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MESSAGE DELAY DISTRIBUTION
IN GENERALIZED TIME DIVISION
MULTIPLE ACCESS (TDMA)
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Haifa, Israel 32000

In the classical TDMA, which has been the subject of extensive research in the
past, a single slot is allocated to each and every user within every frame. In
many situations this leads to an inefficient utilization of the channel calling for
a nonhomogeneous allocation of slots. This paper focuses on a generalized
TDMA scheme in which users are allocated more than a single slot per frame,
not necessarily contiguous. We derive the delay distribution and buffer oc-
cupancy for such a scheme as well as the expected values of these quantities.

1. INTRODUCTION

High-speed multiaccess communication channels often operate under the time
division multiple access (TDMA) scheme of channel sharing. Under the TDMA
access scheme, time is divided into equally sized slots, preassigned to the differ-
ent users. Every user is allowed to transmit freely during a slot assigned to it,
that is, during an assigned slot the entire system resources are devoted to that
user. The slot assignments follow a predetermined pattern that repeats itself pe-
riodically; each such period is called a cycle or a frame.

In the basic and most common TDMA scheme every user has exactly one
slot assigned in every frame in which a single packet can be transmitted, result-
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ing in a system that operates in a round robin mode. Queueing models of this
scheme with various variations have been introduced and analyzed in numer-
ous papers [1-13]. The basic scheme operates reasonably well if the set of users
is relatively homogeneous with respect to the traffic they generate. When this
is not the case, it is possible to assign more than a single slot to some users in
a manner that reflects their traffic demands. A generalized TDMA scheme is a
scheme in which a user is allocated more than a single slot within a frame. Gen-
eralized TDMA schemes in which all slots dedicated to a user are contiguous in
a frame have been analyzed in Hayes [14], Ko and Davis [15], and Bruneel [16].
These works consider a gated (“please wait”) transmission strategy, namely,
transmission of messages that arrive during any frame can start only in the sub-
sequent frame. In Ko and Davis [15] and Bruneel [16] delay analysis is presented
only for single packets, a unit of data that requires a single slot for its transmis-
sion, while Hayes [14] deals with messages, a unit of data that requires more
than a single slot for its transmission, but does not analyze the delay.

This paper analyzes the performance of a generalized TDMA scheme with
a given, yet arbitrary allocation of slots for any user. A flexible, nongated,
transmission strategy is accommodated, namely, the transmission of a message
can start in the first allocated slot after message arrival; this corresponds to the
“come right in” transmission strategy of Hayes [14]. For this scheme several
quantities are derived such as the message delay distribution and expected mes-
sage delay, the steady-state distribution (generating function) of the number of
packets in the user buffer, and their expected values (the latter quantities have
been similarly derived in Anderson et al. [17] and using different techniques in
Hofri and Rosberg [18]). Finally, in a discussion section, we dwell on proper
ways of allocating the slots to improve performance.

2. THE QUEUEING MODEL

Consider a TDMA system in which a number of users share the common chan-
nel according to the TDMA discipline with several modifications that we spec-
ify. Because the performance of users is independent of one another, we focus
our attention on one such user. Messages arrive to a user according to a Pois-
son process at a rate of A\ messages per second, and every message consists of
a random number L of packets. Let L(z) be the generating function of L, Lits
mean, and L? its second moment. These packets, upon their arrival, are stored
in a buffer that can accommodate an infinite number of packets.

Remark: Poisson arrival process is assumed for convenience of presentation
only; analysis for any i.i.d. arrival process can be carried out exactly along the
same lines.

The time axis [0,o) is divided into intervals [0, T.),[T.,2T,),... called
frames. Each frame is further divided into N equal length subintervals called
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slots. The length of a slot is T = T./N and the transmission time of a packet is
exactly one slot. In the generalized TDMA scheme considered here a user is al-
located more than one slot within a frame, with arbitrary distances between suc-
cessive allocated slots. The allocation is constant and does not change from
frame to frame. For reference we number the frames consecutively; the jth
frame is the one between (j — 1)7; and jT,. Consider a user with K (K < N)
allocated slots and let d(k) = 1 (1 < k < K) be the distance between allocation
(k + 1)mod K and allocation £k mod K (we refer to this distance as the kth pe-
riod). Notice that Zle d(k) = T.. If its buffer is not empty the user transmits
a single packet in every slot allocated to it. Thus, the first packet of a message
arriving to a user with an empty buffer will be transmitted in the first subse-
quent slot allocated to the user. Messages are transmitted according to a first-
come first-served policy. Without loss of generality we assume that the first slot
in a frame belongs to the user under consideration.

Note that for buffer occupancy calculation the assumption that the message
arrival process is Poisson is not essential. The same analysis applies for an ar-
rival process that is independent between every two periods but is otherwise ar-
bitrary.

3. ANALYSIS
A. Probability Distribution of Number of Packets at Slot Allocations

Let g;(k) be the number of packets awaiting transmission at the beginning of
interval d(k) (1 = k< K) in the j + 1st frame. We start by determining the gen-
erating function of the steady-state distribution of §;(k) (1 < k < K). Steady-
state distribution exists when p 2 ALT./K < 1.

From the operation of generalized TDMA we have that the number of
packets awaiting transmission at the beginning of interval d(k+ 1) (1 =k =<
K — 1) in the j + 1st frame equals the number of packets awaiting transmission
at the beginning of interval d(k), less the packet (if there were any) that has
been transmitted in the kth allocated slot, plus the packets that arrived during
d(k). In addition, the number of packets awaiting transmission at the begin-
ning of interval d(1) in the j + 1st frame equals the number of packets await-
ing transmission at the beginning of interval d(K) in the jth frame, less the
packet (if there were any) that has been transmitted in the Kth allocated slot,
plus the packets that arrived during d(K). Therefore,

41 (1) = g (K) — Agy + (K), @

where 7(k) (1 < k < K) is the number of packets arriving to the user during
d(k), and A; =0if G =0, A; = 1if § > 0. Notice that (k) does not depend
on j.
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Let g (k) be the number of packets awaiting transmission at the beginning
of interval d(k) (1 < k < K) in steady-state and let O, (z) = EZO Pr(g(k) =
i1z’ be the generating function of ¢ (k). Then from (1) we obtain after some al-
gebra

K K
(z—1) 2 0,00z T Vn(2)
u=1

0i(2) = — @
z* - HV(z)

k—
Qi(2) = Q1 (z2)z= %D H V(z) + (1 —z71) Z‘ Q,(0)z === H Vn(2)

2<k=<K A3)

where Vi (z) = E[77®] = e MKRU-L@I(] < k < K).

Had the boundary probabilities Q,(0) = Pr[§(k) = 0] (1 < k < K) been
known, the generating functions Q,(z) (1 = k < K) would be completely de-
termined. To compute these probabilities we use a standard method. Consider
the zeros of the denominator of (2) within the unit disk. Any such zero, |z,]| <1,
satisfies the equation

K
= I V() = e Mell =t @

m=1

When the stability condition holds (o < 1), (4) has exactly K roots within
the unit disk, and all are distinct [14]. One of these roots is zx = 1. The other
roots are denoted by z,,2,,...,2x_1. Since Q;(z) is analytic within the unit
disk, the numerator of (2) must vanish whenever the denominator vanishes
within the unit disk. We thus substitute the values of z,, (1 = n < K — 1) into
the numerator of (2) and obtain the following K — 1 equations:

ZQV(O)Z,’,’IHV(ZH)—O l<sn=K-1. 5)
m=v
An additional equation comes from the normalization condition Q,(z)|.-; = 1,
namely (we use L’Hospital’s rule)

K
K= \T.L=30,0. ©®)
v=1
It is not difficult to verify that the set of K equations (5)-(6) has a solution, com-
pleting the determination of Q,(0) (1 < k < K) [14].
To summarize, the actual solution procedure is finding the roots of Eq. (4)
within the unit disk and then solving the set of Egs. (5) and (6). The solutions
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are then substituted into Eq. (2). Solving (4) is, by all counts, the toughest part
of the procedure. One quite efficient method to do it is due to Mueller [19,20].
This method is particularly useful since it is iterative, does not require the eval-
uation of derivatives, obtains both real and complex roots even when these are
not simple, and converges almost quadratically in the vicinity of a root. Another
alternative for computing the boundary probabilities is to use Neuts’ theory of
matrix geometric computation [21].

Having computed the generating function of the number of packets at slot
allocations, computing the generating function for the number of packets at the
beginning of an arbitrary slot is straightforward.

B. Expected Number of Packets at the Beginning of an Allocated Slot

The expected number of packets at the beginning of an allocated slot in steady-
state can be computed by evaluating the derivative of Q,(z) with respect to z
at z =1 [see (3) and (2)]. An alternative method (the one we employ here) is to
use (1) directly. To that end, we square, take expectations of both sides of (1)
and let j » oo, We obtain

E[@*(k + 1)] = E[§*(k)] + E[A}y] + E[52(k)] + 2E[G (k) ¥ (k)]

—2E[§(k)Agx] — 2E[Agyi(k)]  1sk=K—1
@)
E[g* (D] = E[G*(K)] + E[AZ )] + E[7*(K)] + 2E[§(K)#(K)]

—2E[q(K)Aqx)] — 2E[Ag(0 (K] -

Let ¢ (k) 2 E[§(k)] and »(k) £ E[5(k)] for 1 < k = K. With these nota-
tions and using the independence between § and 7 and the identities E[ A} )] =
E[Ag] =1 0x(0); E[§(k)Azn] = EL[§(K)], we obtain

q*(k+ 1) = g*(k) + E[7(k)] + [1 — Qr(0)][1 — 2» (k)]
—2g(k)[1—»(k)] l1=<k<K-1 (82)
g*(1) = g*(K) + E[#*(K)] + [1 = Qx(0)] [1 — 2»(K)]
—2g(K)[1 —»(K)]. (8b)
Summing (8b) and (8a) for all k = 1,2, ...,K — 1, we obtain

K

K
2 Z g1 —v(K)] = Z [52(F)] + 25 [1 = Qu(O][1 —2v(K)]. )
k=1



192 R. Rom and M. Sidi
Using (1) we have

K K
> qk)[1 —v(k)] =q(l) (K— 2 v(k))
k=1 J=1

k—1

K
Z 1—v(k)] 2} (v(m) = ElAzm])  (10)
k=1 m=1

where an empty sum vanishes. Substituting (10) into (9) we obtain

EE[ 72(k)] + 2 [1 — Qx(0)[1 — 2v(k)]

g(l) =
2[1{— » V(k)]

k—1

22 (1 —=v()] + Z (v(m) — E[Az(m)])

an
Z[K - V(k)]
k=1
Because the arrival process is Poisson we have »(k) = ALd(k) and

E[52(k)] = NL2d (k) + NL*d*(k). Also, from (6) D,X_ [1 — Q;(0)] =ALT..
Therefore, we obtain from (11),

K —
NLT, + N X} d(k)[L> + NL2d (k) — 2L[1 — Q¢ (0)]]

_ k=1
7y = 2(K = NLT,)
K k—1
2> [1=ALd(k)] D] INLd(m) — 1 + Q,,(0)]
_ k=1 m=1 (12)
2(K = \LT,)
and finally from (1) we get
k—1
q(k)y =q(1) + > [v(m) — E[Ag(m]]
m=1
k—1
=q(1) + Z [NLd(m) — 1 + Q,,(0)] 2=< k=<K a3

C. Message Delay Distribution

Consider a tagged message within the kth period d(k) (1 < k < K), w(k) sec-
onds before the end of the interval d(k) and tag its last packet. The delay of
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the tagged message is the time elapsed from its arrival, until its last packet is
transmitted, that is, it is the delay of the tagged packet. Denote this delay by
D. Thus, if 7(k) is a random variable representing the total number of packets
that are to be transmitted before the tagged packet, then the delay of the tagged
packet is W (k) plus the time needed to transmit the (k) packets plus the time
to transmit the tagged packet itself [note that (k) depends on W(k)].

Some insight into (k) is appropriate. The quantity (k) is actually the num-
ber of intervals that have to elapse before the interval in which the tagged packet
is transmitted. This number can be (uniquely) decomposed into a number of
complete frames and some left over. In other words, we can write

Itky=f(k)-K+J(k) O0=<Jk)=sK-1 14)

where f designates the number of complete frames of delay and J designates the
number of intervals left over. Both J(k) and f(k) are non-negative integer-
valued random variables and their distributions are derived in Appendix A.
_ The delay of the tagged message after waiting the initial w(k) seconds is
J(k)T, seconds (representing the number of complete frames) plus the time to
transmit the J(k) leftover packets which requires Y %£7%) d(u) seconds if there
are any packets left. In all cases, the transmission time of the tagged packet
is 7. In summary, given w(k), the total delay is

wk)+fUT.+ T J(k)y=0
Dlk|w(k),I(k)] = _ kT (k) .
W)+ T, + 3 du)+T 1=<Jk)<K-1
u=k+1

where the summation wraps around from K'to 1 when necessary. The above can
be rewritten (along with the relation fK = / — J) as follows:

L T.or T
D[k|Ww(k),I(K)] =wk)+ T+ Kl(k) KJ(k)

k+1+7(k) _
+ > du) —dlk+ 1+ J(k)]. as)

u=k+1

For notational convenience, let us define

k+14j(k)
A k)2 D) du) —dlk+ 1+ k)]

u=k+1
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which then turns Eq. (15) into
Dlk|Ww(k),[(k)] = w(k) + T+ = l(k) CJ“(k) + A(J k). (16)

Note that 7, and hence J depend on W (k). Moving to the Laplace transform do-
main, we define

DiLs|W(k),[(k)] & E[emsPIT@. I

and gradually eliminating the conditions (the details of which are given in Ap-
pendix B), we obtain

K d(k)

2

D*(s)
=1 I

Di(s)

—sT K K-1 _ —d (k) fs—A[1—L(zsctm)l}

e
K 2 2 Qe Gam @) o T Tzam])

e

Il

K—1
« { > e‘s"“j"‘)(zsam)_j] arn

Jj=0

where «,, = /@K is the unit root of order K and z; 2 e 7<% This expres-

sion is the Laplace transform of the message delay distribution.

D. Expected Delay of a Message
The expected delay of a message can be computed by evaluating the derivative
of D*(s) with respect to s at s = 0 [see (17)]. An alternative method (the one we
employ here) is to use (16) directly. To that end, we take expectation on (16) and
obtain,
_ T, .+ T, .+ .

D(k)y=E[w(k)] + T+ X E[I(k)] — X E[J(k)] + E[A(J, k). (18)

We now compute each of the terms in (18). Clearly,
- 1
E[w(k)] = 3 d(k). 19)

From (13),

- 1
ElI(0)] = q(k) = [1 = Qu(0)] + 5 M.d(k) + L — 1

=qg(1)+L—-1- < )\Ld(k) + Z [ANLd(m) — 1+ Q,(0)]. (20)

m=1
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Using the distribution of J (from Appendix A) and the definition of /,(z) we
have

- - K—-1
E[J(k)] = ELELJ(K)|W(k)]] = E K S lk(am,wl(k))
m=1
1 — —
am

K—-1 & ElL (o, w(k))]

2 _mz=:1 l—i
am
K—1 K-1 p _
=S5 - 3 A gt @1
m=1 1
1 — —
Oy
K—1 % ham) 1 f"""aw
-2 mZ:ll RIGY
U

K -1 K-1 M () emdk) 1

2 m=1, 1 a,d (k)

U

where a,, 2 N[1 — L(a,,)].
In a similar manner,

~ P K ~
E[A(J, k)] = E[E[A(J, k)| W (k)] =E[ZA(j,k)Pr[J=j|W(k)]]
Jj=0
K—1 K—1
= [ 2 AGK) 2 ar;’lk(am,W(k))]
Jj=0 m=0

1 K=l &= ‘ ~
" ¥ 2 5 AU K el L"),

Considering that A(j,k) = 0 for j =0, oy = 1, and a, = 0, the above yields

1 K-1 K—-1 K-1 eamd(k) -1
E[A(J k)] = — Z A(J,k)-l- — 2 Z AU, K am i (ay) ————. (22)
J m 1 j= amd(k)

Combining all terms, we obtain
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1 .
D(k) =3 d(k)+T

T, 1 k
+— <q(l)+L— 1- 2 NLd(k)Y+ D) [NLd(m)—1 +Qm(0)]>
m=1

K
TC(K—I) 1
— =7 A
2K E (J,k)
1 eamd(k)_l T K—1 )
+ — > l(an, < j A\
Xah) - Z () . T +,§ A, kYo, (23)
A

Finally, the expected delay of a message is

< d(k)
D=3, == D(k). 4)

4. DISCUSSION

A natural question to ask is how to allocate the K slots available to a user in a
frame, in order to improve the performance. When the expected number of
packets in the user’s buffer is the performance measure, or equivalently, when ex-
pected packet delay is the measure, then it was shown [18] that the best alloca-
tion is the uniform one, namely, all the internal periods d (k) (1 <k < K) should
be equal. Furthermore, this allocation remains optimal for all arrival rates.

When the expected message delay is used as the performance measure, we
realized, via many numerical examples, that the optimal allocation depends both
on the arrival rate A and on the specific distribution of the message length.
Whereas complete characterization of the optimal allocation pattern is still an
open question, the following captures some of our observations.

When a message arrives at the user’s buffer, its delay is affected by the
number of packets ahead of it in the buffer. This number amounts to a num-
ber of whole frames plus some left over; the allocation of slots within a frame
can affect only this leftover. Thus, for heavy load (p — 1), the expected mes-
sage delay is not very sensitive to changes in the interallocation distances since
the major portion of the delay is due to the large number of whole frames a
message must wait before its transmission starts. For light load (o — 0 or equiva-
lently A — 0), the expected message delay is very sensitive to the allocation dis-
tances, and it is given by

1 K K j+i—1
Dyo=1+ T Zlv[ Zdz(J) +20 2 d(J)d(l)] 25

ci J=1 I=j+1
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where v; (1 =i < K is the probability that a message transmission requires i
slots beyond the number of whole frames, or in other words, the probability
that a message length is / mod K (clearly ZH v; = 1). After some algebra (25)
is transformed to

K—1

K K
2 2dDdI+ k) X (vi— Yr—is1)- (26)
k=1

1 1
Dy oy=14+-T.+ =
o 2 T. 15 i=k+1

From (26) we observe that if y;, = yx_;4y for i = 1,2,...,K, then the ex-
pected delay is completely independent of the interallocation distances. Another
special case, assume v; = yx_j+1 for i = 2,3,...,K — 1, then it follows from
(26) that for vy; > v the optimal allocation is the uniform (equidistant) one
while for v; < v the K slots should be contiguous in order to minimize D, _.
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APPENDIX A

DISTRIBUTION OF THE MOD FUNCTION

Let 7 be a non-negative integer valued random variable with a known distribution and
a generating function /(z), and let K be a known integer constant. The quantity / can be
uniquely decomposed into

I=fK+J 0=sJ=K-1 27)

In another form this can be written as J = / mod K and f=1UK] =~ Jy/K. We
would like to compute the distributions of J and f from that of /.
Let a,, be the unit roots of order K, namely, a,, = e/?™%)_ These roots obey

1 k=1 1 K divides n
2 2 am =1 = Amoax = _ 8)
m=0 0 otherwise.

Our most basic relation is derived as follows:

1 K—1 1 K—1 o) _
= 37 () " (zoy) = = 2 (zay) " 2 Pr(I=1](za,,)
K 2o K »Zo =0

Ms

= -
T
o

K—1
Pr7=11z"" 2] ()™
m=0

Ms

Pril=1]z"""(1 — A (—mmodk)

-~
Il

0

=§Pr[i=ﬂ<+ nlz'X. (29)
By setting z = 1 in Eq. (29) we get
Pr[f=n]=§)Pr[7=Kf+ n) =%:Z::;a,;”l(am) 0sn=<K-1 (30)

which gives us the distribution of J. From this J(z), the generating function of J, can
be computed as follows:

K—-1 I:l K-1

K-1 _ | K= [K=1/ 7 \n
M PrlJ=nlz"= >, { = ] oz,;”l(ozm)]z" =% > [Z (—) ]l(am)

n=0 n=0 Km:O =0 Ln=0 m

()

1 K-l Oy 1 K-l 1 “ZK

== 2 Hap) = = 2, [(ct)

K 25 z K n=o z

1- — 1- =

[o Am
_ l—KzK S )
m=0 1 — i

e}
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where in the step before last we used the fact that o = 1. Overall, we thus have

1— ZK K—1 [(am) 1— ZK 1-— ZK K—1 [(O‘m)

J(z) = = + . 31
K mzzlol__i K(1 —2) K mz=]11_i
[ A,

Taking the derivative at z = 1 yields the expectation

_ K-1
E[J] = & - M' 32)
2 m=1 1 1

®m

We turn now to calculate the generating function of f. Clearly

K—1
Prif=f1= D Prll=fK+n] f=0
n=0
and thus
) - o K—1 - K-1 0 _
F(z) = ZPr[f=f]zf= 2 [2 Pri7=fK + n]]zfz % [ D Pr[l=fK+ n]zf].
=0 f=0 Ln=0 =0 L =0

We note that the bracketted term in the summation appears in Eq. (29) when z/% is sub-
stituted for z. Hence,

K-lM K K—1 [K—1
F(z) = Z [ Z (z"%a,,)" n[(zl/Kam)] == [Z (Zl/Kam)fn]l(zl/Kam)
m:0 n=0

Km =0
1 K—1 1 — (Zl/Kam)—K —1 1 — Z_l
. - m? 2V - = (VK ” 33
sz=:0 1-— (zl/Kam)—l (Z mZJO 1 — (Zl/Kam)—l (Z o ) ( )
1 —z 1K=l (7Y%,

K aZol- (2%,
Calculating the expected value of f can be done by taking the derivative of the above
equation at z = 1 or using the direct approach, that is

~ EIN-EJ] 1 K- 1KY ay,)
R S LU ok K2
O[m

APPENDIX B

Starting with Eq. (16) and moving to the Laplace transform domain we obtain
D,f[slﬂ/(k),f(k)] éE[e—sD-[kIW(k),T(k)]] - e—sTe—sW(k)e—s(Tc/K)I'ls(TC/K)fe—sA(J_,k)'
(34)
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We proceed by eliminating the condition on /. Let /, [z, W (k)] be the generating
function of / given w. Continuing from Eq. (34) we get

~ o _ r J o 7
D,’:(s|w(k))=e‘STe sw(k)E[e S(Te/K) [s(Tc/K) e sA(J,k)]

5 - 7 J 7 ~ ~
- e—STe —sW(k) [Z e—s(Tc/K) IS(TC/K) e—sA(J,k) Pr[l — l| W(k)]
=0

o K—1
— s — (fK+)) i i 7 o) o~
=e sTe SW(k) Z Z e s(T./K) 4 [s(Tc/K)/e sA(j,k)Pr[I:fK+le(k)]
f=0 j=0

K—1 =)
- e—-STe—sW(k) 2 e—sA(j,k) [ Z (e—S(TC/K) )fKPr[lsz+J| w(k)] ] .
Jj=0 =0

We recognize the bracketted term as the basic relation of Appendix A, with z replaced
by z, 2 e*7/%) Making the substitution we get

K-1 K—1
Dils|w(k)] = e~Te="0 3 e*”‘“”k’[ > % (zsam)“fltzsam,vv(kn]

J=0 m=0

1 _ K—1 K—1 . .
= — e e S 12500, WK)] D) e~ AR (zoa,) Y (35)
Jj=0

K m=0
where «,, = e/@™/K) i3 the unit root of order K.

The next step is to remove the condition on W (&), but before doing so we must evalu-
ate the generating function of 7 since it depends on Ww (k). To do so we notice that given
Ww(k), the total number of packets that are to be transmitted before the tagged packet,
I(k), is the sum of three independent random variables: (i) the packets already waiting
at the beginning of interval d(k) less one packet (if there were any) that is transmitted
in the first slot of d(k), that is, §(k) — Ag iy (generating function [(1 — z71)Q,(0) +
2710 (2)1); (i) packets arriving from the beginning of interval d (k) until the arrival of
the tagged message (generating function e MK —FEIU-L@IY; (iij) packets of the
tagged message, not including the tagged packet itself [generating function L(z)z™!].
Therefore,

Llz, (k)] 2 E[z70 % (k)]

= [(1 =270k (0) + 27 Qu ()] e MO —FUNU-LEI | (7yz=1 (36)
By defining

hie(2) 2 [(1 = 2710k (0) + 27 Qi ()] e MIIN-LEN L (2) 271 = Oy, (2)L(2)2 "
Eq. (36) can be written as
Lz, W(k)] = hy(z)er O UL

and when substituted into (35) we get

- 1 _ K-l - _ K-1 . .
Dii(s|W(k) = — e TePO ST hi(zsay,)er PR N—LEsam] 37 p=s4UK) (7 o Y~
m=0 Jj=0

1 K-1 K~1 . . ~
= 277 3 hi(Gean) | 3 e AU (z0,) [em TR N ILeml
m=0 =0

J
@3N
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Since W (k) is uniformly distributed between 0 and d(k) we have from 37

1 d(k)
Di(s) = E[e_SD(k)] —E[Dk(s[w(k))] = m D,f(s]w)dw
- LI P n
= E Z k(zsam) m e Estm dw
K_l . .
X [Z e*“‘“”‘)(zsam)*’J
J=0
1K 1 — e=dU s=A[1=L(zsam)]] [ K1 o
=_— ¢ h Oy e 40, -
PP IR )d<k>{s—x[1—L<zsam>J} [Z (ctm) ]
38)
1 Ko 1 — e=dk) {s=A[1=L(zsanm}
= =s m L
Kd(k) € mZ:; Qk+1(zsa ) (ZSO‘m) Zsam{s_ )\[1 —L(Zsam)]}
K—1
[Z e ~sAU, k)(z o )—JJ
Jj=0

which is the sought expression.



