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Abstract—This paper deals with the sizing of end buffers in
ATM networks for sessions subject to constant bit rate (CBR)
traffic. Our objective is to predict the cell-loss rate at the end
buffer as a function of the system parameters. We introduce
the D+G/D/1 queue as a generic model to represent exit buffers
in telecommunications networks under constant rate traffic, and
use it to model the end buffer. This is a queue whose arrival
rate is equal to its service rate and whose arrivals are generated
at regular intervals and materialize after a generally distributed
random amount of time. We reveal that under the infinite buffer
assumption, the system possesses rather intriguing properties: on
the one hand, the system isinstable in the sense that the buffer
content is monotonically nondecreasing as a function of time.
On the other hand, the likelihood that the buffer contents will
exceed certain levelB by time t diminishes with B. Improper
simulation of such systems may therefore lead to false results. We
turn to analyze this system under finite buffer assumption and
derive bounds on the cell-loss rates. The bounds are expressed
in terms of simple formulae of the system parameters. We carry
out the analysis for two major types of networks: 1) datagram
networks, where the packets (cells) traverse the network via
independent paths and 2) virtual circuit networks, where all cells
of a connection traverse the same path. Numerical examination
of ATM-like examples show that the bounds are very good for
practical prediction of cell loss and the selection of buffer size.

Index Terms—ATM, buffer sizing, CBR, D+G/D/1 queue, end-
to-end loss rate.

I. INTRODUCTION

T HE SUBJECT of this paper is the analysis of end buffers
in ATM networks when they are subject to constant bit

rate (CBR) traffic. Our major objective is the derivation of the
cell loss rate at the end buffers, as to yield proper design of
these buffers.

In ATM networks with CBR traffic, as in a variety of
other data and telecommunication networks, a session typically
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Fig. 1. Connection of source and destination nodes. Connection via (a) a
direct link and (b) an arbitrary network.

consists of a data source node and a destination node whose
processing/transmission speeds areidentical to each other and
which are connected by a network whose speed and delay can
be arbitrary.

In a communications system where a data source node is
connecteddirectly to the destination node [see Fig. 1(a)], no
buffers are required at the destination node (or one buffer
suffices) since the speeds of the destination and the source
are identical.

In contrast, in systems where the connection between the
source node and the destination node are done via an arbitrary
network [see Fig. 1(b)], the delays incurred by the data units
are arbitrary and, thus, buffers are required at the destination
node to avoid data loss. A major design issue is that of
selecting the size of the buffer at the destination node so as to
provide that data loss will not exceed desired values.

The objective of this paper is the derivation of data-loss
measures at the exit buffer as a function of the network
parameters. In particular, such derivation is to be conducted
as a function of the delay incurred by the cells while passing
through the network and which is assumed to be derived by
other means. Our interest is in the size of the buffer required
at the end buffer to provide that the probability of cell loss
will not exceed certain values.

We assume that the source generates a continuous stream of
cells (packets) whose lengths are all identical to each other.
Thus, the source generates cells at a deterministic rate of one
cell per unit of time and the processing time of each cell is
deterministic (of one unit). The destination node has the same
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processing power as the source node; thus the processing time
of a cell at the destination node is one unit of time.

To analyze the behavior of the exit buffer, we introduce
a new concept of arrival process,deterministically-generated
generally-postponedarrivals and a new queueing model, the
D G/D/1 queue. In the deterministically generated generally
postponed arrival process, arrivals are generated at determin-
istic (regular) intervals, but their arrival time to the queue is
postponed by a generally distributed random variable, called
the postpone distribution. Thus, if is the cell generated at
epoch then enters the queue at where is a gen-
erally distributed random variable. The DG/D/1 queue is a
queue where the arrival process is deterministically distributed
generally postponed, the service time is deterministic and there
is a single server. A special case of the DG/D/1 queue is the
D/D/1 (the postpone value of each arrival is deterministically
0) which is trivial to analyze. The DG/D/1 queue seems to be
inherently different from either the D/G/1 queue or the G/D/1
queue; see remarks on this issue in Section I-A below.

Unfortunately, the structure of the DG/D/1 queue seems
to be too complicated to yieldexact analysis of the buffer
occupancy and loss rate. In particular, the use of infinite buffer
analysis (which is a common technique) cannot deliver such
results. Rather, our analysis (Section III) of the infinite buffer
model reveals several intriguing properties: on the one hand,
the system isinstable in the sense that the buffer content is
monotonically nondecreasing as a function of time. On the
other hand, the likelihood that the buffer contents will exceed
certain level by time diminishes with

These properties suggest that the cell-loss analysis must
be conducteddirectly on a finite buffer system, which we
carry out in Section IV. We bound the cell-loss rate by both
the postpone distribution and the postponed cell population
distribution.

The derivation of practical bounds for cell loss is then
carried out for two major network models. The first network
model is a datagram service network, in which different cells
of a session traverse the network independently of each other.
This models networks similar to the Internet. In such networks,
the postpone values of different cells (packets) are independent
of each other (namely, and are independent for
In Section V, we consider this model and derive the proper
loss rates.

The second network model is a virtual circuit-like network
where all cells of the same session follow exactly the same
path. This models the behavior of ATM well. In such networks,
the behavior of different cells in the session is not independent
of that of others. In particular, they obey a simple constraint by
which young cells cannot overtake older cells. The analysis of
this model is provided in Section VI. A practical interpretation
of these results is provided in Section VII.

Finally, in Section VIII, we conduct a numerical examina-
tion of the results. We consider an ATM-like system in which
the cells pass through a tandem of nodes before arriving at
the network exit buffer. We compare the analytic bounds sug-
gested by our analysis with the actual results of a simulation
program and find that: 1) the bounds, indeed, hold and 2) for
practical reasons, the bounds are close enough to warrant very

good prediction and to be used to design the size of the exit
buffers.

A. Previous Work

The D G/D/1 queue seems to be inherently different from
either the D/G/1 queue (see, e.g. a study of that system with
vacations in [7]), or the G/D/1 queue. A variation of the latter
was studied in the context of ATM work in [8], where the
arrival process into the queue is a Poisson cluster process and
the model is the PCP/D/1 queue. Another variation was studied
in [2], where the Geo/D/1 and the Geo/D/1/n queues were
analyzed. The deterministically generated generally postponed
arrival process introduced in our work inherently differs from
those arrival processes in the fact that, despite its stochastic
appearance to the queue, its generation is periodic and regular
and, thus, its arrival rate is identical to the service rate in the
system.

The problem of buffer design in ATM was addressed in [1],
where a method for simulating a system to capture very low
loss rates was presented,

II. THE D G/D/1 QUEUE: MODEL FORMULATION

AND BASIC RELATIONSHIPS

We consider a discrete time model: time is slotted with the
slot size equal to the processing time of a cell. The slot that
starts at epoch and ends at epoch is calledslot

Cell arrival to the D G/D/1 queue is governed by the
following process. At the beginning of every time slot, exactly
one cell is generated; let denote the cell generated at time

Upon generation, does not enter the queue. Rather,
getspostponedand its queue entrance occurs at time
where is a nonnegative integer-valued random variable (i.e.,

gets its value from is called thepostponed
value of we assume that has finite mean. We assume
that the cells arrive at the queue just prior to the cell boundary,
namely at 1

Services (cell processing) at the DG/D/1 queue start
exactly at slot boundary; thus, due to queue arrivals occurring
at a cell that enters the queue at time(more precisely
is ready to be processed at slotThe processing time (service
time) of a cell is exactly one time unit.

A. Notation

Below, we assume that at the system starts operating
with an empty queue. Cell is said to bepostponedat time

if In other words, was generated on or
before and entered the queue afterThe collection of cells
which are postponed atis called thepostponed cell population
at and we let denote the size of that population. The
behavior of the arrival process and the notions of postpone
values and postponed cell population are demonstrated in
Fig. 2.

1Remark: Defining arrivals to occur att� is only for the purpose of
organizing the events at the slot boundary. This could alternatively be done by
having arrivals occur att and all other events occurring att

+
: Our notation,

therefore, does not preclude a postpone valuePt of value 0.



928 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 6, DECEMBER 1999

Fig. 2. The arrival process in the D+G/D/1 queue.

Let (arrivals) denote the number of cells that enter
the queue at time and denote the number of cells
that are present at the buffer at time(this includes the
arrivals).

Let note that reflects the total
unfinished work (backlog) present in the system at time

A starvation is an event in which no cell is processed due
to the lack of cells ready to be processed. An epochis
called astarvation initiation pointif no cell processing starts
at this happens if Epoch is called, in
this case,starvation completion point. Slot is called, in this
case, astarvation slot. Let denote the total number of
starvation initiation points which occur prior to epochThus

where is the indicator function
whose value is one if its argument is true and is zero otherwise.

B. Basic Relationships

The following is a basic relationship between the sizes of the
postponed cell population and the arriving cell population

Theorem 1: For every

(1)

Proof: The proof follows simply by observing that the
population of postponed and arriving cells atconsists of the
newly generated cell (at and the postponed cells of

Next, we show that the expected size of the cell population,
is bounded by that of the postpone distribution

Lemma 1: If the postpone values are
identically distributed (like and is finite, then the cell
population distribution has finite mean,
which obeys

(2)

The proof of this lemma is given in the Appendix.

III. B ASIC RELATIONSHIPS FORINFINITE BUFFER

SYSTEMS: “BAD” AND “GOOD” NEWS

We start our analysis by examining the behavior of infinite
buffer systems. The results derived here will be used later in
the analysis of cell loss in finite buffer systems.

As can be seen below, the characteristics of the DG/D/1
queue are quite different from those of common queueing
systems.

The “bad news” of this section is that the system is
unbounded, in the sense that when the system’s
backlog is unbounded. The “good news” is that forfinitevalues
of and some arbitrary value(even relatively small values of

the likelihood of reaching buffer occupancyis very small.
The first lemma relates the number of starvation points to

the total backlog work.
Lemma 2: For

Proof: The lemma follows from the fact that the number
of cells generated in the slots is exactly
and the number of cells processed during those slots is given
by The difference between these quantities is the
number of cells generated in but not processed in

This quantity plus one (the cell generated atis
the backlog at Thus

Next, we establish that the system is “instable.” This in-
stability is reflected in the fact that the system’s backlog is
monotonically nondecreasing.

Theorem 2: For
Proof: The proof follows directly from Lemma 2 and

from the fact that is monotonically nondecreasing (by
definition).

Unlike common queueing systems in which the growth of
the unfinished work is typically gradual, the unfinished work
in the D G/D/1 queue is attributed to “arrival bursts.” More
precisely, a growth of the backlog to sizecan occur only
if a burst of arrivals gets postponed concurrently. More
precisely, the backlog can reach valueonly if there exists an
epoch in which the total number of postponed and arriving
cells reaches This property is established in
the next theorem.

Theorem 3: If then there exists an epoch
such that

Proof: Let Obviously, must
exist since further, For we have

and and the claim follows
trivially.

For we have (since and we can
examine the system at Due to being minimal and
due to the monotonicity of we have and

Thus, from Lemma 2, we have
and Therefore, is a starvation initiation
point and we must have

Now, since obeys
we must have Thus
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An implication of Theorem 2, under quite a wide set
of conditions (e.g., the postpone values are independent of
each other), is that if the probability of reaching queue
level is positive then the probability of passing level
when approaches 1, namely,

This suggests a quite “unpleasant” behavior of the
system. Nonetheless, in practice, this behavior is outweighed
by Theorem 3, which can be used to bound the likelihood of
reaching buffer level of

We later (Section V) use a stochastic postpone model to
represent the system and will focus our efforts on using the
property established in Theorem 3 to bound the probability of
the systementeringinto large population state. The epochs at
which the system enters such states are denoted-entrance
epochs. More precisely, an epoch is called a -entrance
epochif The importance of such an epoch
is that if the system’s backlog is lower thanprior to it
increases to (or above) at

The last result of this section bounds the amount of backlog
work by the maximal postpone value. Recall that is the
postpone value of

Theorem 4: Let be the maximal value of for any
value of namely for any Then: For every

Proof: The proof follows by observing at epochthe
joint population of and Of this joint population,
the oldest cell must have been generated at or
later (due to the condition of the theorem), and the youngest
cell must have been generated atThus, due to the cells
being distinct from each other we must have

Theorem 3 now implies that
In situations in which is unbounded, we cannot bound

the buffer occupancy, which can reach any valuein fact, due
to Theorem 2, the probability of havingor more cells in the
buffer, when is 1. These cases are treated in Section V,
in which we consider a stochastic model and provide bounds
for the likelihood of reaching large population states.

IV. A NALYSIS OF FINITE BUFFER SYSTEMS

In this section, we analyze finite buffer systems. The model
is equivalent to the one described earlier, but the buffer is
assumed to be finite of size For this reason, cell loss
may occur in the system. Our interest is in deriving an upper
bound for the probability of loss. This can be accomplished by
relating the probability of loss to the probability of starvation
(Theorem 5), and then establishing bounds on the probabil-
ity of starvation (Section IV-C). We start with preliminary
definitions.

A. System Modeling

Prior to the analysis of the system, assumptions on the
system behavior must be made. We assume that events occur at
the system at the following epochs (Fig. 3 depicts the events
in the system).

1) Cell processing starts at the beginning of a slot and is
triggered only if the number of cells contained at the
queue is greater than zero

Fig. 3. Event sequence at slot boundary.

2) At the beginning of the slot, namely at the cell
to be processed is removed from the buffer and the
space it occupied is released. (During its processing, the
processed cell is stored in a separate buffer that is not
accounted for in our model.)

Remark 1: Note that in our model, the space of queued
cells and that of the processed cell are not shared. An
alternative model is one in which those buffers are
shared. A short analysis and the main results of this
model are provided in [5].

3) Arrivals occurduring a slot, and are accounted for as if
they arrive at the end of the slot. We thus assume, as in
the previous sections, that arrivals occur at and let

denote their number.
4) Arrivals that find the queue full arelost. Lossesoccur at

and their number is denoted by The number of
losses obeys:
The actual arrivals that enter the queue atis then given
by The total number of losses occurring
by time is denoted

Following these rules, the equations that govern the system
behavior are as follows (recall that denotes the queue
population at

(3)

(4)

An equivalent equation for is

(5)

B. Basic Relationships between Starvation and Loss

The first relationship relates the losses to the number
of starvation events,

Lemma 3: For a finite buffer system
for where as defined (in Section II-
A).

Proof: The lemma follows from the same logics leading
to Lemma 2 (infinite buffer analysis). The number of cells not
processed in the slots is At epoch all
the cells not processed in the slots must be either
postponed, queued, or lost cells. Thus, accounting for the cell
generated at we have

Next, we relate the rate of loss, to the
rate of starvation

Theorem 5: At steady state, the loss rate is equal to the
starvation rate.
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Fig. 4. Counter example for Theorem 6.

Proof: For a random variable let be its expected
value. From Lemma 3, we have that

(6)

This is implied from the fact that
and that is finite (see Lemma 1) and that is
bounded from above by the buffer size

C. Bounds on Work and Starvation

Next, we will establish an upper bound on the number
of starvation slots by epoch We will start by analyzing the
system behavior using two lemmas. The first lemma deals with
the build-up period, a period where the buffer first builds up.
It starts at and ends when, at the first time,
The second lemma deals with thesaturation period, the period
that starts when the first period ends.

Lemma 4: Let denote the first epoch at which
Then for every the system behavior and the buffer
contents are identical to those of the infinite buffer system (if
it is subject to the same arrivals).

Lemma 5: For obeys

The proofs of Lemma 4 and 5 are given in Appendix A.
Remark 2: Note that, unlike the infinite buffer system, in

the finite buffer system, does not grow monotonically
since cells can be lost.

The next theorem analyzes the number of postponed cells
. Specifically, we characterize the epochs at which this

function increases. This characteristic will then be used to
establish bounds on the number of starvation points.

Prior to stating the theorem some more notation is required:
An epoch is called a -incrementpoint if

Theorem 6: Let then we have the following.

1) If is a starvation initiationpoint, then:

a) is a -incrementpoint;
b)

2) If is a -incrementpoint and then is not
necessarily astarvation initiationpoint.

Proof:

1) If is a starvation initiation point, then
implying that:

a) [from (5)], and thus, from Theorem 1,
is a -incrementpoint;

b) and thus, from Lemma 5,

2) This is proved by providing a counter example. Such an
example, depicted in Fig. 4, reflects a situation in which
there are no arrivals at two arrivals at

and no arrivals at In that example,
is a -increment point but not a starvation

point (since .

Corollary 1: The number of starvation points in the interval
is bounded from above by the number of-increment

points for which
Corollary 2: Assuming steady state, the starvation and loss

rates are bounded by the size of the postponed cell population
as follows:

(7)

V. DATAGRAM NETWORKS: SYSTEMS WITH

INDEPENDENT POSTPONEVALUES

In this section, we consider systems in which different cells
follow different paths through the network; thus, the delay
incurred by one cell in the network can be assumed to be
independent from that of other cells. This is modeled by having
the postpone values of the different cells independent of each
other.

Below, we assume that the postpone value of is a
random variable. We also assume that the postpone values are
independent of each other, namelyand are independent
of each other for everyand Further, we assume that
the postpone values are all taken from the same distribution,
namely for every is a random variable distributed like

Let and let

Theorem 7: Assume that are independent ran-
dom variables, all distributed like Then is
bounded as follows:

(8)

Proof: Let denote the event in which the cells
enter the queue at The probability

of the event is given by

(9)
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where Now, since for every this
expression is bounded by

(10)

Finally, noting that

(11)

the theorem is proved.
A similar bound can be derived regarding the nonqueued

backlog (postponed cells plus queue arrivals) at
Theorem 8: The density of the nonqueued backlog distri-

bution is bounded as follows:

(12)

Proof: The proof goes along similar lines to that of
Theorem 7 and by noting that: 1) the probability that cell

is either postponed or arriving atis given by and
2) the cell located at is always postponed or arriving
at

Remark 3: The bounds given in (8) and (12) increase
somewhat if is known to be (which is the case
in many applications) since then is always postponed at
and is always postponed or arriving at

A. Exact Analysis for Geometric Postpone Distribution

Below, we derive the steady state distributions assuming that
are independent random variables, all distributed

geometrically, i.e., and therefore

First, we provide exact expressions for the postpone distri-
bution Let and

From the evolution of the number of postponed
cells, we have

(13)

Multiplying (14) by and summing for we obtain

(14)

which after simple algebra yields

(15)

Using (15) recursively, we have

(16)

By taking the th derivative of (16) with
respect to and substituting we obtain

(17)

where
Corollary 3: Using Theorem 1, the expressions derived in

(17) and in (16) can be used directly to derive the distribution
of Specifically, we have

and for
Lastly, we provide closed form expressions for upper

bounds on the distribution of and These
are based on the bounds derived in (8) and (12). Under the
assumption of geometric distribution of the postpone values,
these bounds become

(18)

(19)

Remark 4: Note that for every value of and
the right hand side of (19) is smaller than that of (18). Note also
that the bound in (19) can also be derived by using Theorem
1 and (18) and (17).

Corollary 4: From Theorem 1 and (19), we get

(20)

From (20), we may now derive expressions for the prob-
ability of a -increment point. This is given by

and can be computed as follows:

(21)

where the inequality results from (20).
The practical use of these inequalities is as follows. Equation

(19) can be used in conjunction with the analysis of infinite
buffer systems to bound the likelihood of-entrance epochs.
Equation (22) can be used in conjunction with the analysis of
the finite buffer system (Corollary 1) to bound the likelihood
of loss (and starvation) as follows:

(22)
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VI. V IRTUAL CIRCUIT NETWORKS: SYSTEMS WITH

TANDEM-LIKE DEPENDENT POSTPONEVALUES

In this section, we consider a system in which all cells of
a session follow the same path. This implies that the stream
of cells under consideration follows a tandem of queues. This
fact, combined with an assumption that the queues use the
FIFO strategy, implies direct dependencies between the delays
incurred by different cells through the network. In particular,
cell cannot overtake cell This is expressed in the next
proposition.

Proposition 9: For if then

Next we establish two simple conditions for cell accumu-
lation at the end buffer:

Theorem 10:The size of the postpone population at time
depends on the postpone values of past cells as follows.

1) if, and only if, and

2) if, and only if,

Proof: The proof follows directly from the proposition.
Theorem 10 leads to a striking identity between the distri-

bution of postponed values and the distribution of number
of postponed cells at certain moments,

Theorem 11:The limiting distribution of the number of
cells postponed in the system is identical to the limiting
distribution of the postpone values, namely

(23)

where is the indicator function.
Proof: From Theorem 10 (2) and Proposition 9, it is easy

to see that for any value of and we have

(24)

Applying this inequality to and and subtracting these
two equations from each other, we get

(25)

Finally, dividing by and taking to infinity yields the
proof.

Remark 5: Note that Theorem 11 is in fact a generalization
of Little’s law [6]. The original law, which applies to a very
wide collection of systems, relates the expected delay incurred
by customer to the arrival rate and the expected
number of customers residing in the system by the formula

A straightforward application of Little’s law to
the population of postponed cells yields
where and 1 is the arrival rate into the
system. However, as shown by Theorem 11, a much stronger

law applies in our case: The relation between the population
size, the delay, and the arrival rates holds not only to their
expected valuesbut also to theirfull distribution , namely

Note that the distributional form of Little’s law was studied
in [3] and [4], but in the framework of Poisson arrivals. Here,
this distributional form of the law is observed in the context
of periodic (regular) arrivals.

To conclude this section, we note that Theorem 11 And
Corollary 2 yield a computable bound on the loss rate and
starvation rate.

VII. PRACTICAL USE

The analysis provided above (Corollary 2, Theorem 1
and Theorem 8 for independent postpone values with gen-
eral distributions, (22) for independent postpone values with
geometric distributions, and Corollary 2 and Theorem 3 for
tandem-like dependent postpone values) yields bounds on loss
and starvation expressed in terms of the postpone distribution

For actual networks, the postpone values are the delays
incurred in the networks. These are either known, or proce-
dures for their derivation (exact or approximate) are typically
available.

Thus, the derivation of the loss rate at the end buffer should
be conducted as follows: 1) derive, by other means, the delays
incurred in the network and use them as the postpone values
in our model and 2) use our analysis to derive the bounds on
the loss rate as a function of the buffer size (and the postpone
values).

VIII. SIMULATION RESULTS

The aim of this section is to use simulation to examine, in
the context of ATM, the quality of the loss probability analytic
bounds derived in the paper. We examine three bounds. The
first bound, denoted reflects the bound established in
corollary 1. is defined as

(26)

Since, by Theorem 5, the probability of loss is equal to that
of starvation, is a bound on the probability of loss.

The second bound is which is, by definition,
an upper bound on

The third bound is which is identical, by
Theorem 11, to

Note that the first two bounds are, in principle, hard to
compute, and thus will be evaluated via the simulation. In
contrast, the third bound reflects the postpone distribution
which depends only on the delay distribution incurred by a
cell while passing through the network. This measure can be
derived by other means, and is carried out in this example by
analytic means.

A. Simulation Description

The system simulated is a specific application of the data
telecommunication session analyzed above. As mentioned, a
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session consists of a data source node and a destination node
whose processing/transmission speeds are identical to each
other and which are connected by a network whose speed
and delay can be arbitrary. For the simulation, we chose a
specific network consisting of four tandem switches, each with
16 inputs and outputs. Each of the 16 outputs has a queue for
the data destined for that output from all 16 inputs. A cell
traversing the network will accumulate delays at the queues
of the four switches. The total delay is eventually translated
to the cell’s postponed value at the network’s exit buffer.

The transmission speed of the data in the network is greater
than the transmission speeds at the source and destination
nodes. The parameter that determines the ratio of these speeds
is denoted therate ratio. The cell delay accumulated at the
four switches in the network must be translated to the speed
in the destination node by dividing the delay by the rate-ratio
parameter. This value is the postponed value (denoted through
the paper as for the network exit buffer. As explained
in the paper, a cell generated at timegets postponed and
its queue entrance at the network’s exit buffer occurs at time

In order to simplify the system, one of the 16 inputs to each
of the switches will transmit only the cells of the session being
simulated. The session cells enter the first switch according to
a constant speed determined by the rate-ratio parameter; then,
their entrance to switch is determined by their entrance to
switch and the delay incurred in switch The other
15 switch inputs supply the rest of the data entering the switch,
each following a Bernoulli process in a stochastic manner, so
that the total data entering the buffer at the switch obeys the
set load parameter.

The simulation has four input parameters, load, rate-ratio,
duration, and buffer size, and measures six others: 1) loss; 2)
number of starvation events; 3)-increment points; 4)
5) and 6) (all defined above).

B. Computation of Analytic Prediction

The postpone value in the D G/D/1 queue model is
equal to the delay incurred by a cell while passing through the
network. This is given by

-
(27)

where is the delay incurred by theth cell at switch
Thus, a convolution of the delays incurred in the individual

switches is used to obtain the analytic prediction of This
would bepreciseif the switch delays were independent of each
other. In our case, one may assume that these are close to being
independent due to the extent of traffic mixing occurring in the
switches. However, these are notexactly independentdue to
the tandem-like structure.

The delay distribution at switch is computed nu-
merically from the switch arrival process. This is assumed

(a)

(b)

Fig. 5. Cell-loss rate as a function of the network/source rate ratio
(Load = 0:8): (a) B = 2: (b) B = 3:

to consist of the sum of 16 independent Bernoulli processes,
each with parameter load/16.

C. Results

Our results are exhibited in four figures. Figs. 5–7 depict
the loss rate as a function of the rate-ratio, for different buffer
sizes and loads. The figures contain each four curves: the
actual loss rate incurred in the simulation (solid line), and the
three bounds and the analytic prediction
of loss (and While the first two bounds are measured
by the simulation, the third one is computed analytically. The
actual values of the quantity were measured in
the simulation as well, and were found to be exactly equal to

Fig. 8 depicts the loss rate as obtained by the simulation
(solid line), and the analytic prediction (dashed line) as func-
tions of the buffer size, for different values of load and rate
ratio.

D. Discussion of the Results

The results suggest that the effect of the buffer size on
the cell-loss rate is very dramatic. Fig. 5, for example,
demonstrates that under approximately realistic parameters
(source/network rate ratio of 20 and load of 0.8), the cell-loss
rate drops more than three orders of magnitude (from more
than 10 to 10 Thus, the indication given in the paper
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(a) (b)

(c)

Fig. 6. Cell-loss rate as a function of the network/source rate ratio(Load = 0:9): (a) B = 2: (b) B = 3: (c) B = 4:

that likelihood of loss rapidly diminishes with the buffer size
is verified by the simulation results.

Figs. 5–7 demonstrate that on a log-scale the cell loss rate
decreases close to linearly with the rate ratio. This suggests
that the rate-ratio curves can be used as good predictors (by
the way of extrapolation) for the derivation of measures that
are hard to simulate (very low cell loss rates).

Fig. 8 exhibits clearly the effectiveness of the bounds for
different load values and rate-ratios values. We observe that
the quality of the bound (as an approximation and predictor)
improves with the rate ratio and degrades with the load. Since
we are interested mainly in rate-ratio values in the area of 30
and load values of approximately 0.8, we have a tight bound.

It is important to mention that it is impossible (time wise)
to produce simulation results for loss probabilities in the
range lower than 10 but the prediction (bound) for these
parameter values can be easily computed.

APPENDIX

PROOFS OFLEMMAS 1, 4 AND 5

Proof of Lemma 1:For is the number of cells
generated prior to but which enter the queue after Thus,
we have

(28)

where is the indicator function. Thus, we have

(29)

where the first equality stems from the fact that the expected
value of a sum is the sum of the expected values and the last
equality stems from the fact that is a nonnegative discrete
random variable.

Proof of Lemma 4:Let the first epoch when loss occurs be
denoted by The system is identical to an infinite system
if there is no loss in the system, namely if which
we prove next.

For the contradiction, assume that
From Lemma 3 and the definition of we have

(30)

On the other hand if loss occurs at then
and (since loss occurs when . Hence,

which contradicts (30). Thus
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(a) (b)

(c)

Fig. 7. Cell-loss rate as a function of the network/source rate ratio(Load = 0:95): (a) B = 2: (b) B = 3: (c) B = 4:

(a) (b) (c)

Fig. 8. Cell-loss rate as a function of the buffer size. (a) Rate ratio= 10. (b) Rate ratio= 15. (c) Rate ratio= 20.

by the contradiction for no loss occurs, and the
system is identical to an infinite buffer system.

Proof of Lemma 5:The proof of follows
trivially from Lemma 3.

To prove let us first consider From
Lemma 3 and the definition of we have

We prove that
and thus

For there is no loss (Lemma 4), hence
Now is astarvation completionpoint, and hence

(31)

(using (3), Theorem 1, Lemma 3, and the definition of )
Thus, and
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Next, we will show by induction that for if
then
From (4) and Theorem 1, it follows that

(32)

(where the first inequality results from algebraic manipulation
and the second from the inductive assumption).

Now if it follows that And,
if the queue is full and thus

which completes the proof.
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