # 0). Now, if P(/, < c0)
<1, then clearly L? = co. Therefore, it suffices to consider
the value of U only when P(I/, <o0)=1. We have the
following lemma.

Lemma 2: If P(l, <o) =1, then C(w’(g))— A=
H{1/2—pv(b)], where H={-2p(1—r)1—r,+r,)}/
{1+ b/2~ p[1— ryr,+ (1~ 1) —yb*—4ac(1) /2} > 0
for r,#r, and H=2 for r,=r,.

The proof of Lemma 2 is given in the Appendix.

Employing the same approach as in the previous section,
we obtain Theorem 2.

Theorem 2: If pv(b) <1/2, then
2p

H[1/2—pr(B)] ~

where H>0 is given in Lemma 2. If pr(b) >1/2, then
L =oo0.

The proof of Theorem 2 (which is omitted) is similar to
the proof of Theorem 1, where we note that 1) In the cases
pr(b) <1/2 and pr(b)=1/2 we have, by Proposition 2,
that P(I/, <o0)=1; hence by Lemma 2 it follows that in
the former case U=1+2p/[H(1/2— pr(b))] and in the
latter case L?=oc0. 2) In the case pr(b)>1/2, if P(I, <
o) =1, then it follows from Lemma 2 that U=1+
2p/[H(1/2 pr(b)] <1, and if P(I, < o0) <1 then clearly
LP=o0.

By similar arguments as in the previous section we have
two corollaries.

Corollary 3: E(7;)<oo for all i>0 if and only if
pr(b) <1/2.

Corollary 4: If pr(b)>1/2, then the algorithm is un-
stable for all A > 0.

Corollary 4 is the intuitively expected generalization of
the stability result obtained in the special case p=1
(Corollary 2). Also note that, as in the previous section, it
can be shown that P(1; <o0) =1 for all i > 0 if and only if
pr(b)<1/2.

We now assume that pr(b) <1/2 and calculate the
throughput of the algorithm. Since in this case the state of
the channel in the last slot of each CRI (or sub-CRI) is not
necessarily g, we calculate first the probability that the
state of the channel in such a slot is f (f € E) given that
in the first slot of the same CRI (or sub-CRI) the state of
the channel is s (s € E) and n messages are transmitted.

L'=1+
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Denote this probability by w'(f). Since pr(b) <1/2 it
follows that wi(b)=1- ws(g) for all n>0. We have

Wog(g) =wf(g) =1, and wy(g) =w{(g)=w’(g) where
wb(g) is given by Proposmon 2. For n > 2, we have

wi(g) = _éOQn(j){[erf(g)Jr(l—rs)wj”(g)]

[rws (8)+ (1= r)wi (8)]
+ [rswg(b)+(l— rs)wj”(b)]

[rows () + (= n)w(2)]},

Equation (5.8) is explained in a way similar to (5.1) (here
the strong Markov property of { X, w Y,,V,), n =0} is used).
Solving (5.8) for (w(g), w’(g)) gives a recurrence equa-
tion for which the initial conditions are given above.

We now have

s€E. (5.8)

Li=1+ Z 0. Lr+[wr(e)r+ wp(o)n] Le,

+ [wjg(g)(l —r)+wi(b)(1-1,)]| L8]
+ (1 - rz)[L;.’ + [wj”(g)rg + wj”(b)rb] L,
+[w((=-r)+wB)a-n)] L2 ]} (5.9)

for all n>2 and z € E. Equation (5.9) is explained in a
way similar to (4.4) and (5.1). Solving (5.9) for (L§, L%)
gives a recurrence equation for which the initial conditions
are L§=L§=1, and L= L%= L% where L’ is given by
the first assertion of Theorem 2. L(z) is now obtained as
in (4.7).

Recall that T; and 7;, i > 0, are the first slot and the last
slot of the ith CRI, respectively (T, = 0). Contrary to the
case p=1, {Xn , i =1} is not an i.i.d. process here.

Proposition 3: If P(1,<o0)=1 for all i>0, then
{ X7, i 21} is a homogeneous Markov chain.

The proof of Proposition 3 is given in the Appendix.

Let the transition matrix of { X, i >1} be

. S 1-s,
s 1=s,1
The transition probabilities s, and s, are computed as
follows. Let w*( f), where s, f € E, be the probability that
the state of the channel in the last slot of a CRI is f given

that the state of the channel in the first slot of the same
CRI is s. It is clear that for s€ E,

wi(g) = i : (A)

We have

—w;(g)  wi(b)=1-w'(g).

s,=w(g)r,+wi(b)r,, z€E.

Let p(b) and p(g) be the invariant probabilities of { Xz,
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i>1}. Then
5, rgw’(g)+ rw*(b)
M) = s, = n)[wi(a) - wi@)] <1
p(b) =1-p(g).

Now, the throughput of the algorithm is

k 1
lf[‘Ez rni} Z; g; l?[rn ]

T E 'k 1,} = %iE[l,-]
,1=1k 21
;Igl()\A)
= Jm Tz
;El [E(1)Xy,)]
L AA B AA
k=0 %g (L(x,)] n(g)L(g)+p(b)L(b)

where the last equality follows from [14, p. 159]. Obvi-
ously, the results of this subsection for p =1 coincide with
the results of Section IV.

B. Modifications for the Case p,+ p,

In this case we have to distinguish between two types of
error trees: an error tree that no message is transmitted in
the slot that corresponds to its root (type 0) and an error
tree that a single message is transmitted in the slot that
corresponds to its root (type 1).

Any CRI that starts with an idle slot contains only idle
slots and therefore the analysis for an error tree of type 0
is exactly the same as the analysis for the error tree in the
previous subsection. Thus if p, w( g) L% [, in the previ-
ous subsection are replaced by py, wi(g), L5, 19, respec-
tively (where /{9 is the length of the sub-CRI that corre-
sponds to the kth error tree of type 0), then Proposition 2
and Theorem 2 are true also in the case Po # Py

Assume now that pyr(b) <1/2 and consider the kth
error tree of type 1. By an equation analogous to (5.3), we
obtain that the length of the sub-CRI that corresponds to
this error tree is finite with probability 1. This implies that

wi(b)=1- wl”(g) Using this we obtain in a way similar
to (5.1) that w/(g) is the solution of the following first
order equation:

wi(g) =e{a[[r+ (1= r)wi(g)][r,+ (1= r,)wi(g)]
+ (=) (1= w{(&)) [, + (1= r,)w(8)]]
+(1=g)[[7, + (=) wd(g)][r,+ (1~ r,)wi(g)]
1R (@) + (= r)wb(g)]) (5.10)

where g € (0,1) is the splitting parameter of the algorithm.
An equation for L% can be obtained in a way similar to
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(5.7), and solving this equation, we obtain that either
LY=o or L=1+V/W where

ya pl{q[rb[l+rg+(1—rg)L8]
+(1=r) [1+ wi(g)[r, +( (1-r)LE]
+(1- Wl(g))[’b+(1“’b)L0]”
+(1—q)[zr,,+(1~r,,)(Lg+1)]}
W 21-0,[(1- )[r, (1= r,) + (1= 1) [WE(g)(1-1,)
+(1-wl(2)) (1= 1] ] + q(1-1,)]

(the second solution is valid if and only if W+ 0). We
have

Wzl—pl[(l—q)[rb(l—r J+(1-r,)
[wi(g)-1+ (1= w(g))1]] + 41— 1,)]

=1-p,[(1=¢) (1= r,r,) + q(1-1,)]
21-p[(1-¢) 1+ g1 =1-p,>0.

(5.11)

(5.12)

Note that »(b)=1 if and only if r,=0 and that r,=0
implies w{(g) = 0. Therefore, equality holds in (5.12) if
and only if p,»(b) =1. Using this and the finiteness of L2,
we can obtain in a way similar to Theorem 1 that L% <o
if and only if p»(b)<1, in which case L:=1+V/W
where V' and W are given by (5.11). Note that, by assump-
tion (see Section III), r re, 1, €(0,1) and 0 < p, <1, which
imply that p,»(b) <1.

It follows from these results that if p is replaced by Po
then Corollaries 3 and 4 are true also in the case p, # p,.
The rest of the analysis in the previous subsection applies
also, provided that we use for wf(g) and L% the expres-
sions given above.

VI. SUMMARY AND DISCUSSION

We considered the problem of splitting algorithms in
channels with errors when the channel has memory. We
introduced a channel model described by a two-state
Markov chain, and analyzed the operation of the tree CRA
in this channel. We first obtained a stability result, i.e., the
necessary conditions on the channel parameters for stabil-
ity of the algorithm. Then, assuming that the stability
conditions hold, we calculated the throughput of the algo-
rithm.

The stability result we obtained generalizes the well-
known result for memoryless channels (that the tree CRA
is unstable if the probability that an error occurs in an idle
slot is equal to or greater than 1/2).

The ideas and techniques we employed in this paper can
be used to analyze other splitting algorithms as well.
Moreover, they can be easily extended to apply to the
analysis of the more general channel model in which the
state space of the Markov chain contains an arbitrary
finite number of states, where the probability of an error
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in state i is p{" or p{”, according to whether no message or
only a single message is transmitted in the slot. In fact, the
analysis for this model differs from our analysis mainly in
the number of equations required, which increases with the
number of states.

Recently, it came to our attention that a similar problem
was independently considered in [11].
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‘ APPENDIX
Proof of Theorem 1

If »(b)>1/2, then x, <1; hence L’ = x=o00. If »(b)=1,2,
then clearly L’ = x, = co. If »(b) <1/2, then it suffices to show
that the algorithmic parameter 1> must satisfy L? <1+[1/(1— 1,
+1,)/(1/2~ v(b))], since this implies that Lt = X, =1+[1/(1~
Te +7)/(1/2 = »(b))]. To that end, for every j >1 define /() &
LA j (where u A o2 min(u,0)) and LP(j)2 E[I,(j)]. It fol-
lows immediately that 0<1/,(j)1 l, as j—o0; hence by the
monotone convergence theorem L”(j)1 L’ as j—o0. Let R, be
the length of the (sub-)CRI that starts at = n. Denote P()=
P(-[X; =b) and E,(-)= E(-| X7, =b). From the operation of
the algorithm it follows that Ry =1+ Ry .+ Ry, and hence
for all j>1,

Ry AN j<1+Rp A j+ Ry A . (A.)
We have
EI)(RTAA.I)=E(RTkAj)=Lb(])a

where the first equality follows from the definition of T, and the
second equality follows from the definition of L*(j). We also
have

Ey(Ryi A J) = E,( E,(Rpy A jI Xy, 1)
=Py (X1 = 8) By(Rp, 1 A jIXg0y = g)
+ Ph("’nu =b) Eh(RTk+1 A JiXg =b)
=r,-1+(1- 1) L?( ), (A3)

izl (A2

j=1

where the last equality follows from the operation of the algo-
rithm and the strong Markov property of {X,, n>0}. By as-
sumption, »(b) <1/2; hence by Proposition 1 we have P, <
o) =1. Using this, we obtain in a way similar to (A3):

Eh(RT,; A j) = E:(EI;(RT,{ A j|XT,;)) =’g'1+(1_ g)Lb(j)’
Jj=1. (A4)
Taking expectations on both sides of (A.1) and using (A.2)-(A 4),
we obtain that for all j>1,
L"(j) < L[’(j)(Z— rg—rb)+(rg+ r, +1).

Now, since »(b) <1/2 and L*(j)<oo for all j =1, it follows
from (A.5) that L*(j) <1+[1/(1~ 1, +1,)/(L/2~ »(b))] for all
J=1. Letting j — o0, we obtain the result.

(A.5)
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Proof of Lemma 1

a) Denote h(x)=ax?+bx+c(l) where a,b,c(-) are given
by (5.2b). We have A(0) = ¢(1) > 0. For r, > r, the parabola h(x)
is concave and therefore there exist two real roots, x’ and x”,
which satisfy x’ <0 < x”. We have h(l)=p—-1<0forall0<p
<1, and hence x” <1. For r, > r, the parabola h(x) is convex.
For all 0 < p <1, we have 4(1) <0 and hence there exist two real
roots, x’ and x”, which satisfy 0 < x’ <1< x”. For p =1 we have
x'=1 and x"=c(Q)/a=(r,(l—r)+ r5)/(r(l—r)— r,(1-
7)) > 1. Thus part a) is proved for y =1. The result remains true
when 0 < y <1 since in this case 0 < c(y)<e().

b) Denote f(x)=ax?+ Bx+y where a, B,y are as in (5.5).
We have f(0) =y > 0. For r,>r, the parabola f(x) is concave
and therefore x, and x, given by (5.6) are real and satisfy
x4 <0 <x;. Thus x, is not in [0,1]. For r, <r, it suffices to
show that if 0 < y, <1, then x4 is not in [0,1]. To that end, note
that x, is a root of ax?+ bx+ ¢(y,) =0 where a,b,c(-) are
given by (5.2b). By part a), for 0 < » <1 the roots of this
equation are real, thus x, is real. Hence X3 is real too, and we
have x; < x,. Let x* and x” be the roots of ax? + bx + e(y) =0,
and let x’ < x”. We have

B b(1—-r)—ar, b 7, b

> - —— = >x'.
Ya= 2a(1-1r) x

2¢  21-1r) 2a

Hence x, = x” which by part a) is not in the interval [0,1).

20

Proof of Lemma 2

Consider first the case r, #r1,. Since P(l, <o0)=1, it follows
by (5.2) and Lemma 1-a) that w®(g) = x,. Substituting for x; the
expression given by (5.6) yields C(x;)~— 4 = F, + G, where F; £1
+b/2=pll-rr, +(1-1)?] and G, 2|p —4ac(1) /2. By
straightforward calculations we obtain (R+G)(F-G)=
D[1/2— pv(b)] where D= —2p(1— )1 —r, +r)<0. Since F,
+ G, = F, — G, it follows that if py(b) <1/2, then K -G, <0.

To show that F, — G, < 0 also when pv(b) >1/2, it suffices to
show that if pv(b) >1/2, then

—2F>2p(1-r)+r,—r~1 (A6)
since G, > 0 and pv(b) >1/2 implies that 2p(1—r)+ r,—r-1
= 0. Substituting in (A.6) the expression given above for F,, we
obtain that (A.6) is equivalent to p/A=p)>(r,~—n)/(1—r,)
which holds for pr(b) >1/2 (since then p>1/2).

Thus, F, — G, <0 and therefore

D
F-G
= H[1/2~p»(b)]

C(x)—A=F+G,=

[1/2-pr(b)]

and clearly H > 0.

In the case r,=r,=rC(:) in (54) is a constant, and we
immediately have C— A=1-2p(1— r)y=1-2pv(by=2[1/2—~
pr(d)}

Proof of Proposition 3

For every n>0 let Z,=(X,,Y,,V,). For all i>0,T, is a
stopping time for {Z,, n >0}, and clearly P(7; < 00) =1 for all
i 2 0. From the operation of the algorithm it follows that {T1=
T, +n} € F(Zy, Zy iy, - “sZr,+n), and also that T;,, > T, for
all i >0 hence Fr C Fr.,, for all i>0. This implies that for
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any integer i > 0 and any kg,- -+, k,,, €E,

{ Xp,=ko, -, Xp.

i

L=kayeF,  { X, =k} eF,
(A7)

where #/. is the o-algebra generated by the process { Z,, k> T; }.
Thus

P( XTi+1=ki+1’ X’]‘i=k,',' Sty XT0=k())

=Y P(X;, =ki\y, Xp =k, o, Xp = ky,
y,0
YT,~=y’ VT, =U)
= Z P( XT:+1=ki+1|XT,.=k,», YT,-=}’, VT,-=U)
y,0
.P(X'l',-=k,-, YT,_=}’, V7~i=U, XT"—1=k"_1’”.’XTO=k0)

= ZP( XT,~+1=ki+1’ Yr,. =Y VT,.=U|XT,.=ki)
YU

P( Xy, =k;ye -, Xy, = k)
=P(X;, =k | X =k;)-P(Xp=k;, -, X, = k)

for any integer i>0 and any kg, --,k;,, € E. The second
equality follows from (A.7) and the strong Markov property of
{Z,, n > 0}. The third equality follows from the fact that (Y7, V)
and (Xp, -+, X;) are independent, which is implied by the
Poisson arrivals and the definition of {¥,, n>0}. Thus { X,
i > 0} is a Markov chain. '

The time-homogeneity of { Xy, i>0} follows from the fact
that, for any integer i >0, the transition probabilities of the
Markov chain {Z;  ,, n >0}, the function f,(-) in the equality
Yr=remy =fi(Zry Z7 15 -, 211 ,), and the distribution of
(Yr,, V) given X;. are all independent of i.
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