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We propose a new methodology for modeling and analyzing power-tail distributions,
such as the Pareto distribution, in communication networks. The basis of our approach
is a fitting algorithm which approximates a power-tail distribution by a hyperexponential
distribution. This algorithm possesses several key properties. First, the approximation can
be achieved within any desired degree of accuracy. Second, the fitted hyperexponential
distribution depends only on a few parameters. Third, only a small number of exponentials
are required in order to obtain an accurate approximation over many time scales. Once
equipped with a fitted hyperexponential distribution, we have an integrated framework for
analyzing queueing systems with power-tail distributions. We consider the GI/G/1 queue
with Pareto distributed service time and show how our approach allows to derive both
quantitative numerical results and asymptotic closed-form results. This derivation shows
that classical teletraffic methods can be employed for the analysis of power-tail distributions.

Keywords: communication networks, GI/G/1 queue, multiple time-scale traffic, fitting,
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1. Introduction

Recent studies have revealed that network traffic exhibits burstiness over mul-
tiple time scales [15,22]. In many circumstances, power-tail probability distributions
have been found appropriate for capturing this salient feature (see [19 and references
therein]). A random variable X has a power-tail distribution if its complementary
cumulative distribution function (ccdf) F (t) satisfies

F (t) = Pr{X > t} ∼ ct−α as t→∞, (1)
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where α and c are positive constants, and f (t) ∼ g(t) means limt→∞ f (t)/g(t) = 1.
The case 0 < α 6 1 is usually not of practical interest in queueing analysis since
E{X} =∞ (in this work, we assume that α > 1). The most encountered situation is
1 < α 6 2 for which the random variable X has a finite mean but an infinite variance.
Occurrence of such a distribution in the activity and/or silence period of an On/Off
process gives rise to long-range dependence, i.e., a non-summable autocorrelation
function [6]. A well-known power-tail distribution is the (translated) Pareto distribution
for which

F (t) = Pr{X > t} =
1

(1 + at)α
for t > 0 and a > 0. (2)

The Pareto distribution provides parsimonious modeling since it depends on only two
parameters.

Unfortunately, power-tail distributions do not lend themselves to easy queueing
analysis since their Laplace transforms are not explicit, in most cases (for an exception,
see [5]). This explains why, so far, most of the queueing results involving power-tail
distributions have only been obtained in asymptotic regimes (see [11 and references
therein]). These asymptotic results have the merit of providing some insight into the
relation between the power-tail distributions parameters and the queueing performance
measures.

In order to obtain more quantitative results, several contributions have recently
suggested to fit hyperexponential distributions, i.e., mixture of exponentials, to power-
tail distributions [9,12,20] (see also the related works [2,21]). However, none of the
fitting algorithms developed in these work provide a systematic way for deriving an
approximation arbitrarily close to the original distribution. Moreover, the queueing
results obtained via these approaches are only numerical.

Inspired by a work of Mandelbrot [17], we propose, here, a new methodology for
fitting hyperexponential distributions to power-tail distributions. This new approach
exhibits several advantages. First, the approximation can be made arbitrarily close to
the exact distribution and bounds on the approximation error are easily obtained. Sec-
ond, the fitted hyperexponential distribution depends only on a few parameters which
are explicitly related to the parameters of the power-tail distribution. Third, only a
small number of exponentials are required in order to obtain an accurate approxima-
tion over multiple time scales, e.g., a dozen of exponentials for five time scales. Once
equipped with a fitted hyperexponential distribution, we have an integrated framework
for analyzing queueing systems with power-tail distributions. We consider the GI/G/1
queue with Pareto distributed service time and show how our approach allows to derive
both quantitative numerical results and asymptotic closed-form results.

This paper is organized as follows. In the next section, we present our fitting
algorithm. We provide bounds on the approximation error and prove that the fitted
hyperexponential distribution can be made arbitrarily close to the original power-tail
distribution. As an illustration of the method, we provide an explicit expression for a
hyperexponential distribution, termed pseudo-Pareto distribution, which can approxi-
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mate arbitrarily closely the Pareto distribution. In section 3, we study the distribution
of the waiting time in a queue with i.i.d. and arbitrarily distributed interarrival times
and pseudo-Pareto distributed service time. We show that it is straightforward to ob-
tain a numerical solution for the waiting time distribution, even when the number of
exponentials is very large. Moreover, as the number of exponentials tends to infinity,
we derive an analytical expression for the tail of the waiting time distribution. The
last section is devoted to a summary of the work and concluding remarks.

2. The fitting algorithm

Our algorithm proceeds in two stages. The first and most significant stage fo-
cuses on fitting a mixture of exponentials to the behavior of the tail of the power-tail
distribution. The second stage provides a fitting for small values of t and ensures that
the mixture of exponentials is indeed a probability distribution. As an example, we
consider the case of the Pareto distribution defined in equation (2).

2.1. Mimicking the long term behavior

Consider the function R(t) = ct−α. We want to derive an expression for a
mixture of exponentials which can capture the behavior of R(t) from some value of t
and over an arbitrary large number of time scales. Our starting point relies on the fact
that ct−α is the Laplace transform of the function r(s) = csα−1/Γ(α), where Γ(·) is
the Gamma function. We can, therefore, express R(t) in the following way:

R(t) = c

∫ ∞
0

sα−1 e−st

Γ(α)
ds. (3)

In the sequel of this subsection, we let c = 1 since it is merely a constant of pro-
portionality. The integral appearing in the right-hand side of equation (3) can be
approximated by a Riemann sum. However, we know from the Tauberian theorems
(see [10, pp. 442–448]) that the behavior of R(t) for large values of t is closely re-
lated to the behavior of r(s) near s = 0. The choice of a fixed grid would not be
wise. It would put too much emphasis on large values of s which correspond to“high
frequencies” and not enough on small values of s corresponding to “low frequencies”.
We perform therefore the following change of variables from s to u, s = B−u, where
B > 1 is a parameter which controls the accuracy of the approximation, as is made
clear later. We note that choosing a fixed grid for the variable u is equivalent to
choosing a logarithmic grid for s. After the change of variables, equation (3) can be
rewritten as

R(t) =
logB
Γ(α)

∫ ∞
−∞

B−αu exp
(
−tB−u

)
du

=
logB
Γ(α)

∞∑
n=−∞

∫ n+1/2

n−1/2
B−αu exp

(
−tB−u

)
du. (4)
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Equation (4) can be approximated by a Riemann sum if we replace each integrand with
its mid-span value. It turns out, however, that a better approximation can be obtained
if only the exponent portion of the integrand is replaced with its mid-span value. We
have then

R(t)≈ logB
Γ(α)

∞∑
n=−∞

exp
(
−tB−n

) ∫ n+1/2

n−1/2
B−αu du

=
Bα/2 −B−α/2

Γ(α+ 1)

∞∑
n=−∞

B−αn exp
(
−tB−n

)
≡ R1(t). (5)

As proven in the next subsection, with B → 1, the approximation R1(t) can be made
arbitrarily close to R(t). The last step of the algorithm is to truncate the infinite sum
R1(t) and approximate it by a finite sum R2(t), where

R2(t) =
Bα/2 −B−α/2

Γ(α+ 1)

N∑
n=M

B−αn exp
(
−tB−n

)
. (6)

The idea behind this truncation is the following. On one hand, values of n below
M correspond to high frequencies which have almost no effect on the long-term
behavior of R(t). On the other hand, values of n larger than N correspond to very low
frequencies (or very large values of t) falling beyond the scope of interest. Note that
the approximation R2(t) is very parsimonious since it depends on only four parameters:
α, B, M and N . As an illustration of the fitting method, we consider the example of
a power-tail function R(t) = t−3/2 with its approximating function R2(t). The values
chosen for the parameters of R2(t) are α = 3/2, B = 2, M = 0 and N = 20. As one
can see from figure 1(a), the quality of the approximation is excellent over the whole
domain t ∈ [10, 105]. The fitting is less tight for values of t outside this domain due
to the reasons mentioned above.

2.2. Approximation errors and bounds

The objective of this subsection is to develop a procedure for bounding the
approximation error. Based on the results of this procedure, we prove that R2(t)
can approximate arbitrarily closely the exact function R(t) over any interval [ta, tb]
(0 < ta < tb < ∞). Moreover, the bounds provide a very useful insight into the
problem of setting the values of the parameters of R2(t).

We define the relative approximation error between R(t) and R2(t) as

Err
[
R(t),R2(t)

]
=
|R(t)−R2(t)|

min(R(t),R2(t))
. (7)

The procedure for bounding the error is based on the derivation of the following two
functions: a function Rup2(t) which bounds R(t) and R2(t) from above and another
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Figure 1. Example of fitting a mixture of exponentials to a power-tail function.

function Rlo2(t) which bounds R(t) and R2(t) from below. Once we obtain an expres-
sion for these functions, we readily get the following bound on the error:

Err
[
R(t),R2(t)

]
6 Rup2(t)−Rlo2(t)

Rlo2(t)
. (8)

The fitting method described in the previous subsection is based on two approx-
imations: (i) the discretization of an integral and (ii) the truncation of an infinite
sum. We begin by considering the error due to the discretization. We recall that
the discretization leading to R1(t) has been obtained by replacing the exponent por-
tion f (u) = exp(−tB−u) of each integrand in equation (4) with its mid-span value
f (n) = exp(−tB−n). The function f (u) is strictly increasing with u. Therefore, if
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we replace f (u) with f (n+ 1/2), which is the value of the function at the right-most
point of the integration interval, we obtain an upper bound Rup1(t) on both R(t) and
R1(t). The expression for Rup1(t) is

Rup1(t) =
Bα/2 −B−α/2

Γ(α+ 1)

∞∑
n=−∞

B−αn exp
(
−tB−n−1/2). (9)

In a strictly analogous way, we obtain a lower bound Rlo1(t) on both R(t) and R1(t)
by replacing f (u) with f (n− 1/2):

Rlo1(t) =
Bα/2 −B−α/2

Γ(α+ 1)

∞∑
n=−∞

B−αn exp
(
−tB−n+1/2). (10)

Before we proceed, it is instructive to derive a bound on the approximation error
between R(t) and R1(t):

Err
[
R(t),R1(t)

]
6 Rup1(t)
Rlo1(t)

− 1 =

∑∞
n=−∞B

−αn exp(−tB−n−1/2)∑∞
n=−∞B

−αn exp(−tB−n+1/2)
− 1

=Bα

∑∞
ñ=−∞B

−αñ exp(−tB−ñ+1/2)∑∞
n=−∞B

−αn exp(−tB−n+1/2)
− 1 = Bα − 1. (11)

From equation (11), we can already draw three intermediate conclusions. First, the
bound on the approximation error between R(t) and R1(t) is independent of t. Second,
the approximation error can be made arbitrarily small by letting B approach 1 from
above. Finally, we observe that as α becomes larger, smaller values of B will be
required for achieving the same degree of accuracy.

The next stage consists of bounding the approximation error due to the discretiza-
tion and the truncation, altogether. Let us first consider the derivation of the lower
bound. We define Rlo2(t) as the truncation of Rlo1(t)

Rlo2(t) =
Bα/2 −B−α/2

Γ(α+ 1)

N∑
n=M

B−αn exp
(
−tB−n+1/2). (12)

Using the same arguments as in the previous paragraph, it follows that Rlo2(t) is a
lower bound on R2(t). At the same time, Rlo2(t) is also a lower bound on R(t) since
Rlo2(t) < Rlo1(t) < R(t). The derivation of the upper bound Rup2(t) is more lengthy.
For this reason, we defer the technical details to appendix A, and provide directly the
final expression for this function:

Rup2(t) =
Bα/2 −B−α/2

Γ(α+ 1)

N∑
n=M

B−αn exp
(
−tB−n−1/2)

+
exp(−tB1/2−M )

Γ(α)

dα−1e∑
k=0

dα− 1e!
k!

B−k(1/2−M )

tdα−1e−k+1
+
B−α(N+1/2)

Γ(α+ 1)
. (13)
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The first term in equation (13) refers to the discretization error. The second term
provides an upper bound on the truncation error due to the cut-off of high frequen-
cies. Note that this term has no influence on the long-term behavior, since it decays
exponentially fast. Moreover, for any t > 0, it can be made as small as desired by
letting M → −∞. The third term is an upper bound on the low frequency error. This
term vanishes if one lets N →∞. We conclude that R2(t) can approximate arbitrarily
closely the exact function R(t), over any finite interval, by letting B approach 1, and
taking M small enough and N large enough. For typical values of α, i.e., 1 < α < 2,
our experience teaches that values of B, M and N ranging, respectively, from 2 to 3,
−1 to 1, and 15 to 25, yield a very good approximation over four or five time scales.

To illustrate the results of this procedure, let us consider again the example given
at the end of the last subsection (R(t) = t−3/2 and R2(t) with parameters α = 3/2, B =
2, M = 0 and N = 20). In figure 1(b), we plot the approximation error and a bound
on it. The exact expression for the approximation error is given by equation (7). The
expression for the bound is obtained by substituting (12) and (13) into the right-hand
side of equation (8). We observe that the bound is nearly constant in the mid-frequency
region and approximately equals to Bα − 1. This is expected since the discretization
error is the main source of inaccuracy in this region (see equation (11)). We remark also
that the bound is not very close to the actual error which is very small within the domain
of interest. Nevertheless, the qualitative behavior is similar. This similarity provides
useful guidelines for setting the values of the parameters of R2(t). For instance, let us
assume that we want to obtain a “good” estimate of R(t) over the interval t ∈ [10, 105]
(by good, we mean an approximation which is not influenced by the truncation).
Computations show that the bound on the high-frequency error, given by the second
term in the right-hand side of equation (13), is smaller than R(t) by at least one order of
magnitude when t > 10. The bound on the low-frequency error, given by the third term
in the right-hand side of equation (13), becomes significant with regard to R(t) only
when t > 105 . The selected values for M and N are therefore reasonable. Finally,
note that the approximation can be improved by letting B approach 1. However, this
will require in turn to decrease the value of M and increase the value of N .

2.3. Matching a probability distribution

Our goal in this subsection is to show how a hyperexponential distribution can be
fitted to a power-tail probability distribution. For this purpose, we propose to match the
Pareto distribution defined in equation (2). Using the Laplace transform representation,
the ccdf of the Pareto distribution can be expressed as

F (t) =
1

(1 + at)α
=

∫ ∞
0

sα−1 e−s(at+1)

Γ(α)
ds. (14)

A probabilistic interpretation of equation (14) is that the Pareto distribution represents a
mixture of exponential distributions where the parameter of the exponential distribution
is gamma distributed (see [13, p. 233]).
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Following the same steps as in section 2.1, we obtain the following approximation
for F (t):

F (t) ≈ Bα/2 −B−α/2

Γ(α+ 1)

N∑
n=M

B−αn exp
(
−B−n

)
exp
(
−aB−nt

)
. (15)

The expression in the right-hand side of equation (15) must be slightly modified in
order to obtain a probability distribution. We define the sum of the coefficients of the
exponentials in that expression as

Figure 2. Comparison between a Pareto ccdf and three fitted pseudo-Pareto ccdfs consisting, respectively,
of five, ten, and twenty exponentials.
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ω =
Bα/2 −B−α/2

Γ(α+ 1)

N∑
n=M

B−αn exp
(
−B−n

)
. (16)

The following expression corresponds to a hyperexponential distribution:

G(t) = (1− ω) exp
(
−aB−(M−1)t

)
+
Bα/2 −B−α/2

Γ(α+ 1)

N∑
n=M

B−αn exp
(
−B−n

)
exp
(
−aB−nt

)
. (17)

For large values of B, it may happen that ω is larger than 1 (due to the discretization
error). In such a case, the value of M must be appropriately increased in order to ensure
that ω is smaller than 1. Note that an alternative way for deriving an hyperexponential
distribution is simply to divide (15) by (16). A potential drawback of this approach
is that the inaccuracy resulting from the truncation of high frequencies may have an
impact on the quality of the approximation for large values of t.

Using the same terminology as [20], we refer to G(t) as a pseudo-Pareto distri-
bution. Of course, the pseudo-Pareto distribution can be made arbitrarily close to the
exact Pareto distribution by letting B → 1, N → ∞ and M → −∞. As an illus-
tration of the fitting method, a Pareto distribution with ccdf F (t) = 1/(1 + 0.5 · t)1.2

is compared, in figure 2 to three fitted pseudo-Pareto distributions consisting, respec-
tively, of five, ten, and twenty exponentials. From figure 2(a), we see that as few as
five exponentials are enough in order to mimic the behavior of the Pareto distribution
over several time scales. Of course, increasing the number of exponentials leads to a
smaller approximation error, as one can observe from figure 2(b). For instance, using
a pseudo-Pareto distribution consisting of twenty exponentials yields an approximation
error smaller than 5% within the domain of interest.

3. GI/G/1 queueing analysis

In this section, we consider the analysis of the (actual) waiting time W in a
GI/G/1 queue with Pareto distributed service time (note that W is closely related to the
buffer content of a queue fed by an On/Off fluid process with Pareto distributed activity
period and arbitrarily distributed silence period [4]). In order to analyze this queueing
system, it is necessary to have the Laplace transform of the Pareto distribution. Since
there is evidently no convenient expression for the Laplace tranform of the Pareto
distribution, our approach is to model the Pareto distribution with a pseudo-Pareto
distribution. Once equipped with a pseudo-Pareto distribution, we show, in the sequel,
that it is straightforward to derive a numerical solution for the waiting time distribution,
even when the number of exponentials is very large. Moreover, we show that an
asymptotic closed-form expression for Pr(W > t) prevails as N → ∞ and t → ∞.
This expression is shown to coincide with a well-known result of Pakes [18] (see
also [7]), as B → 1.
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Using the notion of weak convergence [3], Feldmann and Whitt [9] proved that it
is theoretically possible to approximate arbitrarily closely the waiting time distribution
in a GI/G/1 queue with a Pareto service time distribution by the waiting distribution
in a GI/G/1 queue with a hyperexponential service time distribution. One of our
main contributions, here, is to show how such an arbitrarily close approximation can
be achieved in practice, via the pseudo-Pareto distribution.

3.1. Theoretical results

We consider a GI/G/1 queue with arrival rate λ and pseudo-Pareto service time
distribution with mean 1/µ. The service policy of the queue is FIFO. We define the
load as ρ = λ/µ and assume that it is smaller than 1. We denote the Laplace transforms
of the interarrival and service time distributions, respectively, by A∗(s) and G∗(s). In
the case of the pseudo-Pareto distribution, the expression for G∗(s) is

G∗(s) =
(1− ω)aB−(M−1)

s+ aB−(M−1) +
Bα/2 −B−α/2

Γ(α+ 1)

N∑
n=M

aB−(α+1)n exp(−B−n)
s+ aB−n

. (18)

We observe that G∗(s) is a rational function, with denominator of degree N −M + 2.
The class of GI/G/1 queues with service time distribution having a rational Laplace
transform is studied in [8, pp. 322–329]. The Laplace transform of the waiting time
probability distribution is given by the following formula (see [8, equation (5.190)]):

W ∗(s) =
N∏

n=M−1

−σn(s+ aB−n)
aB−n(s− σn)

, (19)

where σn, n ∈ {M − 1,M , . . . ,N − 1,N}, correspond to the roots (zeroes) in the
left half-plane Re(s) < 0 of the function ∆∗(s) = −1 + A∗(−s)G∗(s). The main
computational effort required in order to invert W ∗(s) is the determination of the roots
of ∆∗(s). The following proposition reduces considerably this effort.

Proposition 1. If ρ < 1, then ∆∗(s) has N −M + 2 distinct real roots in the left
half-plane Re(s) < 0. A unique root, denoted by σn, is contained in each interval
(−aB−n,−aB−(n+1)), where n ∈ {M − 1,M , . . . ,N − 2,N − 1}. An additional
root σN is located in the interval (−aB−N , 0).

Proof. See appendix B. �

Since the roots are known to be real and to belong to distinct intervals, it is very
easy to determine them with any simple search procedure. Note, also, that the scope
of the above theorem can be easily extended to general hyperexponential distributions.

As N → ∞, explicit asymptotic results on the location of σn can be obtained
for large (positive) values of n. In such a case, it turns out that the location of σn
gets very close to s = −aB−n. We guess, therefore, that σn = −aB−n + γn, where
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γn = o(B−n) (the notation f (n) = o(g(n)) means limn→∞ f (n)/g(n) = 0). We
substitute this guess into ∆∗(s) and solve for γn. We obtain the following result:

Proposition 2. Let N →∞ and

ξn = −aB−n +
λ(Bα/2 −B−α/2)
(1− ρ)Γ(α+ 1)

B−αn.

Then,

(i) ∆∗(ξn) = o(B−n);

(ii) σn = ξn + o(B−αn).

Proof. See appendix C. �

The significance of the above proposition is three-fold. First, it provides a good
starting point for the root search procedure. Second, for large values of n, it states
that ξn represents a very accurate approximation for σn. Third, it allows to obtain an
asymptotic result on the waiting time distribution, as shown next.

In order to obtain an asymptotic expression for Pr(W > t), we perform a partial
fraction expansion of W ∗(s),

W ∗(s) =
N∏

n=M−1

−σn(s+ aB−n)
aB−n(s− σn)

=
N∏

n=M−1

−σn
aB−n

+
N∑

n=M−1

νn
s− σn

. (20)

The values of the coefficients νn are easily computed by resorting to the residue
theorem. Moreover, as N →∞, it can be shown that

νn = aB−n + ξn + o
(
B−αn

)
=
λ(Bα/2 −B−α/2)
(1− ρ)Γ(α+ 1)

B−αn + o
(
B−αn

)
. (21)

This result is proven in appendix D using the asymptotic expression for σn given by
proposition 2. The general expression for Pr(W > t) is then

Pr(W > t) =
N∑

n=M−1

−νn
σn

eσnt for t > 0. (22)

As we saw in section 2, the long-term behavior of Pr(W > t) is determined by the
elements of the sum with large index n. The knowledge of the asymptotic behavior
of νn and σn allows to obtain an analytical expression for Pr(W > t) as N →∞ and
t→∞.

Proposition 3. As N →∞ and t→∞, one has

Pr(W > t) ∼ λ(Bα/2 −B−α/2)
a(1− ρ)Γ(α+ 1)

N∑
n=0

B(−α+1)n exp
(
−aB−nt

)
. (23)
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Proof. See appendix E. �

Using the same kind of reasoning as in section 2, we know that, as N → ∞,
t→∞ and B → 1,

B(α−1)/2 −B(−α+1)/2

Γ(α)

N∑
n=0

B(−α+1)n exp
(
−aB−nt

)
∼ (at)−α+1. (24)

Combining equation (24) with equation (23), we obtain

Pr(W > t) ∼ λa−α

(1− ρ)(α− 1)
t−α+1, (25)

as N →∞, t→∞ and B → 1. This relation corresponds to the formula of Pakes [18]
which states that the waiting time ccdf in a GI/G/1 queue satisfies equation (25) when
the service time has a power-tail ccdf F (t) ∼ (at)−α (actually, equation (25) is only
a special case of Pakes’ formula which applies also to more general subexponential
distributions).

3.2. Numerical results

We present some numerical illustrations of the theoretical results derived in the
previous subsection. We consider an M/G/1 queue with arrival rate λ = 0.2 and
Pareto service time distribution with ccdf F (t) = 1/(1 + 2t)1.5 and mean 1/µ = 1.
In figure 3, we compare numerical approximated results with simulated results for the
waiting time distribution. The numerical results are obtained by replacing the Pareto
distribution with a pseudo-Pareto distribution with parameters B = 2, M = −1 and
N = 25. The derivation of the waiting time distribution is performed by first evaluating
the quantities σn and νn, and then substituting their values into equation (22). The
simulated results are obtained using the BONe’s network simulator. Each simulation
lasts 108 time units and 20 independent replications are run. The simulated results are
presented with 99% confidence intervals. Figure 3 shows excellent agreement between
the approximated and simulated results. Note also that, in this example, the asymptotic
expressions for σn and νn (provided by proposition 2 and equation (21)) differ from
the exact values for these quantities by less than 1% when n > 15.

In the next example, we compare the performance of GI/G/1 queues all having
the same mean arrival rate and service time distribution but with different interarrival
distributions. We assume that the service time distribution follows the pseudo-Pareto
distribution described in the previous paragraph. Regarding the interarrival time, we
consider three different distributions, all with mean 1/λ = 5, that is a 2-stage Erlangian
distribution, an exponential distribution and a hyperexponential distribution with ccdf
0.1 exp(−0.05t) + 0.9 exp(−0.3t). In each case, the derivation of the waiting time
distribution is performed by first computing the quantities σn and νn, and then using
equation (22). In figure 4, we present the behavior of the waiting time distribution
in GI/G/1 queues with the mentioned interarrival time distributions. We observe
that for small values of t, the waiting time distribution is strongly dependent on the
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Figure 3. Waiting time distribution in an M/G/1 queue with Pareto service distribution: numerical
approximated results versus simulated results.

Figure 4. Waiting time distribution in GI/G/1 queues with pseudo-Pareto service distribution and various
interarrival distributions, and comparison with asymptotic results.

interarrival time distribution. The probability of waiting, Pr(W > 0), is the largest for
the hyperexponential distribution and the smallest for the Erlangian distribution. From
equation (23), we also obtain an asymptotic expression for the waiting time distribution
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(we take N = 25). This expression is also depicted in figure 4. Figure 4 indicates
that the asymptotic region corresponds to rather large values of delay, i.e., t > 100.
This result is in agreement with earlier work, see, e.g., [1], which already noticed that
subexponential asymptotics may not provide especially good approximations.

4. Concluding remarks

In this work, we showed that classical teletraffic methods can be employed for
the modeling and analysis of power-tail distributions in queueing systems. From the
modeling point of view, we introduced a new algorithm which fits a hyperexponen-
tial distribution to a power-tail distribution. The fitted hyperexponential distribution
depends only on a few parameters and provides parsimonious modeling. Also, the
parameters of the power-tail distribution appear explicitly in the expression for the hy-
perexponential distribution. We showed that the approximation can be obtained within
any desired degree of accuracy. As an example, we derived a new distribution, termed
pseudo-Pareto distribution, which represents the “hyperexponential” counterpart of the
Pareto distribution. From the analysis point of view, we considered the GI/G/1 queue
and showed that when modeling the service time distribution with a pseudo-Pareto dis-
tribution, both quantitative numerical results and asymptotic closed-form results can be
obtained. Our methodology provides new insight into the impact of system character-
istics, such as the interarrival time distribution, on performance measures. Moreover,
it enables to state the domain of validity of asymptotic results.

Our analysis of the GI/G/1 queue was based on the inversion of a Laplace
transform. This approach has the advantage of resulting in an explicit expression for the
waiting time distribution. Note that since the pseudo-Pareto distribution belongs to the
family of phase-type distributions, matrix analytical methods [14,16] could also have
been employed for deriving numerical results. In addition, matrix analytic methods can
be used for analyzing the pseudo-Pareto distribution in a variety of queueing models.

We conclude with the following remarks. In section 3, we assumed that the
service time distribution follows the pseudo-Pareto distribution. In fact, the results
obtained in that section can be generalized to other hyperexponential distributions
fitting power-tail distributions. Next, the bound on the approximation error derived in
section 2.2 served to prove that a power-tail distribution can be approximated arbitrarily
closely by a hyperexponential distribution. It provided also useful guidelines for the
setting of the parameters M and N . Future work may look for a tighter bound on
the approximation error which would give more quantitative insight into the setting of
the parameter B. Finally, we note that the results of this work can be employed for
obtaining upper bounds in network of queues, using the network calculus for “sums
of exponentials” developed in [23].

Appendix A. Proof of equation (13)

In this appendix, we derive an expression for Rup2(t). For this purpose, we start
from the expression for R(t) given by equation (5) and divide the integral into three
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parts

R(t) =

∫ ∞
0

sα−1 e−st

Γ(α)
ds

=

∫ B−1/2−N

0

sα−1 e−st

Γ(α)
ds︸ ︷︷ ︸

(I)

+

∫ B1/2−M

B−1/2−N

sα−1 e−st

Γ(α)
ds︸ ︷︷ ︸

(II)

+

∫ ∞
B1/2−M

sα−1 e−st

Γ(α)
ds︸ ︷︷ ︸

(III)

. (26)

The consequence of the truncation is to neglect parts (I) and (III) of equation (26).
Part (I) in equation (26) represents the contribution of low frequencies, or correspond-
ingly, values of u larger than N + 1/2 (remember that s = B−u). A trivial upper
bound on this integral can be derived as follows:∫ B−1/2−N

0

sα−1 e−st

Γ(α)
ds <

∫ B−1/2−N

0

sα−1

Γ(α)
ds =

B−α(N+1/2)

Γ(α+ 1)
. (27)

From equation (27), we see that the contribution of low frequencies are negligible
as long as R(t) � B−αN . Clearly the low-frequency error vanishes, as N → ∞.
Part (III) in equation (26) represents the contribution of high frequencies (values of u
smaller than M−1/2). An upper bound on this part can also be derived. For simplicity
of exposition, we assume here that M 6 0. We have then∫ ∞

B1/2−M

sα−1 e−st

Γ(α)
ds6

∫ ∞
B1/2−M

sdα−1e e−st

Γ(α)
ds

=
exp(−tB1/2−M )

Γ(α)

dα−1e∑
k=0

dα− 1e!
k!

B−k(1/2−M )

tdα−1e−k+1
. (28)

The inequality follows from the fact that sα−1 6 sdα−1e for s > 1 (dxe denotes the
smallest integer larger than or equal to x). From equation (28), we see that the high-
frequency error has no influence on the long-term behavior since it decays exponentially
fast with t (note that this property holds also when M > 0). Moreover, for any
(fixed) value of t, the error can be made arbitrarily small by letting B1/2−M →∞ or
accordingly M → −∞. Finally, the discretization of part (II) in equation (26) leads to
R2(t). An upper bound valid on both R2(t) and part (II) is easily obtained by resorting
to the approach described in the previous paragraph. We have then∫ B1/2−M

B−1/2−N

sα−1 e−st

Γ(α)
ds=

logB
Γ(α)

N∑
n=M

∫ n+1/2

n−1/2
B−αu exp

(
−tB−u

)
du

6 Bα/2 −B−α/2

Γ(α+ 1)

N∑
n=M

B−αn exp
(
−tB−n−1/2). (29)

Summing (29), (28) and (27), we obtain the final expression for Rup2(t) given by
equation (13).
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Appendix B. Proof of proposition 1

The fact that ∆∗(s) has N −M + 2 roots in the left-hand plane Re(s) < 0 is
proven in [8, p. 323], by making use of Rouché’s theorem. In order to find the location
of theses roots, we study the behavior of the function ∆∗(s) for real, negative, values
of s. We note that for such values of s, the function A∗(−s) is continuous (since it is
analytic), positive and bounded, i.e., 0 < A∗(−s) < 1. The function ∆∗(s) has the same
N−M+2 points of discontinuities as G∗(s). These points are located at s = −aB−n,
where n ∈ {M − 1,M , . . . ,N}. In each interval (−aB−n,−aB−(n+1)), where n ∈
{M−1,M , . . . ,N−1}, ∆∗(s) is continuous and tends to +∞ as s approaches −aB−n
and to −∞ as s approaches −aB−(n+1). Therefore, ∆∗(s) has at least one root in each
one of these N−M+1 intervals. Besides that, ∆∗(s) is also continuous in the interval
(−aB−N , 0] and tends to +∞ as s approaches −aB−N . When ρ is smaller than 1,
as assumed in the proposition, the derivative of ∆∗(s) is positive at s = 0 since

d∆∗(s)
ds

∣∣∣∣
s=0

=

(
G∗(s)

dA∗(−s)
ds

)∣∣∣∣
s=0

+

(
A∗(−s)dG∗(s)

ds

)∣∣∣∣
s=0

=
1
λ
− 1
µ

=
1
λ

(1− ρ).

Since ∆∗(0) = 0, we conclude that ∆∗(s) must have at least one root in the interval
(−aB−N , 0). We have, thus, found, N −M + 2 distinct intervals containing each one
at least one root of ∆∗(s). Reminding that ∆∗(s) has exactly N −M + 2 roots in the
left-hand plane , we conclude that a unique root, denoted by σn, is contained in each
one of the intervals (−aB−n,−aB−(n+1)), where n ∈ {M − 1,M , . . . ,N − 2,N − 1}
and an additional root σN is located in the interval (−aB−N , 0).

Appendix C. Proof of proposition 2

In order to prove the first part of the proposition, we set s = ξn into ∆∗(s) and
obtain

∆∗(ξn) = −1 +A∗(−ξn)G∗(ξn). (30)

Our goal, now, is to provide asymptotic expansions for A∗(−ξn) and G∗(ξn) for large
and positive values of n. For such values of n, one has |ξn| � 1 and thus A∗(−ξn)
satisfies the following asymptotic expansion:

A∗(−ξn) = 1 +
1
λ
ξn + o(ξn) = 1− aB−n

λ
+ o
(
B−n

)
. (31)

Regarding G∗(ξn), one has

G∗(ξn) =
(1− ω)aB−(M−1)

−aB−n + cB−αn + aB−(M−1)

+
c(1− ρ)

λ

N∑
i=M

aB−(α+1)i exp(−B−i)
−aB−n + cB−αn + aB−i

, (32)
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where the constant c is defined as

c =
λ(Bα/2 −B−α/2)
(1− ρ)Γ(α + 1)

. (33)

We let N →∞ and consider large positive values of n, such that B−n � B−αn. The
first term in the right-hand side of equation (32) can then be rewritten in the following
way:

(1− ω)aB−(M−1)

−aB−n + cB−αn + aB−(M−1) =
(1− ω)aB−(M−1)

aB−(M−1)(1 + (−aB−n + cB−αn)/(aB−(M−1)))

= (1− ω)

(
1 +

B−n

B−(M−1)

)
+ o
(
B−n

)
. (34)

We consider now the second term in the right-hand side of equation (32). We divide
the sum appearing in this term into three parts. The first part corresponds to indices i
running from M to n− 1. We have

n−1∑
i=M

aB−(α+1)i exp(−B−i)
−aB−n + cB−αn + aB−i

=
n−1∑
i=M

aB−(α+1)i exp(−B−i)
aB−i(1− (aB−n − cB−αn)/(aB−i))

=
n−1∑
i=M

B−αi exp
(
−B−i

) ∞∑
k=0

(
aB−n − cB−αn

aB−i

)k

=
∞∑
k=0

(
aB−n − cB−αn

a

)k n−1∑
i=M

B(k−α)i exp
(
−B−i

)
=

n−1∑
i=M

B−αi exp
(
−B−i

)
+

(
aB−n − cB−αn

a

) n−1∑
i=M

B(1−α)i exp
(
−B−i

)
+
∞∑
k=2

(
aB−n − cB−αn

a

)k n−1∑
i=M

B(k−α)i exp
(
−B−i

)
. (35)

We show now that the third term of equation (35) is in the order of o(B−n). We use
the notation δkα for denoting a function equal to 1 if k = α and to 0 for other values
of k. We have

0<
∞∑
k=2

(
aB−n − cB−αn

a

)k n−1∑
i=M

B(k−α)i exp
(
−B−i

)
6
∞∑
k=2

B−nk
n−1∑
i=M

B(k−α)i

=
∞∑
k=2

B−nk
B(k−α)M −B(k−α)n

1−B(k−α) · (1− δkα) + (n−M )B−nkδkα
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6max
k>2

(
Bk−α

|1−Bk−α| · (1− δkα)

) ∞∑
k=2

B−nk
∣∣B(k−α)(M−1) −B(k−α)(n−1)

∣∣
+ (n−M )B−αn

6max
k>2

(
Bk−α

|1−Bk−α| · (1− δkα)

)( ∞∑
k=2

B−α(M−1)Bk(M−1−n) +B−α(n−1)B−k
)

+ (n−M )B−αn

6max
k>2

(
Bk−α

|1−Bk−α| · (1− δkα)

)(
B(2−α)(M−1)

1−BM−1B−n
B−2n +

Bα−2

1−B B−αn
)

+ (n−M )B−αn

= o
(
B−n

)
.

Note that the expression (1− δkα)Bk−α/(1 −Bk−α) is bounded since k is a discrete
parameter. We have, thus,

n−1∑
i=M

aB−(α+1)i exp(−B−i)
−aB−n + cB−αn + aB−i

=
n−1∑
i=M

B−αi exp
(
−B−i

)
+B−n

n−1∑
i=M

B(1−α)i exp
(
−B−i

)
+ o
(
B−n

)
. (36)

The second part of the sum appearing in the last term of equation (32) corresponds to
the index i = n for which

aB−(α+1)n exp(−B−n)
cB−αn

=
aB−n

c

∞∑
k=0

(−B−n)k

k!
=
aB−n

c
+ o
(
B−n

)
. (37)

The third part of the sum corresponds to indices i larger than or equal to n+ 1. The
contribution of this part is in the order of o(B−n) since∣∣∣∣∣

N∑
i=n+1

aB−(α+1)i exp(−B−i)
−aB−n + cB−αn + aB−i

∣∣∣∣∣
6

∑N
i=n+1 aB

−(α+1)i

mini>n+1 | − aB−n + cB−αn + aB−i|

=
aB−(α+1)(n+1)

(1−B−(α+1)) · |−aB−n + cB−αn + aB−(n+1)| = o
(
B−n

)
. (38)

Substituting (34), (36)–(38) into (32), and rearranging the terms, we obtain
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G∗(ξn) = (1− ω) +
c(1− ρ)

λ

n−1∑
i=M

B−αi exp
(
−B−i

)
︸ ︷︷ ︸

(I)

+o
(
B−n

)

+B−n
(

(1− ω)
B−(M−1) +

c(1 − ρ)
λ

n−1∑
i=M

B(1−α)i exp
(
−B−i

)
+
a(1− ρ)

λ

)
︸ ︷︷ ︸

(II)

. (39)

We recall the normalization condition which states that

(1− ω) +
c(1− ρ)

λ

N∑
i=M

B−αi exp
(
−B−i

)
= 1.

Therefore, part (I) in equation (39) can be rewritten as

(1− ω) +
c(1− ρ)

λ
·
(

N∑
i=M

B−αi exp
(
−B−i

)
−

N∑
i=n

B−αi exp
(
−B−i

))

= 1− c(1− ρ)
λ

N∑
i=n

B−αi exp
(
−B−i

)
= 1 + o

(
B−n

)
. (40)

Besides that, the expression

(1− ω)
aB−(M−1) +

c(1− ρ)
aλ

N∑
i=M

B(1−α)i exp
(
−B−i

)
corresponds to the mean (1/µ) of the pseudo-Pareto distribution. Thus, part (II) in
equation (39) can be rewritten as

(1− ω)
B−(M−1) +

a(1− ρ)
λ

+
c(1− ρ)

λ

(
N∑
i=M

B(1−α)i exp
(
−B−i

)
−

N∑
i=n

B(1−α)i exp
(
−B−i

))

= aµ+
a(1− ρ)

λ
− c(1− ρ)

λ

N∑
i=n

B(1−α)i exp
(
−B−i

)
=
a

λ
+ o(1). (41)

Substituting (40) and (41) into (39), we obtain

G∗(−ξn) = 1 +
aB−n

λ
+ o
(
B−n

)
. (42)

We now insert the asymptotic expressions for A∗(−ξn) and G∗(ξn) given by (31)
and (42) into (30) and obtain
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∆∗(ξn) = −1 +

(
1− aB−n

λ
+ o
(
B−n

))(
1 +

aB−n

λ
+ o
(
B−n

))
= o
(
B−n

)
(43)

which proves the first part of the proposition.
In order to prove the second part of the proposition, we let ε be any constant

different from 0 and derive an expression for ∆∗[ξn + εcB−αn + o(B−αn)]. It turns
out that all the expressions obtained during the derivation of ∆∗(ξn) remain the same,
except for equation (37). Instead, we have

aB−(α+1)n exp(−B−n)
(1 + ε)cB−αn + o(B−αn)

=
aB−n

(1 + ε)c
+ o
(
B−n

)
. (44)

We obtain, then,

∆∗
[
ξn + εcB−αn + o

(
B−αn

)]
= −εca(1 − ρ)

λ(1 + ε)
B−n + o

(
B−n

)
. (45)

For sufficiently large values of n, the sign of ∆∗[ξn + cεB−αn + o(B−αn)] is positive
when ε < 0 and negative when ε > 0. From arguments of continuity, it follows that
σn = ξn + o(B−αn).

Appendix D. Proof of equation (21)

The coefficients νn are easily computed by resorting to the residue theorem which
gives

νn =
(
σn + aB−n

) N∏
i=M−1, i6=n

(
−σi
aB−i

)(
σn + aB−i

σn − σi

)
. (46)

We derive, now, an explicit asymptotic expression for νn as n→∞. We substitute the
asymptotic expression for σn, given by proposition 2, into equation (46) and obtain

νn =
{
cB−αn + o

(
B−αn

)}
×

N∏
i=M−1, i6=n

(
−σi
aB−i

)(
−aB−n + cB−αn + o(B−αn) + aB−i

−aB−n + cB−αn + o(B−αn)− σi

)
, (47)

where c is defined in the same way as in equation (33). Clearly, equation (21) is proved
if one can show that the product appearing in the right-hand side of equation (47)
satisfies

N∏
i=M−1,i6=n

(
−σi
aB−i

)(
−aB−n + cB−αn + o(B−αn) + aB−i

−aB−n + cB−αn + o(B−αn)− σi

)
= 1 + o(1), (48)

as n→∞. We let 0 < ε < α − 1 and define δ = (1 + ε)/α such that 1/α < δ < 1.
In the sequel, we use the notation f (n) = O(g(n)) to mean limn→∞ f (n)/g(n) = K,
where 0 < K < ∞. We consider now the product appearing in the right-hand side
of equation (47) and divide it into three parts. The first part corresponds to indices i
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running from M−1 to δn (with some abuse of notation, we write δn instead of dδne).
We have

δn∏
i=M−1

(
−σi
aB−i

)(
−aB−n + cB−αn + o(B−αn) + aB−i

−aB−n + cB−αn + o(B−αn)− σi

)

=
δn∏

i=M−1

(
−σi
aB−i

)(
−aB−n + o(B−n) + aB−i

−aB−n + o(B−n)− σi

)
(49)

=
δn∏

i=M−1

(
−σi
aB−i

)(
−aB−n + o(B−n) + aB−i

−σi

)
·
(

1− aB−n + o(B−n)
σi

)
(50)

=
δn∏

i=M−1

(
−σi
aB−i

)(
aB−i

−σi

)(
1− aB−n + o(B−n)

aB−i

)(
1− aB−n + o(B−n)

σi

)

=
δn∏

i=M−1

(
1− aB−n + o(B−n)

aB−i

)(
1− aB−n + o(B−n)

σi

)

= exp

[
ln

(
δn∏

i=M−1

(
1− aB−n + o(B−n)

aB−i

)(
1− aB−n + o(B−n)

σi

))]
(51)

= exp

[
−

δn∑
i=M−1

(
aB−n + o(B−n)

aB−i
+
aB−n + o(B−n)

σi

)]
(52)

= exp
[
O
(
B−(1−δ)n)] = 1 + o(1). (53)

The transitions from (49) to (50) and from (51) to (52) are justified by the fact that
for all i 6 δn we have |σi| > aB−(δn+1), according to proposition 1, and thus
|σi| � aB−n.

The second part of the product term corresponds to indices i running from δn to
n− 1. We note that

1<
n−1∏

i=δn+1

(
−aB−n + cB−αn + o(B−αn) + aB−i

−aB−n + cB−αn + o(B−αn)− σi

)

=
n−1∏

i=δn+1

(
1 +

cB−αi + o(B−αi)
−aB−n + o(B−n)− σi

)

6
n−1∏

i=δn+1

(
1 +

cB−αi + o(B−αi)
−aB−n + aB−n+1 + o(B−n)

)
= exp

[
O
(
B(−αδ+1

)
n)] = exp

[
O
(
B−εn

)]
= 1 + o(1). (54)

From (54), we have, therefore, that the second part of the product term is in the order
of
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(
1 + o(1)

) n−1∏
i=δn+1

(
−σi
aB−i

)
. (55)

The last part of the product term corresponds to indices i running from n + 1
to N . In this case, we have

1>
N∏

i=n+1

(
−aB−n + cB−αn + o(B−αn) + aB−i

−aB−n + cB−αn + o(B−αn)− σi

)

=
N∏

i=n+1

(
1 +

cB−αi + o(B−αi)
−aB−n + o(B−n)− σi

)

>
N∏

i=n+1

(
1 +

cB−αi + o(B−αi)
−aB−n + aB−n−1 + o(B−n)

)
= exp

[
O
(
B(−α+1)n)] = 1 + o(1), (56)

and from (56) we obtain that the last part of the product term is in the order of(
1 + o(1)

) N∏
i=n+1

(
−σi
aB−i

)
. (57)

By multiplying (53) with (55) and (57), we obtain that the product appearing in
the right-hand side of equation (47) satisfies

N∏
i=M−1, i6=n

(
−σi
aB−i

)(
−aB−n + cB−αn + o(B−αn) + aB−i

−aB−n + cB−αn + o(B−αn)− σi

)

=
(
1 + o(1)

) N∏
i=δn+1, i6=n

(
−σi
aB−i

)
. (58)

The product term appearing in the right-hand side of equation (58) is in the order of
1 + o(1) as n→∞ because

N∏
i=δn+1, i6=n

(
−σi
aB−i

)
=

N∏
i=δn+1, i6=n

(
aB−i − cB−αi + o(B−αi)

aB−i

)

=
N∏

i=δn+1, i6=n

(
1− c

a
B(−α+1)i + o

(
B(−α+1)i))

= exp
[
O
(
B(−α+1)δn)] = 1 + o(1). (59)

Equation (48) is now simply proven by substituting (59) into (58).

Appendix E. Proof of proposition 3

We let N →∞ and take, first, t as a constant. We let 1 < δ < α and divide the
sum appearing in the right-hand side of equation (22) into two parts:
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Pr(W > t) =

ψ(t)∑
n=M−1

−νn
σn

eσnt +
∞∑

n=ψ(t)+1

−νn
σn

eσnt, (60)

where ψ(t) = ln(t)/(δ ln(B)) (for the simplicity of exposition, we assume that this
quantity is integral). The first sum appearing in the right-hand side of (60) can be
bounded as follows:

0 <
ψ(t)∑

n=M−1

−νn
σn

eσnt <
ψ(t)∑

n=M−1

eσnt <
(
ψ(t)−M + 2

)
exp[σψ(t)t], (61)

where equation (61) follows from the fact that σn is increasing with n. According to
proposition 1 we have σn > −aB−(n+1) for all n and, therefore,

ψ(t) exp[σψ(t)t] < ψ(t) exp
[
−aB−ψ(t)−1t

]
<

ln(t) exp[−aB−1t−1/δ+1]
α ln(B)

= o
(
t−α+1). (62)

One concludes that the first sum appearing in the right-hand side of (60) decays to
zero faster than t−α+1.

The second sum in the right-hand side of (60) can be rewritten as follows:

∞∑
n=ψ(t)+1

− cB−αn + o(B−αn)
−aB−n + cB−αn + o(B−αn)

· exp
[(
−aB−n + cB−αn + o(B−αn)

)
t
]

=
∞∑

n=ψ(t)+1

(
cB−(α+1)n + o

(
B−(α+1)n)) · exp

[(
−aB−n + cB−αn + o

(
B−αn

))
t
]
,

(63)

where c is defined in the same way as in equation (33). For sufficiently large values
of t, equation (63) is bounded from below by

∞∑
n=ψ(t)+1

(
cB−(α+1)n + o

(
B−(α+1)n)) · exp

[
−aB−nt

]
(64)

and from above by

exp
[
cB−αψ(t)t

] ∞∑
n=ψ(t)+1

(
cB−(α+1)n + o

(
B−(α+1)n)) · exp

[
−aB−nt

]
= exp

[
t−α/δ+1] ∞∑

n=ψ(t)+1

(
cB−(α+1)n + o

(
B−(α+1)n)) · exp

[
−aB−nt

]
=
(
1 + O

(
t−α/δ+1)) ∞∑

n=ψ(t)+1

(
cB−(α+1)n + o

(
B−(α+1)n)) · exp

[
−aB−nt

]
. (65)
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Now, we let t→∞ and from equations (64) and (65), we conclude that
∞∑

n=ψ(t)+1

−νn
σn

eσnt ∼
∞∑

n=ψ(t)+1

cB−(α+1)n exp
[
−aB−nt

]
. (66)

Based on similar arguments as developed in section 2.2, we have for sufficiently large
values of t

∞∑
n=ψ(t)+1

cB−(α+1)n exp
[
−aB−nt

]
> K1t

−α+1, (67)

where K1 is some positive constant. Equation (67) is proven by considering its lhs
as an approximation of some function K2t

−α+1. This approximation is affected only
by the discretization and high-frequency errors. The discretization error is uniformly
bounded (see equation (11)). The high-frequency error decays faster than t−α+1 since
(see equation (26))∫ ∞

B1/2−ψ(t)

sα−1 e−sat

Γ(α)
ds=

∫ 1

B1/2−ψ(t)

sα−1 e−sat

Γ(α)
ds+

∫ ∞
1

sα−1 e−sat

Γ(α)
ds

<

∫ 1

B1/2−ψ(t)

e−sat

Γ(α)
ds+

∫ ∞
1

sdαe−1 e−sat

Γ(α)
ds

<
exp[−B−ψ(t)at]

tΓ(α)
+ O

(
e−at

)
= o
(
t−α+1).

We obtain, therefore, from equations (60), (62), (66) and (67) that
∞∑

n=M−1

−νn
σn

eσnt ∼
∞∑

n=ψ(t)+1

cB−(α+1)n exp
[
−aB−nt

]
. (68)

Also, using the same arguments as for the derivation of equation (62) it is easy to
show that

ψ(t)∑
n=0

cB−(α+1)n exp
[
−aB−nt

]
= o
(
t−α+1). (69)

From equations (67)–(69) we finally get

N∑
n=M−1

−νn
σn

eσnt ∼
N∑
n=0

cB−(α+1)n exp
[
−aB−nt

]
,

as N →∞ and t→∞ which corresponds to the statement of the proposition.
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