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Multiple-Access Algorithms Via Group Testing for
Heterogeneous Population of Users
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Abstract—The application of group testing techniques to the design of
efficient algorithms for multiple-access systems with heterogeneous
population of users, is studied. For a reservation system with binary
(something/nothing) feedback, we present the procedure used to deter-
mine the optimal nested multiaccess algorithms. This procedure is not
practical for moderate and large number of heterogeneous users be-
cause the computations and memory required for their determination
are exponential in the number of users. Consequently, we introduce the
notion of ordered algorithms and present the procedure for determining
optimal ordered algorithm. The computational complexity and memory
requirements of this procedure are polynomial in the number of users. To
show the effectiveness of ordered algorithms, the performance of optimal
ordered algorithms for various orders is studied and compared to the
performance of simpler suboptimal ordered algorithms and with optimal
nested algorithms.

In addition, we study the performance of nested multiaccess algorithms
for a direct transmission system with ternary feedback (that are based on
group testing procedures) when the population of users is very large, and
for simplicity, we consider a system with two classes of users.

1. INTRODUCTION

HE application of group testing techniques to the design of

efficient multiple-access algorithms has been the subject of
several recent studies [1]-[3]. In all these studies it has been
assumed that the population of users of the underlying
multiple-access communication system is homogeneous, i.e.,
all users generate traffic with the same rate. In practice,
however, we expect that different users will generate traffic
with different rates. The goal of this paper is to propose and to
analyze multiple-access algorithms, that are based on group
testing techniques [4]-[8], for systems with heterogeneous
population of users.

We consider both reservation and direct transmission
systems for binary (Something/Nothing) and ternary (0, 1, e)
channel feedback [1]. For each of these systems and feedback
channels, we develop the procedures used to determine the
optimal nested multiaccess algorithms when the population of
users is heterogeneous (each user is active with probability p;
and idle with probability g; = 1 — p;). Optimal nested
procedures are not practical for moderate and large number of
heterogeneous users because the computations and the mem-
ory required for their determination grow very rapidly
(exponentially) as the number of users grows. Consequently,
we introduce the notion of ordered algorithms and present the
procedures for determining optimal ordered algorithms. The
computational complexity and the memory requirements of
these procedures are polynomial in the number of users. To
show the effectiveness of ordered algorithms, the performance
of optimal ordered algorithms for various orders is studied and
compared to the performance of simpler suboptimal ordered
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algorithms and with optimal nested algorithms (whenever it is
possible to determine the latter). Due to space limitations, we
present in this paper (Section III) the algorithms (and their
analysis) only for a reservation system with binary feedback.
For other combinations of systems and feedback channels, the
interested reader is referred to [12].

Group testing procedures for heterogeneous population of
users have been presented in [7]-[9]. In terms of multiaccess
systems, these algorithms correspond to a reservation system
with binary feedback. The optimal Dorfman-like algorithm
(test a group and if it is active test each of its users
sequentially) has been determined in [7]. Several examples of
the optimal group testing algorithm when the probabilities p;
are restricted so that each g; is an integer power of the largest
q; (say @), have been presented in [8]. The approach is to
consider each user with probability ¢; = g% (d; integer) of
being nondefective, as representing d; users each with proba-
bility g of being nondefective, and then to apply known results
for homogeneous population of users. However, even for this
restricted set of probabilities, the procedure for determining
the optimal algorithm has not been specified, except for the
case that d; can take only two values and the population of
users is very large [9].

The work of Trisman [11] presents different kinds of
multiaccess algorithms for a direct transmission system with
ternary feedback when the p;’s can take only two values, i.e.,
there are only two types of users in the system. We consider
such a system when the number of users is very large in
Section IV.

II. THE MULTIPLE-ACCESS SYSTEM

Consider a finite population of N geographically distrib-
uted, bursty, independent users attempting to communicate
with a central facility or with each other via a common
channel. The users generate messages of fixed length called
packets. Time is divided into slots of identical lengths that
correspond to the transmission time of a packet. All users are
synchronized and start the transmission of a packet at the
beginning of a slot. Whenever two or more users transmit
during the same slot, a collision occurs and none of the packets
reaches its destination.

Two types of multiple-access systems are of interest: direct
transmission systems and reservation systems. In a direct
transmission system, whenever a user transmits a signal over
the channel, that signal is the information packet itself.
Consequently, collisions occur when two or more users
transmit their packets during the same slot. Collided packets
are destroyed and have to be retransmitted.

A reservation system has two stages. A first stage during
which the users that have packets to transmit, are queried to
make reservations, and a second stage during which users who
have made reservations, transmit their packets. The time slot
may be different for the two stages and collisions among users
can occur only during the first stage.

We assume that at the end slot (for a reservation system at
the end of each slot of the first stage), each user is informed
about what happened during that slot via a common reliable
feedback channel. We distinguish between two types of
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feedback channels: binary feedback and ternary feedback. In a
binary feedback channel, we assume that the users are
informed whether the slot was empty (Nothing—no user
transmitted) or not (Something—at least one user transmitted).
This kind of feedback is called Something/Nothing (S/N)
feedback. In a ternary feedback channel, we assume that the
users are informed whether the slot was empty (LACK—no
user transmitted), or contained a successful transmission
(ACK—exactly one user transmitted), or contained a collision
(NACK-—at least two users transmitted). This kind of feed-
back is called O, 1, e feedback.

The multiple-access algorithms that we propose operate
cyclically; the collisions, if any, between packets that arrive
during one cycle are resolved during the next cycle. For
simplicity, we assume an i.i.d. model for generation of
packets by the users. Specifically, we assume that the
probability of user i(1 < i < N) having a packet at the

Set U« Z; K — (J; A« ;
Step 0: If U = ¢, then END;
Step 1: Query a subset X of U,
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Theorem 1, we restrict ourselves to nested multiaccess
algorithms [2], [4].

A. Nested Algorithms

Let Z denote the set of NV users to be classified, let U (the
unknown set) be a set of users where user / is active with
probability p; and is inactive with probability g; = 1 — p;. Let
A (the active set) be a set of users known to contain at least one
active user and let K (the known set) be the set of classified
users. (¢ will denote the empty set). The formal description
of a general nested algorithm is presented in Algorithm 1.
Note that the restriction of being nested appears in Step 3 in
the algorithm where after a set A is found to be active, the
next query is of a proper subset Y of 4. Note also that in Step
3 of the algorithm we use the known fact [2], [4] that whenever
a proper subset Y of an active set A is queried and the
feedback is Something, the users in A-Y can be returned to U

If feedback is Nothing then K< K+ X; U< U- X; Go to Step O;
If feedback is Something then A < X; U« U - X,

Step 2: If cardinality of A = 1 then K< K+ A; A+ J; Go to Step 0;

Step 3: Query a proper subset Y of A;

If feedback is Nothing then K< K+ Y; A< A—Y; Go to Step 2;
If feedback is Something then U<~ A — Y+ U; A< Y, Go to Step 2;

Algorithm I—A nested algorithm

beginning of a cycle is p; (the studies [1]-[3] assume that p; =
p(1l =i =< N), i.e., homogeneous population, an assumption
that simplifies matters considerably). We say that a user is
active (idle) in some cycle if it has (does not have) a packet at
the beginning of that cycle.

The measure of performance for the proposed algorithms
that is used for the reservation systems is the expected number
of queries needed to identify all the active users during one
cycle. For direct transmission systems, the performance
measure that is used is the expected number of slots needed to
transmit successfully the packets generated by active users
during one cycle.

ITI. RESERVATION SYSTEM WITH BINARY (S/N') FEEDBACK

In this section, we introduce and analyze multiaccess
algorithms deploying S/N feedback for a reservation system.
We first introduce the procedure for determining the optimal
nested algorithm. Then we introduce the notion of ordered
algorithms and show how to determine the optimal ordered
algorithm. In addition, we introduce suboptimal ordered
algorithms whose determination is much simpler than the
optimal ones. In our reservation system model, when a subset
of users is queried, all users in that subset wishing to make a
reservation (all active users) respond by emitting a ‘‘1.”” The
channel feedback indicates a ‘“1’’ (S) if and only if at least one
user responds by emitting a signal; else the feedback is ‘‘0”’
).

A general result for this system is stated in the following
theorem (which extends the result of [10]).

Theorem 1: Assume a binary feedback reservation system
with N users, u;, u,, ***, uy with probabilities p;, py, ** -,
Dn, tespectively, where py <= pp < -+ < pn. If2p + p3 —
pip2 > 1 then the optimal algorithm is that each user is
queried separately.!

The proof of this theorem appears in Appendix 1. For any
other set of probabilities that do not satisfy the conditions of

! A similar theorem has been recently proved (independently) in: Y. C. Yao

and F. K. Hwang, ‘‘Individual testing of independent items in optimal group
testing,”’” Prob. Eng. Inform. Sci., vol. 2, no. 1, pp. 23-29, 1988.

since their distribution is the same as if they have never been
queried.

B. Optimal Nested Algorithm

To determine the optimal nested algorithm, one has to
decide upon the subsets X and Y in each corresponding step of
the algorithm, so that the average number of queries needed to
classify all users in Z will be minimized. These sets are
determined by the following recursive relations that describe
the optimal algorithm. Let H(U') be the average number of
additional queries required to complete the optimal algorithm
when the active set is empty and the set U is the unknown set.
Similarly, G(U; A) is defined when A is not empty. Then (in
the following |U]| is the cardinality of the set U):

H(@)=0; HU)=1 |U|=1 (1a)

H(U)=1+min {QX)H(U-X)
franpd

+[1-0X)IGU-X; X)} |U|=z2; (1b)

G(U; A)=HU) |A|=1; (1c)
G(U; A)=1+min {PZ(4; Y)G(U; A~ )

Y@

+[1-PZ(4; V)IGU+A-Y; Y)} |A|=2; (1d)

where for any set D, Q(D) = Ilicpqy is the probability that
none of the members of D is active and

Q(Y)-0(4)
1-0(4)

Equation (la) gives the initial conditions and (1b)-(1d)
describe Steps 1, 2, and 3 of the algorithm, respectively. The
minimizing subsets X and Y obtained in (1b) and (1d) yield the
optimum subsets to be queried in Steps 1 and 3 of Algorithm 1,

PZ(A; Y)= (1e)
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respectively. The average number of queries required to
classify the set Z is given by H(Z). For a small number of
users the application of (1) is straightforward, hence, the
determination of the optimal nested algorithm is fairly simple
in this case.

C. Ordered Algorithms

For large, or even for moderate sets of users, the approach of
finding an optimal nested algorithm is not practical. The
reason is that the computational complexity (number of
computations) and the memory size involved in determining
an optimal nested algorithm [solving the recursive equations
(1)] grow very rapidly (exponentially) as the number of users
grows. For instance, in the first step of the algorithm, one
needs to check 2V — 1 possible queries (the 2V — 1 ways of
choosing the set X in Step 1). Furthermore, to determine the
optimal nested algorithm for a set Z, one has to know the
optimal nested algorithms for a/l proper subsets of Z.

Consequently, for moderate and for large number of users,
we restrict ourselves to a subclass of nested algorithms, that
we call ordered algorithms. Assume that at the beginning of
the algorithm (the beginning of a cycle), the users to be
classified (those in Z) are ordered in some order that remains
fixed until the cycle ends. Without loss of generality, the first
user in that order is called u;, the second u,, etc. Ordered
algorithms are nested algorithms with the additional property,
that the subset X (in Step 1) and the proper subset Y (in Step
3), always contain users with the least indexes in U and in 4,
respectively. Consequently, for ordered algorithms, one has
only to specify how many users should X and Y contain in the
respective steps (rather than which users).

The reason for considering ordered algorithms is twofold.
First, it is possible to determine the optimal ordered algorithm
(for a given order) via polynomial number of computations
with memory whose size is polynomial in the number of users.
Second, for small number of users, we observed that the
performance of an optimal ordered algorithm is very close to
that of optimal nested algorithms, and in many instances they
coincide. In addition, note that ordered algorithms coincide
with nested algorithms for homogeneous population.

D. Optimal Ordered Algorithm

Let u;, u,, * -, uy be the fixed order of the users. Let
H(@u) 1 = i = N be the average number of additional queries
needed to complete a cycle of the algorithm when the active set
A is empty and the unknown set U = (u; + uy) [in this paper,
the notation B = (u; + u;) indicates that the sét B contains
users (U, Uiyq, s )] LetG(u; = udl< i< N - 1,i<j
=< N be the average number of additional queries needed to
complete a cycle of the algorithm when the active set A = (;
+ ;) and the unknown set U = (4;.1 + ux). Then the
following recursions determine the optimal ordered algorithm:

H(uy.1)=0; Hun)=1; (2a)
H@)=1+ _min {06, )HW)+(1-Q0, x)
G+ tix-y)} 1<i=N-1; (2b)
Gu+u)=H(u,) 1<i<N; 2c)
Gluu)=1+ min {PZ(, Jj, )Gy +u)
+[1=PZ(, j, WIGWi+trsy-1)} 1=<i<j<N; (2d)

where

i+x—1

06, 0= [

k=i
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and

i+y—1

PG, J, y)=< 11 a1 qk>/<1—f1 qk> (2e)
k=i k=i k=i

When the unknown set contains only user uy, it has to be
queried, hence, H(uy) = 1. The- explanation of (2b) is as
follows. When the unknownset U = (u; + up)(1 < i< N —
1), and the active set is empty, then according to Step 1 of
Algorithm 1, a subset X of U has to be queried. Let x(1 = x
< N — i + 1) be the cardinality of that set. Then X = (u; +
u;,_1) since an ordered algorithm is used. The 1 in (2b)
represents the query of the set X. If the feedback is Nothing
[that happens with probability Q(i, x)] then all users in X have
been classified and additional H(;.,) average number of
queries are needed to complete the algorithm. Otherwise, the
set X becomes active and additional G(u; +~ u;.,_) average
number of queries are needed to complete the algorithm. The
min operation in (2b) reflects the search for the optimal
algorithm. Next, we note that (2c) describes Step 2 of
Algorithm 1. Finally, (2d) describes Step 3 and its explanation
is similar to that of (2b).

The order in which the quantities in (2) are calculated is
GQun-1 + un); H@un-1); GQun_z2 + un_1); GQuy-2 + un);
H@uy_2); *-+; H@). It is clear that H(u,) is the average
number of queries of the optimal ordered algorithm. In the
process of determining the optimal ordered algorithm the
expressions in the curled braces in (2b) and in (2d) are
calculated O(V?) times and O(N?) times, respectively. The
required memory is O(N) for H expressions and O(N?) for G
expressions. Though being polynomial, for large number of
users, O(N?) computations and O(N?) memory size may
cause difficulties in determining the optimal ordered al-
gorithm. Therefore, we introduce in the sequel a suboptimal
ordered algorithm whose determination is rather simple.

E. Suboptimal Ordered Algorithm

The suboptimal ordered algorithm introduced here follows
the steps of Algorithm 1, with the following rules for selecting
the sets X in Step 1 and Y in Step 3.

Whenever the active set is empty and the unknown set
contains users U = (u; +~ uy), then X = (4; + u;+,—;) where
x is given by

€)

min

X=ar,
g l=x'sN-i+1

H qk'“O.S

k=i

i+x' =1 \

Whenever the active set A = (u; + ©;)(J > i) and the
unknown set U = (#;4; + uy),then Y = (¢; + Ui, y-1) Where
y is given by

i+y -1 J
y=arg min | I @&~ [ & )
I=ri=i=i | kSity

For homogeneous population, condition (4) is just a halving
operation. For heterogeneous population it states that the
active set is partitioned into two ordered subsets in such a way
that the probabilities of having an active user are as close as
possible in the two subsets. Condition (3) is an extension of the
information algorithm of [4] to an environment of heteroge-
neous population.

We note that the computations of the set X in Step 1 and ¥
in Step 3 are simpler with the suboptimal algorithm and no
memory is needed, hence their attractiveness. The perform-
ance of this algorithm is evaluated via the recursions (2)
without the min operation in (2b) and (2d). Instead, x and y in
(2b) and (2d) are obtained via (3) and (4), respectively. (We
reemphasize that these recursions are not needed for the
determination of the suboptimal algorithm.)
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Fig. 1. Reservation system with binary feedback.

F. Numerical Results

In general, the performance of the optimal and suboptimal
ordered algorithms will depend on the specific order among
the users that is employed. Determination of the optimal order
needs an exponential (in the number of users) number of
computations and therefore is not practical. Henceforth, we
will confine ourselves to three different orders. We define an
increasing order as an order withp, < p, < -+ < pyanda
decreasing order as an order with p; = p, = -+ = py. For
a two-class system (7, users each of which is active with
probability P1 and n, users each of which is active with
probability P2; n; + n, = N'), we also define a zig—zag order
as an order for which u; is taken from the first class, u, from
the second class, u; from the first class, etc., until there are no
more users of one of the classes, in which case the rest of the
users belong to the other class.

Consider a two-class system with P1 = 0.05 and P2 =
0.3. Fig. 1 shows the effect of various orders on the optimal
ordered algorithm when n; + n, = 10. From this figure and
from many other examples, we found that in a reservation
system with binary feedback, the increasing order is the better
order for a wide range of parameters. Yet, we note that the
performance of the optimal ordered algorithm is not that
sensitive to the order employed. Fig. 2 shows the performance
of the optimal and suboptimal ordered algorithms (with
increasing order) along with the lower bound on the number of
queries as derived via the Huffman code (for details on this
bound, see [2], [8, p. 277], and [14]) and along with the
modified Dorfman algorithm [7]. We notice that the perform-
ance of the optimal ordered algorithm does not fall very much
behind the lower bound (recall that the lower bound is not
always achievable [2]), and the performance of the suboptimal

Set U—Z; K< J; A—Q; C—;
Step 0: If U= (5, then END;
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ordered algorithm is very close to that of the optimal ordered
algorithm. Both are better than the modified Dorfman al-
gorithm. The same kind of behavior has been observed in
many other examples. Fig. 3 shows the performance of the
optimal ordered algorithm as the number of users grow (n; =
ny) for three cases: P1 = P2 = 0.05, P1 = P2 = 0.01, P1
= (.01 and P2 = 0.05. For the latter case, the performance
of the suboptimal ordered algorithm, the entropy lower bound
(see [8], [14]) and the performance of an algorithm that deals
separately with each class of users, are also presented.

To get some feeling of the performance of these algorithms
when more classes of users are present, consider a system with
4 users each is active with probability P1 = 0.1, 3 users each
is active with probability P2 = 0.3, and 3 users each is active
with probability P3 = 0.5. For this system, the average
number of queries required when the optimal ordered al-
gorithm (increasing order) is employed is 7.6078, while the
suboptimal algorithm requires 7.6105 queries (the lower
bound is 7.564). For the same system with P1 = 0.05, P2 =
0.08, and P3 = 0.1 the corresponding numbers are 3.9, 4.2
(3.79).

IV. VERY LARGE POPULATION

The purpose of this section is to study the performance of
nested multiaccess algorithms (that are based on group testing
procedures) when the population of users is very large. We
restrict ourselves to a direct transmission system with ternary
feedback and for simplicity, we consider a system with two
classes of users. Specifically, we assume that there are M;
users each with probability of being active p; and M, users
each with probability of being active p, where M, = M, and
both M, and M, are very large.

Step 1: Let the users of a subset X of U transmit,
If feedback is LACK or ACK then K< K+ X; U< U—X; Goto Step O;
If feedback is NACK then C<X; U+ U-X;

Step 2: Let the users of a proper subset Y of C transmit,
If feedback is LACK then K< K+ Y; C+<C-—Y; Goto Step 2;
If feedback is ACK then K< K+ Y; A< C-Y; C+—J; Goto Step 3;
If feedback is NACK then U< U+ C—-Y; C<Y; Goto Step 2;

Step 3: Let the users of a subset W of A transmit,
If feedback is LACK then K< K+ W; A< A — W; Goto Step 3;
If feedback is ACK then K< K+ W; U«-U+A - W; A+ ; Goto Step 0;
If feedback is NACK then C—W; U< U+ A4 — W; Goto Step 2;

Algorithm 2—A nested algorithm.
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The description of a nested multiple access algorithm for a
direct transmission system with ternary feedback appears in
Algorithm 2. Each visit to Step 1 is called an H-visit. The
measure of performance that is used for a very large
population of users is the throughput—the average number of
successful transmissions per slot.

A. Separate Test Algorithm

The first algorithm that we consider is an algorithm that
handles each class of users separately and independently of the
other class. We call such an algorithm a separate test
algorithm. In this algorithm, we first classify all users of the
first class and then the users of the other class (other ways to
classify the users of the two classes separately are discussed at
the end of this section). For this algorithm, let H;(x)(i = 1, 2)
be the average number of slots between two successive H-
visits, when in Step 1 of the algorithm we let x; users (from
class {) to transmit, and let N;(x;) be the average number of
users that are classified (either known to be idle or transmit
their packets successfully) during H;(x;). Then the throughput
of this algorithm is given by

_ M\p,+M,p, ®)
1_ .
M H,(x;) MyH(x;)
Ni(xy) N;y(x3)

The reason for (5) is clear. The throughput is the average
number of packets in the system divided by the average
number of slots required to transmit these packets. The
average number of packets in the system is M p; + M,p,. For
users of class i(i = 1, 2), we classify N;(x;) users (on the
average) between two successive H-visits, hence, (M; is very
large and therefore edge effects can be neglected) we need
M;/N;(x;) H-visits (on the average) to classify all users of
class i. The average number of slots between two successive
H-visits is H;(x;), and hence (5). Since M, = M,, we have

+
br1+D 6)

THG) Hi(x)
Ni(x1) Na(xz)

Let C; be the maximal throughput that can be achieved with
a separate test algorithm. Then

D+p
Hi(x) H)y(x3)
min min
x>0 Ni(x1) x>0 Na(x2)

C1= max T1=
X1,x9>0

Q)
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In other words, for given p, and p,, we have to determine
(separately and independently) x; and x; (and the correspond-
ing algorithms). To that end, we can use the method presented
in [13] where the optimal nested algorithm (that maximizes the
throughput) for infinite homogeneous population, has been
determined.

B. Joint Test Algorithm

The second algorithm that we consider is an algorithm that
jointly operates on the two classes of users. We call this
algorithm a joint test algorithm. In this algorithm the set X of
users that is chosen in Step 1 of algorithm 2 contains x,; users
of the first class and x; users of the second class (x; + x; > 0),
except when there are no longer users of one of the classes. In
the latter case, the remaining users (from the other class) are
handled as in the separate test algorithm. The reason that there
are such remaining users is that the joint test algorithm does
not necessarily classify users of both classes in the same rate.
Note that if either x;, = 0 or x, = O then this algorithm
degenerates to the separate test algorithm. .

For this algorithm, let H(x;, x;) be the average number of
slots between two successive H-visits, when in Step 1 of the
algorithm we let x; users (from class 1) and x, users (from
class 2) transmit, and let N;(x;, x;)(i = 1, 2) be the average
number of users of class i that are classified (either known to
be idle or transmit their packets successfully) during the H(x;,
X;) slots. Without loss of generality, let us assume that Nj(x;,
X3) = Ny(x;, x5). Then the throughput of this algorithm is
given by

M p,+ M;
T,= ‘ 101 2D2 . ®)
M\ H(x;, x) [M M Ny(x,, xz)] Hy(x¥)
N](X], x2) 2 Nl(xl, X2) Nz(x;‘)

The nominator in (8) is the same as in (§), while the average
number of slots required to transmit all packets is different
from that in (5). We start with letting x; and x, users transmit.
Assuming that the rate of classifying users of the first class is
higher than the rate of classifying users of the second class, we
have that the number of H-visits is M|/N{x;, x;) (on the
average), and the number of slots required to classify all class
1 users is M H (x1, x2)/ Ni(x1, x,) (on the average). We are left
with M¥ = M, — M\Ny(x,, x;)/Ni(x), x,) users of the second
class yet to be classified. These users are classified separately
by the separate test algorithm where we denoted by x¥ the
number of users that transmit in Step 1 of the algorithm in this
situation

Consequently, for M| = M, and Ni(x;, x2) = Ny(xy, X2),
we have

D1+

T2 = .
Hex, X)) | [1 Ny(x1, xz)] Hy(x3)
Ni(x1, x3) Ni(x1, x2) 1 Na(x¥)
Let C, be the maximal throughput that can be achieved with
a joint test algorithm. Let f(p;) = minxik 5o HA(xF)/ No(x¥F)

(as was said before, f(p,) is calculated using the method in
[13]). Then

®

bt+p:
X1y X2 2{X1, X2
mn § ———+|1-——7 )}
x1>0,x9 {N](Xl, X2) [ Nl(xh XZ)] f(p2

(10

For any given joint test algorithm, the quantities F(x;, x,)
and Ni(x;, x;)(i = 1, 2), can be calculated as follows. Let A
be a set of users known to contain at least one active user. Let
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TABLE I
Separate tests Joint test

Probabilities

P | P2 ky | By | Nyky) | Nalko) C, x| x2 | Nilmxg) | Nofxyxo) C,
005 | 0.1 26 | 13 | 23797 12.000 | 05269 ; 7 9 6.554 8.261 0.5290
0.05 | 03 26 4| 23.797 3820 ) 05871 | § 3 4929 2.869 0.5896
005 | 06 26 2} 23797 2,000 | 06791 | 8 1 7934 1.000 0.6835
005 | 0.725 | 26 1} 23797 1.000 | 0.7064 1 1 1.000 1.000 0.7226
0.1 0.2 13 6 | 12,000 5688 | 05533 | 4 | 4 3.748 3.748 0.5583
0.1 03 13 4 | 12,000 3.820 | 05826 | 3 3 2936 2.872 0.5849
0.1 04 13 3 12.000 3.000 | 06023 | 3 2 2.920 1.960 0.6124
0.1 05 13 2 | 12,000 2.000 | 0.6400 [ 2 2 2.000 2.000 0.6451
0.1 0.8 13 1] 12,000 1.000 | 07579 | 1 1 1.000 1.000 0.7759
0.2 0.25 6 4 5.688 3.875 | 05732 | 2 3 1875 2938 0.5763
02 04 6 3 5.688 3.000 | 06016 | 2 2 1.920 1.920 06117
02 0.5 6 2 5.688 2000 | 06336 | 3 1 3.000 1.000 0.6371
02 0.6 6 2 5.688 2,000 | 06586 | 2 1 2,000 1.000 0.6700
0.3 04 4 3 3.820 3.000 | 06131 | 1 2 1.000 2.000 0.6154
03 08 4 1 3.820 1.000 | 0.7338 | 1 1 1.000 1.000 0.7432

C be a set of users known,to contain at least two active users.
Let F(m,, m,) be the average number of slots until the next H-
visit when A contains m; users from the first class and m,
users from the second class, and NF;(m,, m,) be the average
number of class 7 users that are classified during the F(rm,,
my) slots. Similarly, E (m,, my) and NC;(m;, m,) are defined
when the set C contains m; and m; users. Let x;, ¥; and w; be
the number of users of class i that are allowed to transmit in
Steps 1, 2, and 3 of the algorithm (see Algorithm 2),
respectively. Then the quantities H(x;, X;) and N;(x;, x2) (i =
1, 2) are calculated via the recursive equations that appear in
Appendix 2. The joint test algorithm that maximizes the
throughput can now be determined by exhaustive search over
the parameters X, X3, Y1, Y2, W1, W;. To limit the number of
searches, we restricted ourselves to algorithms in which w; =
m;(i = 1, 2) whenever the active set contains m, users of the
first class and m, users of the second class.

The results are summarized in Table I where the through-
puts obtained with the separate test algorithm and the joint test
algorithm are indicated along with the sizes of the sets x; and
X, that should be chosen in H-situations. Evidently, the joint
test algorithm is only slightly better than the separate test
algorithm. The difference between the throughputs of the two
tests is usually within O-1 percent and it does not exceed 2.5
percent. Practically, this implies that the separate test (that is
simpler) should be preferred. -

Finally, note that both the separate test and the joint test (as
they were described earlier) are not fair, in the sense of
classifying all the users of one class before many of the users
of the other class. This can be simply overcome, by alternating
between the two classes in the separate test (according to the
rate of classifying the users) or by alternating between the joint
test and the separate test in the joint test algorithm.

APPENDIX 1

Proof of Theorem 1: The proof of this theorem is
similar to that in [10] (for the homogeneous population).

Multiaccess algorithm deploying S/N feedback can be
represented by a binary tree. Each node of the tree corres-
ponds to a query of a particular subset of the users (the label of
the node is the subset), and has two arcs: the left is labeled N
(Nothing) and the right is labeled S (Something). We say that
two subsets occur on the same branch of a tree if they occur at
two nodes, one of which can be reached from the other by only
descending through the tree. The following Lemma is obvi-
ous.

Lemma 1: In the optimal algorithm a subset of users is not
queried if its feedback indication can be inferred from
previous queries.

Consequently the optimal algorithm has the following
properties:

a) Subset G will not occur twice on the same branch, i.e.,
we need not query subsets already queried.

1321

b) Let G be the queried subset at node B of the tree. No user
of G occurs in any of the subsets on the ‘‘Nothing’’ branch
starting at B, i.e., noting is gained by adding users known to
be idle to any subset.

c) Let G be the queried subset at node B of the tree. Then
any subset G’ D G occurs on either branch beneath G (if G is
active then G’ is known to be active and otherwise see b).

If an algorithm does not satisfy these three properties it can
be modified into one which does, by removing classified users
and omitting unnecessary queries.

We prove the theorem by taking an arbitrary algorithm
which satisfies a)-c) and contains a subset, of more than one
user and modifying it so that the expected number of queries in
the new algorithm is less than in the original one when the
conditions of the theorem hold. This will show that an
algorithm satisfying a)-c) which contains queries of more than
1 user cannot be optimal.

Let B be the node on our binary test tree where subset G is
queried. G has m users where rm = 2 and all the subsets on the
branches beneath B contain one user. Denote the branch to be
followed in case G is idle by I and otherwise by II. Let u;
denote any user in G. In the new algorithm, instead of
querying G when we reach B we query G — {u;}. If the
feedback indicates an S, we continue the algorithm in the same
manner as when G was found active in the old algorithm and
omitting unnecessary queries. We denote this branch by I7”. If
the feedback indicates N we query {u;}. If the feedback
indicates N, we have exactly the same information as when G
was found idle in the old algorithm, and we continue our
algorithm in the same manner. If the feedback indicates S(u;
active), we continue as in the case G is active in the old
algorithm skipping queries the result of which can be inferred.
We denote this branch by I7”. The remainder of the
algorithm, i.e., everything which is not below B is left
unchanged.

The number of queries in the new algorithm can exceed the
number of queries in the old algorithm by at most one.
Furthermore, we have the following.

Lemma 2: The only samples for which one more query is
needed under the new algorithm are those for which node B is
reached and G is found idle under the old algorithm.

Proof: If G — {u;} is active we follow the same
procedure except for possibly skipping a query which previ-
ously had to be performed. Otherwise, if G — {;} is idle and
user u; is active, we enter II’ having performed one more
query than when we entered I7 under the old algorithm.
However, under the old algorithm the idleness of the (m — 1)
users of G — {u;} must be ascertained by m — 1 queries
along the branch I which can now be skipped. Since m = 2,
this proves Lemma 2.

Let A denote a sample for which one more query is required
under the new algorithm (all the users of G are idle). From
properties a)—c) it follows that if for this case we reach node B
then when some of the users of G are active we also reach B.
Furthermore, the classification of the users of G, in the old
and in the new algorithms, must be found from queries of G
and G —~ {u;}, respectively, and subsequent queries (each
user is queried separately). Now we distinguish between the
casesm = 2and m > 2.

When m = 2 the subset G contains two users ; and
(assume p; < p,). Under the old algorithm, if G is active, u; is
queried before u; (this can be immediately checked). The
following two cases require one less query under the new
algorithm: 1) both users are active, 2) user u; is active and user
u; is idle. Consequently, the expected number of tests saved
when m = 2 is thus at least

Prob {4} [@Jl"_ 1] : (A1)

qi9r 4i
Since p; < p;and p; < prand 2p, + p» — D2 > 1, it
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follows that 2p; + py — pipr > 1 and hence the expression in
the braces in (A1) is positive.

When m > 2 there is a net saving of at least mz — 2 queries
when G — {u;} is idle and user u; is active. Indeed, under the
old algorithm, we need at least (m — 1) individual queries to
ascertain that all the users of G — {u;} are idle. These queries
can be omitted under the new algorithm. Next, let u, be the last
user of G — {u;} to be queried when we apply the old
algorithm. For the case for which only u; and w; are active we
save one query under the new algorithm. (The fact that u, is
active can be ascertained by the fact that (/2 — 1) users of G
— {u;} are idle). Consequently, for m = 3 the expected
number of queries saved is at least

Prob {A} [(m—z)ﬁﬁlj’l— 1] . (A2)

i 44

The expression in the braces is positive if
(m—-10)p;—(m-2)p;pi+p>1. (A3)

Straightforward algebra shows that (A3) holds true in both
cases p; = p; (we use the fact that 2p; + p, — p;p; > 1), and
p1 < p; (we use the fact that 2p, + p; — pipr > 1)
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