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Abstract

Energy consumption of the medium access control (MAC) algorithm is one of the key performance metrics in today’s ubiquitous
wireless networks of battery-operated devices. We concentrate on random access MAC algorithms called Collision Resolution Protocols
(CRPs) that have the best stable properties and excellent delay characteristics for a large population of ‘‘bursty’’ users. The main concern
of the analysis of CRPs has so far been the stability conditions, the throughput-delay tradeoffs and how the algorithms can be optimized
for these properties. The contribution of our work is the introduction of a novel utility function that reflects the tradeoff between the
energy consumption induced by a MAC protocol and its throughput, thus representing the energy efficiency of the algorithm. We exem-
plify the use of this utility function by analyzing several CRPs, including full and limited sensing algorithms. In particular, we introduce a
modification of the ‘‘0.487’’ algorithm that improves its energy efficiency.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In many wireless networks the preferred medium access

control (MAC) mechanism is a random access algorithm.
It is known that for a large group of ‘‘bursty’’ users, such
algorithms display better delay characteristics than TDMA
schemes. Moreover, these random access algorithms are
usually easier to implement and deploy than an access algo-
rithm that is based on scheduling. One needs only to consid-
er the current deployment of the 802.11 wireless local area
networks (WLANs). The standard [1–3] provides two
methods of accessing the medium; one (namely, DCF)
using the random access algorithm known as carrier sense

multiple access with collision avoidance (CSMA/CA), and
the other which is based on scheduled access and is termed
PCF. To date, none or very few implementations support
the PCF function. Thus, random access algorithms merit
attention when energy efficiency is addressed.
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Of all the random access algorithms suggested in the lit-
erature, the family of algorithms that displays the best sta-
ble properties is the collision resolution protocols (CRPs).
Many papers ([5–9,12,13,15,16] to name a few) have been
devoted to suggesting new and improved collision resolu-
tion algorithms and to devising methods of analyzing their
performance. This analysis concentrated mainly on finding
the conditions for the stability of the algorithms, the max-
imum sustainable throughput, the expected packet delay
and how each could be optimized. Today, when hand-held,
battery-operated devices are used more and more, the ener-
gy requirements of an algorithm are just as important.
Users might be willing to sacrifice throughput or delay to
make better use of the battery energy they have available,
and extend the operation time of their devices.

In this paper, we propose a utility function that mea-
sures the energy efficiency of an algorithm, given its param-
eters and the system’s requirements (e.g., required
throughput). We aim to optimize this function and show
how this optimum can be calculated and obtained.

To the best of our knowledge, only [18,14] address the
energy efficiency of collision resolution protocols. In [18],
a new method of splitting the allocation interval, based
on the residual energy of each node is suggested. The model
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used is of finite population with finite initial energy at each
node, and the suggested algorithm is compared to the
FCFS algorithm. In [14], a new protocol that is based on
known multiplicity (i.e., when a receiver knows how many
transmitters collide) through energy measurements and a
rather elaborate information in the feedback is presented.
The suggested algorithm is compared with several other
algorithms, among which are 802.11 and FCFS, that do
not assume the known multiplicity model. The comparison
is based on the expected values of the participation time,
number of transmissions, collision resolution interval and
total power consumption, given that k packets collide in
the beginning of the collision resolution interval. We utilize
the infinite population model, and find the optimized ener-
gy efficiency of each algorithm we describe. We employ the
classical ternary feedback and compare different algorithms
according to the unconditional expected values of through-
put and energy consumption. This is highly important, as
most algorithms can be optimized so that the vast majority
of collisions contain no more than 2 packets. Even if a giv-
en algorithm outperforms another for all k > 2, it can still
be inferior to the latter.

This paper is organized as follows. In Section 2.1, we
describe the underlying model we use. Section 2.2 presents
the utility function we propose as a metric to the energy
efficiency of a MAC protocol, which incorporates the
tradeoff between the system’s throughput and its energy
requirements. Section 3.1 describes two versions of the
Window Access (WA) algorithm. In Section 3.2, we
describe the celebrated first-come-first-served (FCFS) algo-
rithm and analyze its energy efficiency. Section 3.3 is devot-
ed to presenting numerical data and to discussing these
results. Section 4 describes and analyzes limited sensing
algorithms, namely the free access algorithm in Section
4.1 and the last-come-first-served algorithm in Section 4.2.
Numerical data of the limited sensing algorithms is present-
ed in Section 4.3. We conclude with Section 5, where we
also outline some future work on the subject of energy effi-
ciency of CRPs.

2. Energy efficiency

2.1. Model description and definitions

Our model and assumptions are basically those of stan-
dard multiple access protocols [17]. We assume the channel
is slotted; that is, the time is divided into identical intervals
called slots that are the time units used. A user can attempt
to transmit a packet, whose length is one slot, only at the
beginning of slots. We define slot T as the interval
[T,T + 1). At the end of slot T, the users get information
about the activity in the channel in that slot. We denote this
feedback by FT. Two kinds of feedbacks are considered:

Binary feedback, where the feedback can discern
between 0 or 1 (FT = NC), or more than one (FT = C)
transmission attempts in a slot.
Ternary feedback, where the feedback can discern
between 0 (FT = 0), 1 (FT = 1) or more than one
(FT = C) transmission attempts in a slot.

This feedback might be available to the users by means
of a central station that detects all transmissions in the
channel and informs the users at the end of a slot. Howev-
er, if the users can detect all transmissions in the channel,
such a central station is not necessary.

We assume that the channel is error-free, so the only rea-
son for erroneous delivery of packets is simultaneous trans-
mission of two or more packets. This event is called collision,
and all packets participating in a collision must be re-trans-
mitted. New packets arrive to the system according to a Pois-
son process with rate k packets per slot, reflecting the
behavior of an infinite population of ‘‘bursty’’ users.

An algorithm which requires all users to continuously
monitor the feedback information is called Full Sensing

Algorithm or Continuous Sensing Algorithm. An algorithm
which requires users to monitor the feedback information
only when they have a packet to transmit, is called Limited

Sensing Algorithm.
Each user invests a certain amount of energy, ex, in each

transmission attempt. We assume that this amount is con-
stant for all users and all transmissions and is equal to 1
energy unit (ex = 1). Since collisions might occur, a packet
may be transmitted several times before it is successfully
delivered; let P be the number of transmissions. If the sys-
tem has a steady state, we define P as the expected normal-
ized energy required to successfully transmit a packet.

For the limited sensing algorithms analyzed in Section 4,
we also consider the energy required for monitoring the
channel feedback in a single slot, denoted em. We assume
that this energy is also constant for all users and for all
slots and that em = nex, where n P 0, or, when normalizing
by ex, em = n.

2.2. The utility function

Our goal is to optimize the performance of the MAC
algorithm with respect to the expected energy required to
successfully transmit a packet – E. With this objective in
mind, we would like to evaluate different CRPs, and cali-
brate their parameters so that we get minimal E. However,
taking only E into consideration could lead to unwanted
results in other important performance metrics. For
instance, transmitting no packets yields E ¼ 0 which is
the best possible, but then no packets will be transmitted
successfully.

Consequently, we propose a utility function that takes
the tradeoff between the throughput and E into account

U ¼ k

E
l ð1Þ

which we aim to maximize, where k is the throughput. The
parameter l is determined according to how important
the energy requirements are with respect to the throughput.
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If the system designer wishes to sacrifice more throughput
to get lower E, she will set a higher value of l. If, on the
other hand, one is more interested in the system through-
put, one will set a lower l.

Since for limited sensing algorithms a user is required to
process the feedback only when it has a packet to transmit,
and stops listening when the packet is finally transmitted
successfully, the energy required to ‘‘tune in’’ on the feed-
back is equal to nD, where D is the delay of the packet,
measured from the time it arrived to the system until it
was successfully transmitted. Thus, we have E ¼ P þ nD,
and we can use the following utility function for the limited
sensing algorithms:

U L ¼
k

P þ nD
� �l : ð2Þ

This might seem unnecessary, since many view the trans-
mission as far more energy-consuming than the receiving
process. However, in many situations the energy require-
ments of amplifying, demodulating and decoding the re-
ceived signal are comparable with the energy required to
transmit a packet. (See [19] and references therein.).

For the full sensing algorithms, we take n = 0. Thus, for
the full sensing algorithms we use UF as the utility function,
which is defined as

U F ¼
k

P
l : ð3Þ

Note that we neglect the energy required to listen to the feed-
back in this suggested utility function since in all full sensing
algorithms users have to listen to the feedback at every slot,
so there is no real difference between the required ‘‘listening’’
energy of any two full sensing algorithms. Furthermore,
since we are dealing with the infinite population model, E
does not take a finite value for any other value of n.

Note that the utility function (1) is not limited to measur-
ing the energy efficiency of CRPs only. It can be used to eval-
uate any MAC protocol, if we take E to be the energy
required to deliver an information unit (which could be bit,
byte or packet, for instance), and if we normalize the energy
units so that E P 1 (otherwise, the meaning of l might
change).

3. Full sensing algorithms

In this section, we examine the energy efficiency of full
sensing algorithms. We use the utility function presented
in (3) to evaluate the performance of different algorithms,
and we find the conditions for maximizing this function.
We start with an algorithm that is easy to analyze, to illus-
trate the calculations.

3.1. The Window Access (WA) algorithm

The idea of controlling the access of new packets
according to a window was first suggested by Gallager in
[7]. This algorithm, sometimes called the epoch mechanism
(as in [7,17]), divides the time axis into consecutive win-
dows, or epochs, each of maximum length D slots. The
ith window is the time interval [iD, (i + 1)D). Packets that
arrive during the ith window are blocked until all the pack-
ets from the (i � 1)th window have been resolved. In this
section, we discuss the simple WA (SWA), suggested in
[15], where packets delay the start of the next collision res-

olution interval (CRI), if necessary, until a ‘‘full’’ window
can be chosen. This simplifies the analysis of the algorithm.
The more sophisticated version, where a shorter window
may be chosen, is, actually, the First-Come-First-Served
algorithm, which is discussed in detail in Section 3.2. The
window length, D, is a system parameter and could be
tuned to optimize the performance of the system. We aim
to maximize UF. Apart from stating the first-time transmis-
sion rule, we must also define the conflict resolution algo-
rithm used. Here, we use the modified tree algorithm,
sometimes referred to as level skipping, also suggested in
[15]. This means that definite collisions, i.e., collisions that
follow an idle slot which immediately follows a collision,
are avoided. We do not discuss or analyze the standard tree
algorithm, also known as the Capetanakis–Tsybakov–Mik-
hailov (CTM) algorithm [5], since it obviously wastes more
energy (due to avoidable definite collisions).
3.1.1. WA algorithm description

This is a full sensing ternary feedback algorithm and all
users are always aware of the window being handled in the
current CRI. Algorithm 1 is based on an implementation
suggestion in [15] and is carried out by each user. The
parameters used in the algorithm are CRICounter, that
identifies the end of a CRI; WindowCounter, that identifies
the current window; TransmitCounter, that marks the
node’s place in the stack; and Flag, that implements the
level skipping. The coin flip used in the algorithm is a Ber-
noulli random variable with probability p of flipping 0.

Algorithm 1. The regular Window Access algorithm

Flag ‹ 0, CRICounter ‹ 1, WindowCounter ‹ 0,
TransmitCounter ‹ NULL
loop
Wait for feedback
if FT = C then

CRICounter ‹ CRICounter + 1
Flag ‹ 1
if this user transmitted in slot T then
FlipResult ‹ result of coin flip
if FlipResult = 0 then

TransmitCounter ‹ 0
else {FlipResult = 1}

TransmitCounter ‹ 1
else if TransmitCounter „ NULL then

TransmitCounter ‹ TransmitCounter + 1
else if FT = 1 then

CRICounter ‹ CRICounter - 1
if this user transmitted in slot T then
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TransmitCounter ‹ NULL
if TransmitCounter „ NULL then

TransmitCounter ‹ TransmitCounter - 1
Flag ‹ 0

else if FT = 0 and Flag = 0 then

CRICounter ‹ CRICounter - 1
if TransmitCounter „ NULL then
TransmitCounter ‹ TransmitCounter - 1
else {FT = 0 and Flag = 1}

if TransmitCounter = 1 then
FlipResult ‹ result of coin flip
if FlipResult = 0 then

TransmitCounter ‹ TransmitCounter - 1
if TransmitCounter = 0 then

Re-transmit in slot T + 1
if CRICounter = 0 then

CRICounter ‹ 1
if T > D (WindowCounter + 1) then
WindowCounter ‹ WindowCounter + 1
if this user has a packet that arrived in the
WindowCounterth window
then

Transmit at slot T + 1
TransmitCounter ‹ 0

else

TransmitCounter ‹ NULL
ð10Þ
3.1.2. Energy efficiency for the WA algorithm

The first step in calculating P is calculating the expected
cumulative number of transmissions in a CRI, given that it
starts with k packets. Let X k be the expected value of X,
given that the CRI starts with k packets. Let V denote
the number of transmissions in a CRI. We have V 0 ¼ 0
and V 1 ¼ 1. Given that the CRI starts with k P 2, and that
i users are on the left branch of the binary tree, according
to the algorithm, we get

V k;i ¼
k þ V i þ V k�i; 1 6 i 6 k;

V k; i ¼ 0:

(

Taking the expectation over i, we have

V k ¼
kð1� Qk

0Þ þ
Pk�1

i¼1 ðQk
i þ Qk

k�iÞV i

1� Qk
0 � Qk

k

; 8k P 2;

where Qk
i ¼

k
i

� �
pið1� pÞk�i. Since each CRI starts with a

window of D, we can simply write

V ¼
X1
n¼0

V nPrðk ¼ nÞ ¼
X1
n¼0

V n
ðkDÞn

n!
e�kD: ð4Þ

Since each CRI is independent, thanks to the method used
to choose the packets eligible for transmission at the begin-
ning of each CRI, the expected number of transmissions
per packet is the ratio between the expected cumulative
number of transmissions in a CRI and the expected num-
ber of packets that are successfully transmitted in a CRI.
In the WA algorithm all packets in the beginning of a
CRI are eventually transmitted in the same CRI. Thus,
the expected number of packets involved in a CRI is kD
and therefore

P ¼ V =ðkDÞ: ð5Þ
We believe it can be shown that if we hold k constant, P is a
monotonically increasing function of D (see Fig. 2(a)),
meaning that one would prefer to set D as small as possible
in order to maximize UF. However, to sustain a stable
throughput of k packets per slot, one cannot take any value
of D. We know [17] that the algorithm is stable so long as

L < D; ð6Þ
where L is the length of a CRI. Thus, one should choose
the smallest D that does not violate (6). This means that
maximizing UF, when k is held constant, can be achieved
by setting D to such a value that causes the system to oper-
ate near the algorithm’s capacity, i.e., close to its stability
threshold. If we can also control k in some manner, we
would like to know what would be the best choice of k
and D. If we define the expected number of packets in a
window z , kD, we notice that P is a function of z only.
The expected CRI length, L, is also a function of z only.
Noticing that (6) can be re-written as

k <
z

L
¼ zP1

n¼0Ln
zn

n!
e�z

ð7Þ

we can write

UF ¼
k

P
l <

z

L½P �l

¼ zlþ1P1
n¼0Ln

zn

n!
e�z

P1
n¼0V n

zn

n!
e�z

h il,GlðzÞ: ð8Þ
3.1.3. Tree pruning

As Gallager noticed in [7], if the arrival time of the pack-
ets is used to split them into subsets, when a collision is fol-
lowed by another collision of the packets on the left
branch, it is best if the right branch is incorporated into
the next CRI. This algorithm is termed tree pruning or
clipped tree. The method used to analyze the energy effi-
ciency of this algorithm is similar to the method used in
Section 3.1.2. Using the same notations, we have that
V 0 ¼ 0 and V 1 ¼ 1. Given that the CRI starts with
k P 2, and that i users are on the left subset of the alloca-
tion interval, according to the algorithm we get

V k;i ¼
k þ V i; 2 6 i 6 k;

k þ 1þ V k�1; i ¼ 1; 8k P 2;

V k; i ¼ 0:

8><
>: ð9Þ

Taking the expectation over i, we have

V k ¼
kð1� Qk

0Þ þ Qk
1ð1þ V k�1Þ þ

Pk�1
i¼2 Qk

i V i

1� Qk
0 � Qk

k

; 8k P 2:
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Since ‘‘clipping’’ the tree does not affect the indepen-
dence between different CRIs, and as each CRI starts with
packets chosen from a window of exactly D slots, we can
still use (4) to calculate V . However, (5) no longer holds
for this algorithm, as some of the packets that collided in
the first slot of a CRI might be incorporated into the next
CRI, rather than resolved in the current CRI. To calculate
P , we must find the expected number of packets that are
delivered in a CRI, denoted by N. This has already been
achieved in [17], and found to be

Nk ¼
Qk

1ð1þ V k�1Þ þ
Pk�1

i¼2 Qk
i Ni

1� Qk
0 � Qk

k

; 8k P 2:

To find the unconditional value, N , we exploit the indepen-
dence between CRIs, and use

N ¼
X1
n¼0

Nn
ðkDÞne�kD

n!
:

Now, that we have the expected number of packets trans-
mitted in a CRI, and recalling that z , kD, we can calculate
P using

P ¼ V

N
¼
P1

n¼0V n
zne�z

n!P1
n¼0N n

zne�z

n!

:

Again, we believe P can be shown to be monotonically
increasing with respect to z (see Fig. 2(a)), so if we hold k
constant, we get that it is monotonically increasing with
D. Considering UF, we notice that one would prefer that
the system would operate near capacity. For this algo-
rithm, stability is maintained as long as k < N=L [17], so
we get

U F ¼
k

P
l <

N
lþ1

L � ½V �l

¼
P1

n¼0Nn
zne�z

n!

h ilþ1

P1
n¼0Ln

zne�z

n!

P1
n¼0V n

zne�z

n!

h il,GlðzÞ: ð11Þ
3.2. The first-come-first-served (FCFS) algorithm

The first-come-first-served algorithm was suggested by
Gallager in [7]. This algorithm splits the colliding packets
into two subsets according to the packet arrival time, rath-
er than coin flips or node identity. The collision resolution
algorithm used here is the modified tree algorithm with tree

pruning, or clipped tree mechanism, as it is described in Sec-
tion 3.1.3. The packets chosen for transmission in each slot
are the packets that arrived in a time interval specified by
the algorithm; this interval is called the allocation interval.
When a new CRI begins, the allocation interval chosen for
this CRI is of maximum length D, but can be shorter, if a
‘‘full’’ window cannot be chosen at the current slot and
therein lies the difference from the algorithm analyzed in
Section 3.1.3. The algorithm is called FCFS since the pack-
ets are delivered in the order they were generated. It is also
known as the 0.487 algorithm, for its maximum achievable
steady-state throughput, which is the highest known to
date (apart for a minor improvement suggested by Mosely
and Humblet in [16]).

3.2.1. The FCFS algorithm description
At each slot boundary, the algorithm specifies the allo-

cation interval by two parameters, S (T) and ‘ (T), as
[S (T),S (T) + ‘ (T)). The parameter r (T) is the status of
the subset that should be transmitted in slot T. It can take
either L (left subset) or R (right subset). Algorithm 2
describes what each node does.

Algorithm 2. The FCFS Algorithm

r(1) ‹ R, S (1) ‹ 0, ‘(1) ‹ 1,
{T ‹ 1}
loop
if this node has a packet that arrived in [S (T),
S (T) + ‘(T)) then

Transmit in slot T

Wait for feedback
if FT = C then

S (T + 1) ‹ S (T)
‘ðT þ 1Þ  ‘ðT Þ

2

r(T + 1) ‹ L

if FT = 1 and r(T) = L then
S (T + 1) ‹ S (T) + ‘(T)
‘(T + 1) ‹ ‘(T)
r(T + 1) ‹ R

if FT = 0 and r(T) = L then

S (T + 1) ‹ S (T) + ‘(T)
‘ðT þ 1Þ  ‘ðT Þ

2

r(T + 1) ‹ L

if FT „ C and r(T) = R then
S (T + 1) ‹ S (T) + ‘(T)
‘(T + 1) ‹ min(D,T � S (T))
r(T + 1) ‹ R

{T ‹ T + 1}
3.2.2. Energy efficiency for the FCFS algorithm

The method used to calculate P for the FCFS algorithm
is similar to the method used in [9] and in [8] for calculating
the packet delay. This method takes advantage of the
regenerative nature of the transmission process in order
to calculate the expected number of transmissions per
packet.

Suppose that at the beginning of slot T all packets that
arrived before time S (T), where S (T) < T, have been suc-
cessfully transmitted, and there is no information regarding
the packets in the interval [S (T),T) (see Fig. 1). The time
interval d = T � S (T) is called the ‘‘lag’’. A new CRI
begins at time T and lasts L slots. This CRI begins with
packets chosen from the interval [S (T),S (T) + ‘), where
‘ = min (d,D). According to the FCFS algorithm, not all
packets in the allocation interval are necessarily resolved
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in a CRI. However, all packets resolved in a CRI are
packets that arrived in some time interval [S (T), S (T) + d),
which we refer to as the resolved interval. Moreover, at the
end of the CRI, we have no a-priori knowledge about the
packets that arrived in the interval [S (T 0), T 0), where
S (T 0) = S (T) + d. Thus, at time T 0, we have a similar situ-
ation to what we had at time T, but with a new lag
d 0 = T 0 � S (T 0), and with a new allocation interval. Unlike
the simple WA (with or without the tree pruning mecha-
nism), the lag at the beginning of a CRI can be smaller than
D, so ‘ does not necessarily equal D when a CRI begins.
This is the source of the difficulty in analyzing this algo-
rithm, as each CRI is no longer independent of the former
CRI.

Let us label the packets according to the order of their
arrival and denote the number of transmissions required
to successfully deliver the ith packet by Pi. We would like
to calculate the steady-state expected value of Pi, when it
exists. According to the method in [9], we can calculate P via

P ¼ lim
n!1

1

n

Xn

i¼1

P i ¼ P1 ¼
Y
C
; ð12Þ

where Y and C denote the expected cumulative number of
transmissions and the expected number of packets success-
fully transmitted in a regeneration cycle, respectively. The
regeneration points are CRI boundaries when d = 1. At
these points, the random processes restart, including the
process for P. The expected number of packets delivered
in a regeneration cycle is

C ¼ kH ; ð13Þ
where H is the expected length of the regeneration cycle.
Upper and lower bounds on H were already found in
[8,9], and are described in Appendix A. To find Y, we
Fig. 2. (a) The expected number of transmissions per packet for the WA a
algorithms. The curves are presented only for D for which the algorithm is sta
develop a system of equations and find upper and lower
bounds on its solution, as in [8,9]. The derivation is de-
scribed in Appendix A.

From (12) and (13) and the results of Appendix A, we
have the following bounds on the expected number of
transmissions until successful delivery of a packet:

Y l

kHu ¼ P l
6 P 6 P u ¼ Y u

kH l
3.3. Numerical results and discussion

First, we plot P versus the expected number of packets
per window, z, for the two versions of the WA algorithm
(Fig. 2(a)).

The difference between the two versions of the WA algo-
rithm can be explained by noticing that the most energy in
a CRI is wasted in its first slot. The tree pruning increases
the probability that a given slot will be the first slot of a
CRI (for a given z), and since these slots waste most of
the energy, P is higher when using the tree pruning mecha-
nism. The value of P is similar for the two versions for
small values of z since for k 6 2, the algorithms behave
exactly the same. For small values of z, the majority of
the CRIs start with k 6 2 (for z = 1, Pr(k 6 2) � 0.92).

We might be tempted to choose the simple WA algo-
rithm over the WA with the pruning mechanism in view
of Fig. 2(a), but we must consider the stability requirement.
If we hold k constant and control D, we know that to
increase UF we need to choose D as small as possible. To
sustain a given throughput k, we can choose a smaller D
when using the tree pruning compared with the WA algo-
rithm without tree pruning. This means that z for the tree
pruning version can be smaller, but it does not automati-
cally mean that P will be smaller. Consider an example
where k = 0.2 and suppose we could choose D = 20
(z = 4) for the regular WA algorithm and D = 15 (z = 3)
for the tree pruning version. In this example, we get that
P is still higher for the tree pruning version. Luckily, we
know that all values of k, for which the two algorithms
are stable, can be achieved using z < 1.3. In this region, P
lgorithms. (b) The utility function with l = 1 and p = 0.5 for the WA
ble. The maximum value for each curve is marked with a symbol.
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for the two versions of the WA algorithm is roughly the
same, so the algorithm that can choose a smaller D (and
thus smaller z) will be more energy efficient. This is also
illustrated in Fig. 2(b), where we can see that for most val-
ues of D, the efficiency of the regular WA algorithm is bet-
ter, but the pruning version can achieve higher values of UF

since for the same value of k, it can choose lower D.
Note that, if we have to set D without knowing k, and if

we cannot control D after setting it, the algorithm we would
choose is the simple WA algorithm, as its efficiency in this
scenario will always be higher (for all k for which the system
is stable with the set D for both versions of the algorithm).

We would like to find the maximum value of UF for a
given l for the WA algorithms, and what should be the val-
ues of k, D and p to achieve this maximum. Using (8) (and
similarly (11)), we can find the maximum UF for a given l
by searching for the maximum of Gl (z) (denoted by G�lðzÞ)
and the maximizer, z�l. Having found z�l, we have only k�lD

�
l.

However, we know that the maximum value of UF is
obtained when the system is operating near its capacity,
so k�l is easily extracted by substituting z�l in (7) (for the
simple WA algorithm, for instance). Using standard opti-
mization algorithms and taking the first 50 terms in the
infinite series in (8) and (11), we have found the maximum
and maximizers of UF for the WA algorithms, for several
values of l. Table 1 contains these values, while Figs.
3(a) and (b) present Gl (z) for some values of p and l.

We note that the maximum achievable value of UF for
the WA algorithm with the tree pruning mechanism is
slightly higher than the maximum UF for the WA algo-
rithm without tree pruning, for the same l. We also note
that as l increases, z�l decreases. This agrees with the way
we view the tradeoff between the throughput and the ener-
gy invested in delivering a packet. When we are more inter-
ested in the throughput, i.e., when l is smaller, we set z

closer to the optimal z used to achieve the highest sustain-
able throughput. When, on the other hand, we are more
interested in the energy consumption, we should set lower
values for z, thus sacrificing the throughput to get lower
energy consumption.
Table 1
Maximum Values and Maximizers of Gl(z) for the simple WA algorithm
(a) and the WA algorithm with tree pruning (b)

l G�lðzÞ p�l z�l k�l D�l

(a)
0.5 0.326 0.363 0.855 0.449 1.903
1 0.243 0.315 0.651 0.412 1.580
1.5 0.191 0.275 0.522 0.371 1.408
2 0.156 0.241 0.432 0.331 1.304
3 0.113 0.189 0.316 0.265 1.191

(b)
0.5 0.332 0.393 0.867 0.464 1.867
1 0.246 0.332 0.659 0.422 1.562
1.5 0.192 0.284 0.526 0.376 1.398
2 0.157 0.246 0.434 0.334 1.298
3 0.113 0.191 0.316 0.266 1.189
Next, we compare the FCFS algorithm with the WA
algorithms. Since for any given D, the capacity of the FCFS
algorithm coincides with the capacity of the WA algorithm
with tree pruning and p = 0.5, we compare only these two.
Considering the results presented in Fig. 4, we see that,
indeed, when D is set so that the algorithm operates near
capacity, i.e., we set D to the smallest value that still per-
mits stable behavior of the algorithm with the given k,
the efficiency of the two algorithms is identical (minor dif-
ferences in the graph are due to simulation sampling errors
and due to the step used in setting D), as is expected. When
we set higher values for D, we see that the efficiency of the
FCFS algorithm exceeds that of the WA algorithm. The
reason lies in the fact that the FCFS does not ‘‘wait’’ so
that a full window can be chosen. It can begin a CRI with
an allocation window that is smaller than D. This happens
when d < D, and when it does, the expected number of
packets that participate in such CRIs is smaller than kD,
the expected number of packets participating in a CRI of
the WA algorithm. In effect, the expected initial allocation
interval in the FCFS algorithm is smaller, and we know
that a smaller allocation interval means less collisions,
when k is held constant. Fig. 5 illustrates the same phenom-
ena when we hold D constant and change the value of k.
Actually, we can deduce from Figs. 5(b) and 4, that if we
set D � 1.3, we get the best performance in the FCFS algo-
rithm for any value of k with respect to the energy efficien-
cy. This does not mean, however, that for a given k, we
should set D = 1.3. If we can change D according to a known
k, we would set D to the smallest value for which the system is
stable. This value is smaller than 1.3 for k < 0.487.

Considering the analysis of the FCFS presented above,
we can suggest a different version of the FCFS with identi-
cal maximum stable throughput, but with better energy
efficiency performance. Whenever a CRI begins while
d < D, the FCFS algorithm chooses ‘ = d (see Algorithm
2). We suggest changing the ‘ (T + 1) ‹ min (D,T � S (T))
line in the FCFS algorithm to

if T � S (T) P D then
‘(T + 1) ‹ D
else

‘(T + 1) ‹ min(f,T � S (T)),

where f is a parameter of the algorithm, and 1 6 f 6 D.
This change preserves the stability properties of the FCFS
algorithm, while shortening the expected allocation interval
for large D, thus we get lower P and higher values of UF for
the same values of D and k. The results for f = 1.4 are pre-
sented in Fig. 6. Choosing the optimum value for f has not
been thoroughly investigated yet.

4. Limited sensing algorithms

In this section, we examine the energy efficiency of lim-
ited sensing algorithms, where a user has to listen to the
feedback only when it has a packet to transmit. The utility



Fig. 3. The function Gl (z) with l = 1 and l = 2 for the WA algorithm (a) and for the WA algorithm with the tree pruning mechanism (b).

Fig. 4. The utility function with l = 1 and p = 0.5 for the WA algorithm
with tree pruning and the FCFS algorithm. The curves are presented only
for D for which the algorithm is stable. The maximum value for each curve
is marked with a symbol.
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function used to evaluate the energy-efficiency of limited
sensing algorithms is presented in (2).

4.1. The free access (FA) algorithm

The free access algorithm was suggested and analyzed in
[6,11]. The algorithm used to resolve collisions is the stan-
dard tree algorithm. However, in this algorithm, a user
Fig. 5. Comparison between the WA algorithm with tree pruning and the FC
Only values of k for which the system is stable are shown.
transmits a packet as soon as it is generated (at the next
beginning of a slot, that is), as opposed to the obvious
method, as described in [15], where a user waits until an
ongoing CRI is terminated. The main advantage of taking
this course of action is that a user does not have to monitor
the feedback before it has a packet to transmit. The stan-
dard tree algorithm carried out by each user can be visual-
ized as maintaining each user’s level in a stack. A user
transmits whenever it is at the first level (level 0), and
updates its place in the stack (TransmitCounter in Algo-
rithm 3) according to the feedback it hears (including feed-
backs of slots in which the user did not transmit).

4.1.1. The FA algorithm description
For the simple version of the algorithm, only binary

feedback is necessary. Ternary feedback should be used if
we want to improve the algorithm by avoiding definite col-
lisions, as was described in Section 3.1. Algorithm 3 is car-
ried out by each node in the system.

Algorithm 3. The free access algorithm

loop
FS algo
TransmitCounter ‹ 0
Wait for a packet to arrive
Transmit the packet at the next slot boundary and
wait for feedback
rithm with respect to P (a) and with respect to UF when l = 1 (b).



Fig. 6. Comparison of the utility function for the regular FCFS and the
suggested improvement with f = 1.4. Only values of D for which the
system is stable are presented. The maximum value of each curve is
marked with a symbol.
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while FT „ NC or TransmitCounter > 0 do

if FT = C and TransmitCounter = 0 then
Flip a binary coin with probability p for flipping
1
if flipped 1 then

TransmitCounter ‹ 0
else

TransmitCounter ‹ TransmitCounter + 1
else if FT = C then

TransmitCounter ‹ TransmitCounter + 1
else {FT = NC}

TransmitCounter ‹ TransmitCounter - 1
if TransmitCounter = 0 then

Transmit on slot T + 1
Wait for feedback
4.1.2. Analyzing energy efficiency for the FA algorithm

Here, again, we exploit the regenerative nature of the
algorithm. We notice that the regeneration points in this
case are the CRI boundaries, as the lag of this algo-
rithm is always 1. We therefore calculate the cumulative
number of transmissions in a CRI and divide it by the
expected number of packets transmitted in a CRI. Note
that in this algorithm, new packets join an ongoing
CRI. The analysis is based on the analysis presented
in [11,6].

Define Vk as the cumulative number of transmissions in
a CRI that starts with k packets transmitting on the first
slot of the CRI. Following the algorithm’s description,
we have

V k;i ¼
0; k ¼ 0;

1; k ¼ 1;

k þ V iþX L þ V k�iþX R ; k P 2;

8><
>: ð14Þ

where i is the number of packets (out of k) that flipped 1
after the collision, XL is the number of packets that joined
during the first slot of the CRI (the collision slot), and XR is
the number of packets that joined during the last slot of the
‘‘mini-CRI’’ that started with i + XL packets. Eq. (14) is
the basis for calculating V and therefore P . We must bear
in mind that (14) is not a recursive formula, as XR and
XL may take any non-negative integer value. A detailed
derivation of a formula for P is described in [4] and
produces

P ¼ 1� Ka

k
Sðe�zz; kÞ; ð15Þ

where q = 1 � p,

Ka ¼
1
p � 1

q
1
p e�k=p � 1

q e�k=q
; Ka p ¼ 1

2

� �
¼ e2k

1� 2k

and the operator S is defined in [6,11], where a method for
calculating S (f (Æ);u) to a desired level of accuracy by using
the Taylor expansion of f (Æ) and by exploiting the linearity
of the S operator is also presented.

To evaluate the utility function we also need to calculate
D, the expected delay for a packet. Again, this was already
solved in [6]. However, D as it is calculated in [6] is mea-
sured from the first transmission attempt. Since we are
interested in the delay from the arrival time of the packet,
and owing to the fact that all packets are transmitted for
the first time in the first slot after the time they were gener-
ated, we can add 1

2
to the delay calculated in [6], to obtain

the required result.

4.2. The last-come-first-served (LCFS) algorithm

Limited sensing algorithms with a capacity that can
be made arbitrarily close to the 0.487 throughput algo-
rithm were independently suggested in [8,10] and [13].
The algorithm uses a parameter R, which determines
how many consecutive idle slots are allowed during a
CRI. This limits the number of consecutive times the
‘‘modified tree’’ mechanism (which prevents definite col-
lisions) may be used, so it obviously limits the algo-
rithm’s performance. However, this is essential to
prevent system deadlock. Without this limitation, a
newly arrived packet will not be able to determine
whether a CRI is in progress or not. When the number
of consecutive idle slots during a CRI is limited to R, if
a new packet observes R + 1 idle slots, it can determine
that no CRI is in progress. As observed in [8,10,13], the
capacity of the algorithm is 0.4493 for R = 1 and tends
to Gallager’s 0.487 algorithm as R increases. However,
as R increases, so does the expected packet delay for
low traffic, since, most likely, a packet waits R + 1 slots
before it can be transmitted for the first time, and when
it does, it most likely succeeds. Therefore, we have a
tradeoff between the expected packet delay (for low traf-
fic) and the algorithm’s capacity. We also note that for
R = 1, a binary-feedback version of the algorithm may
be obtained, since the algorithm behaves exactly the
same after FT = 0 and FT = 1.



Table 2
The last-come-first-served algorithm parameters

Parameter Meaning

R Maximum number of consecutive idle slots during a CRI.
r Status of the subset that should be transmitted in the next slot. Can take either L for Left subset or R for Right.
T Time elapsed from the arrival of a packet, to the current time.
T1 Time interval between the arrival time of the packet and the ending point of the allocation interval chosen at the beginning

of the current CRI.
Tx Collective amount of time already examined in the interval beginning with the time the packet arrived and ending at the current time.
LA Number of slots containing packets from class 1, from the arrival time of the packet until the current time.

Fig. 7. Random variables used in the analysis and description of the
LCFS algorithm.

3406 A. Bergman, M. Sidi / Computer Communications 29 (2006) 3397–3415
4.2.1. The LCFS algorithm description

The algorithm executed by each user in the network is
described in [8]. We give a different description of the
same algorithm, which we feel is more readily implement-
able. Table 2 and Fig. 7 describe the parameters used in
Algorithm 5. At every instance, the packets awaiting
transmission are divided into two classes. Class 1 contains
packets that cannot ascertain whether a CRI is in pro-
gress or not and packets that know a CRI is in progress,
but do not know when this CRI started. Class 2 contains
all the packets which already know that a CRI is in pro-
gress and also know when it started. Algorithm 5 uses the
statement ‘‘a CRI just ended’’ in one of the conditions.
This is established according to Algorithm 4. This algo-
rithm should be executed only when the user is active
(i.e., when it has a packet to transmit), and uses the same
value of LA as in Algorithm 5. The parameters which are
subject to optimization are D, the maximum allocation
interval, and R.

Algorithm 4. Identifying the End of a CRI

loop
Wait for feedback
EndOfCRI ‹ FALSE
if FT „ C and FT�1 = 1 then

EndOfCRI ‹ TRUE
if FT „ C and last EndOfCRI was TRUE then

EndOfCRI ‹ TRUE
if FT = 1 and LA = R then

EndOfCRI ‹ TRUE
Algorithm 5. The LCFS Algorithm
4.2.2. Energy efficiency for the LCFS algorithm
We analyze the performance of the algorithm for

R = 1, and present simulation results for other values
of R. The method used is identical to the one used in
Section 3.2.2. Unlike the FCFS algorithm, in the LCFS
algorithm gaps can be formed in the examined intervals,
thus our definition of the ‘‘lag’’ must change. We
denote the ‘‘virtual lag’’ by d, and define it as the
sum of all unexamined intervals from T = 0 as viewed
by an external observer. An examined interval, for that
matter, is an interval in which all packets have been
resolved.

Using the same notations as in Section 3.2.2, we have
that when R = 1, all equations used to calculate P for the
LCFS algorithm are identical to the equations used for
the FCFS algorithm (i.e., the bound for H and Y are calcu-
lated using the same formulas), but the conditional expec-
tations V d , Ld and dd should be calculated according to the
equations in [4, Appendix B]. To calculate D, using the
same method, we use

D ¼ lim
n!1

1

n

Xn

i¼1

Di ¼ D1 ¼
W
C
;
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where Di is the delay experienced by the ith packet when
the packets are ordered according to the time of arrival,
and W is the expected cumulative delay experienced by
all the packets in a regeneration cycle. We already have
an expression for H, so we can compute C using (13).
The derivation of bounds on W for R = 1, and thus the
bounds on D, is presented in Appendix B.

After computing all the required quantities, we can
bound UL for R = 1, using

k

P u þ nDu
� �l ¼ Ul

L 6 UL 6 U u
L ¼

k

P l þ nDl
� �l

for k that satisfies (A.13).

4.3. Numerical results and discussion

To verify our analysis of P for the FA algorithm and to
evaluate the accuracy of using a finite number of terms
from the Taylor expansions in k, we compared the numer-
ical data obtained using the analysis presented in Section
4.1.2 and the results of a simulation of the FA algorithm.
We have found that the analysis and the simulation results
coincide for all values of p and k when we use 10 terms of
the Taylor expansion in k, and when comparing to the
average of 30 simulation runs of 5 Æ 105 slots.

Table 3 presents some values of P for various values of
p, as computed using the analysis in Section 4.1.2. We note
that P is symmetrical around p = 0.5 for any given k, and
gets its minimum value when p = 0.5. This is expected, as
Ka in (15) is symmetrical around p = 0.5 (exchanging p

and q does not change the value of Ka), and this is also true
for the S operator, when f (Æ) in S (f (Æ);u) is independent of p

(and q). Using MATLAB, we have programmed the algo-
rithms used to evaluate the values of S for any p and k,
according to the procedures and expressions described in
Section 4.1.2 and in [6,11], and in this manner obtained
the following expression for the expected number of times
a packet is transmitted before it is successfully delivered.
Table 3
Computed values of P for the FA algorithm, for various values of k and p

k p = 0.2 p = 0.3 p = 0.4

.01 1.0325 1.0246 1.0214

.03 1.1055 1.0785 1.0680

.05 1.1911 1.1397 1.1203

.07 1.2920 1.2096 1.1791

.09 1.4119 1.2896 1.2455

.11 1.5554 1.3817 1.3208

.13 1.7287 1.4883 1.4066

.15 1.9405 1.6127 1.5049

.17 2.2027 1.7588 1.6181

.19 2.5328 1.9319 1.7494

.21 2.9568 2.1391 1.9029

.23 3.5160 2.3904 2.0839

.25 4.2790 2.6994 2.2996

.27 5.3695 3.0865 2.5597

.29 7.0360 3.5823 2.8782

.31 9.8595 4.2356 3.2750

The computations use 15 terms of the Taylor expansion in k.
P ðkÞ ¼ 1þ 1

2pq
kþ 4pqþ 3

12p2q2
k2 þ Oðk3Þ: ð16Þ

From (16), we can easily see that (at least for small values
of k) the expression for P is minimized for p* = 0.5, for any
given value of k. This is no longer true for the delay, as de-
scribed in [6]. For small values of k, Fayolle et al. found
that D is minimized at p� ¼ 2�

ffiffiffi
2
p
� 0:586 (while for larg-

er values of k, p* tends to 0.5). This suggests that UL is not
maximized for p = 0.5, as the utility function now includes
the expected packet delay.

To find the maximum value of UL for the FA algorithm
and the maximizers k* and p* for given n and l, we used
standard numerical optimizing techniques, and produced
Table 4. As we can see, the optimum value of p is between
0.5 and 0.586, i.e., between the value of p that minimizes P
and the maximal value that minimizes D. For n = 0, we see
that p* = 0.5 for all values of l, which is what we expected,
since for this case we do not consider the expected packet
delay, and we know that P is minimized for p = 0.5. For
this case, and for all other values of n, we see that increas-
ing l decreases the value of k*, as would have been expect-
ed—if we care more about P , we would prefer to sacrifice
the throughput to get a higher value of UL. This, in turn,
affects the value of p*, since a lower value of k* means that
p* should be closer to the value that minimizes D for small
k. We also see that changing l has much more impact on
the values of p* and k* than changing n. Moreover, for a
given value of l, the values of p* and k* do not change
by much when we change n, while n > 0. To understand
why this is so, we should consider Fig. 8, where we can
see that for any given k we have D > P , and that the differ-
ence between them increases as k increases. For this reason,
when n > 0, the main factor that determines the value of
the denominator of UL is D, so the values of (k*,p*) are
determined mainly due to its magnitude.

We now turn to investigate the performance of the
LCFS algorithm. We first compare the bounds found
p = 0.5 p = 0.55 p = 0.6 p = 0.7

1.0205 1.0208 1.0214 1.0246
1.0651 1.0658 1.0680 1.0785
1.1150 1.1162 1.1203 1.1397
1.1708 1.1728 1.1791 1.2096
1.2336 1.2365 1.2455 1.2896
1.3046 1.3085 1.3208 1.3817
1.3850 1.3902 1.4066 1.4883
1.4768 1.4835 1.5049 1.6127
1.5819 1.5905 1.6181 1.7588
1.7031 1.7141 1.7494 1.9319
1.8438 1.8579 1.9029 2.1391
2.0086 2.0264 2.0839 2.3904
2.2033 2.2261 2.2996 2.6994
2.4360 2.4651 2.5597 3.0865
2.7176 2.7553 2.8782 3.5823
3.0640 3.1133 3.2750 4.2356



Table 4
Maximum value of UL for the FA algorithm and the maximizers (k*,p*)

n,l 0.5 1 1.5 2 2.5 3

0 0.1771 0.1145 0.0857 0.0688 0.0576 0.0496
(0.313,0.5) (0.2273,0.5) (0.1804,0.5) (0.1505,0.5) (0.1295,0.5) (0.1138,0.5)

0.5 0.1136 0.0584 0.0339 0.0209 0.0134 0.0088
(0.2458,0.505) (0.1896,0.5111) (0.1558,0.515) (0.1329,0.5178) (0.1162,0.5199) (0.1034,0.5215)

1 0.0918 0.0397 0.0193 0.01 0.0054 0.003
(0.237,0.507) (0.1821,0.515) (0.1499,0.5204) (0.1283,0.5242) (0.1125,0.5271) (0.1004,0.5294)

1.5 0.0792 0.0301 0.0129 0.0059 0.0028 0.0013
(0.2331,0.508) (0.1787,0.5171) (0.1472,0.5232) (0.1261,0.5275) (0.1107,0.5309) (0.0989,0.5335)

2 0.0707 0.0242 0.0094 0.0038 0.0016 0.00071
(0.2309,0.5086) (0.1767,0.5183) (0.1456,0.5248) (0.1248,0.5296) (0.1097,0.5332) (0.098,0.536)

The computation uses 10 terms of the Taylor expansion in k.

Fig. 8. Comparison between D and P for the FA algorithm, where 15
terms of the Taylor expansion in k were used to compute P and 12 terms
were used to computer D.
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through the analysis presented in Section 4.2.2 with the
results of a simulation of the LCFS algorithm with
R = 1. This comparison is presented in Fig. 9 for
D = 2.58, when using 20 terms of the infinite series from
[4, Appendix B].

Fig. 10 presents UL for D = 2.58 and R = 1 using P and
D, as presented in Fig. 9, and compares the bound on the
utility function as computed analytically, with its value as
Fig. 9. Comparison between the computed bounds and simulation results of P
results are averaged over 30 simulation runs of 106 slots and the computed bou
Appendix B]. 95% confidence intervals are presented for the simulation sampl
calculated using the simulation results. We can clearly see
that the simulation results fall well within the bounds,
and that the bounds are at least tight enough to give a good
estimation of the maximizer, k*. With this notion in mind,
we try to use the analytical bounds to establish an estima-
tion of the optimal values of D and k for the LCFS algo-
rithm with R = 1. Table 5 presents the analytical
estimation of the maximizers, the estimated maximum val-
ue of UL, together with UL as calculated using simulation
results with the estimated maximizers. These estimations
were established using approximated values of D and P ,
where these approximation are the average between the
corresponding upper and lower bounds. We note that the
maximum values of UL as calculated using this approxima-
tion are close to the values obtained through simulations.
We believe this indicates that our approximated maximiz-
ers are close to the real maximizers. Again, we see the effect
of l on the tradeoff between the throughput requirement
and the energy efficiency. As we increase l, the optimum
value of k decreases (for any value of n). The value of k*

is hardly affected by changes in n (at least for n P 0.5).
An interesting outcome of the optimization is the value
of D*. We see that for a large set of values of n and l,
the optimum value of D stays within a rather small range
of [2.16, 2.4]. Also, D* increases with n and decreases with
l (as it did in the full sensing algorithms).
and D for the LCFS algorithm with R = 1 and D = 2.58. The simulation
nds use 20 terms of the infinite series for the conditional expectations in [4,
es.



Fig. 10. Comparison between UL as computed using the simulation data
and the analytical bounds as computed using the data presented in Fig. 9,
where l = 1 and n = 1.
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Before we compare the FA algorithm with the LCFS
algorithm with respect to the utility function, we would like
to investigate how P and D compare between the two algo-
rithms, as they are the dominant factors in UL. There are
three parameters that we must consider when evaluating
the performance of the LCFS algorithm; namely, R, D
and k. Fig. 11–14 show the effect of each parameter on P
and D. In Fig. 11, we can see that for most values of R,
Table 5
Maximum value of UL and the maximizers (k*,D*) for the LCFS algorithm wit
simulation using (k*,D*)

n,l 0.5 1 1.5

0.5 0.1381 0.0612 0.0301
(0.3383,2.2401) (0.2752,2.1852) (0.2282,2.1772)
0.1413 0.0649 0.0332

1 0.1078 0.0386 0.0154
(0.3286,2.3522) (0.2630,2.2331) (0.2176,2.2233)
0.1106 0.0418 0.0177

1.5 0.0915 0.0283 0.0098
(0.3243,2.3615) (0.2583,2.3450) (0.2136,2.3420)
0.0946 0.0309 0.0113

2 0.0809 0.0223 0.0069
(0.3220,2.3858) (0.2556,2.3535) (0.2114,2.3517)
0.0836 0.0245 0.0081

Fig. 11. Expected number of transmissions per packet for the LCFS algorithm
simulation runs of 5 Æ 105 slots. The solid curve is of P for the FA algorithm w
P is, more or less, linearly dependent on k, and that using
different values of R did not change the curves by much.
We also note that for small values of D, the LCFS algo-
rithm outperforms the FA algorithms in terms of the
expected number of transmissions per packet. For larger
values of D (as in Fig. 11(b)), we see that for most values
of k, and for any value of R, we would prefer to use the
FA algorithm. This is also evident in Fig. 13, where we
can notice that bigger D increases the expected number of
transmissions per packet, regardless of the R used or the
throughput of the system.

In Fig. 12, we can see how the expected packet delay is
influenced by k and R. For small values of k, where colli-
sions are rare, increasing R increases the expected packet
delay, as each new packet spends R + 1 slots before it
can determine that, indeed, there is no CRI in progress.
In this range of k, we notice that for all R and D, the FA
outperforms the LCFS algorithm. For k that approaches
the capacity of the algorithm (namely 0.487), we see that
taking a bigger value of R might produce better delay char-
acteristics. We should also bear in mind that for a stable
behavior of the algorithm for large values of k, we cannot
choose the FA algorithm, as its maximum stable through-
put is �0.36. Fig. 14 displays the effect of changes in D on
the expected packet delay. While the conclusion from
h R = 1 using approximations and the maximum values obtained through

2 2.5 3

0.0157 0.0086 0.0048
(0.1919,2.1750) (0.1638,2.1642) (0.1419,2.1630)
0.0182 0.01053 0.00624
0.0066 0.0029 0.0013

(0.1840,2.2203) (0.1585,2.2184) (0.1387,2.2150)
0.0080 0.00377 0.00185
0.0036 0.0014 5.3613e-004

(0.1811,2.3408) (0.1564,2.2301) (0.1375,2.2287)
0.0045 0.00184 0.00078
0.0023 7.6741e-004 2.6850e-004

(0.1795,2.3452) (0.1556,2.3439) (0.1370,2.3417)
0.0028 0.00105 0.0004

, where D = 1.5 (a) and D = 6 (b). All LCFS results are averaged over 30
ith p = 0.5.



Fig. 12. Expected delay per packet for the LCFS algorithm, where D = 1.5 (a) and D = 6 (b). All LCFS results are averaged over 30 simulation runs of
5 Æ 105 slots. The solid curve is of D for the FA algorithm with p = 0.5.

Fig. 13. Expected number of transmissions per packet for the LCFS algorithm, where R = 1 (a) and R = 8 (b). All LCFS results are averaged over 30
simulation runs of 5 Æ 105 slots.

Fig. 14. Expected delay per packet for the LCFS algorithm, where R = 1 (a) and R = 8 (b). All LCFS results are averaged over 30 simulation runs of
5 Æ 105 slots. The minimum values are marked with a symbol.
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Fig. 13 is to use the smallest possible D, we can clearly see
from Fig. 14 that there is an optimum value for D, if we
want to minimize the expected packet delay. However, this
optimum value is only slightly affected by changes of k and
R, and stays in the 2.5–2.8 range for most values of R and
k. This, and the fact that for any k, P increases with D,
ensures that the optimum value of D will not be greater
than 2.8. On the other hand, the severe effect a decrease
in D has on the expected packet delay is a guarantee that
the optimum value of D will not be very small, so the opti-
mum for all R and k is centered in a rather small region.

If we compare the maximum values of UL between the
LCFS algorithm with R = 1, as they appear in Table 5
and the FA algorithm (from Table 4), we see that for
l 6 1, we get that the maximum value of UL is higher when
the LCFS algorithm is used, while for l > 1, U �L is higher
for the FA algorithm. We also note that the optimum for
the FA algorithm is achieved for lower values of k.
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To sum it all up, when the energy invested in delivering a
packet is more costly, one would prefer to use the FA algo-
rithm, thus sacrificing the throughput; if the energy is still
important, but not as much, the LCFS should be used.
Looking at other values of R, we can see in Fig. 15 that
for l = 1 and n = 1, and for small values of k, FA displays
better energy efficiency than LCFS. If k is known and set,
and we must set the other parameters according to its val-
ue, we should first consider which algorithm is stable with
the given k. If both FA and LCFS are stable, we can use
Fig. 15 to find out which algorithm to use, and how to
set R, if LCFS performs better. We also deduce from Figs.
15, 17 and 18 that, most likely, the best choice for LCFS is
either R = 1 or R = 2. Other values of R should probably
be chosen only if the throughput demand cannot be met
with these values of R. Figs. 17 and 18 display the advan-
tage of the LCFS for small values of l and the superiority
of the FA for large values of l, which extends our previous
conclusion from the case with R = 1 to other values of R.

Fig. 16 is important since it depicts the behavior of UL

when D is changed around its optimal value. We can see
that if we set a slightly higher D than the optimum, the
energy efficiency is only slightly degraded, while we gain
near-optimality for a broader range of k and R. (the same
can be noticed, to some extent, in Fig. 14.).
Fig. 15. UL with n = 1 and l = 1 for the LCFS algorithm, where D = 1.5 (a)
5 Æ 105 slots. The solid curve is of UL for the FA algorithm with p = 0.5.

Fig. 16. UL with n = 1 and l = 1 for the LCFS algorithm, where R = 1 (a) and
slots. The maximum values are marked with a symbol.
We note that for the LCFS algorithm, we can look at
the energy-efficiency as it is defined in previous papers,
i.e., P þ nD, and try to minimize this quantity (without
regard to the throughput of the system whatsoever). Notice
that this is equivalent to maximizing UL with l fi1, so
our utility function, with the proper choice of parameter
values, covers previous notions of energy-efficiency. It is
interesting to observe that for the LCFS algorithm, when
we take l fi1, the optimum value for D does not tend
to zero, as it does in all other window-access-based algo-
rithms discussed in this work.

5. Conclusions and future work

In this work, we address the energy efficiency of CRPs
with infinite population, and propose a utility function to
measure this efficiency that also incorporates the through-
put requirements of the system. We analyzed three known
full sensing CRPs, and found the maximum efficiency for
each (as measured by the utility function) and the parame-
ters used to achieve this maximum. We also found that the
most efficient full sensing algorithm one could choose, out
of the algorithms we examined, is the FCFS algorithm, also
known as the 0.487 throughput algorithm. We concluded
the discussion of full sensing algorithms with an outline
and D = 6 (b). All LCFS results are averaged over 30 simulation runs of

R = 8 (b). All LCFS results are averaged over 30 simulation runs of 5 Æ 105



d d�dþL

Fig. 18. UL with n = 1 and l = 2 for the LCFS algorithm, where D = 1.5 (a) and D = 6 (b). All LCFS results are averaged over 30 simulation runs of
5 Æ 105 slots.

Fig. 17. UL with n = 1 and l = 0.5 for the LCFS algorithm, where D = 1.5 (a) and D = 6 (b). All LCFS results are averaged over 30 simulation runs of
5 Æ 105 slots.
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of a modification to this algorithm that might improve the
energy efficiency for some scenarios. In the second part of
the paper, we consider the energy efficiency of limited sens-
ing algorithms, where a node has to listen to the feedback
only when it has a packet to transmit. For these algo-
rithms, we can compute the energy needed to ‘‘tune in’’
on the feedback signals, and combine this quantity with
the transmission energy, to obtain the total energy needed
to deliver a packet successfully and incorporate it into the
utility function. We analyzed two such algorithms—the
free access algorithm and the last-come-first-served algo-
rithm, and found that if all parameters can be manipulated,
the preferred algorithm depends on the importance placed
on the energy compared to the system throughput. If the
energy consumption is more important, the FA algorithm
displays better properties, while the LCFS algorithm gets
higher marks for scenarios in which the high steady-state
throughput is more appreciated. If the required throughput
is set, one can use our analysis to determine what is the best
limited sensing algorithm to use, and how its parameters
should be tuned. We further facilitate the choice of param-
eters and the optimum algorithm by observing that for
most scenarios, only R = 1 and R = 2 should be considered
for the LCFS algorithm.

For further study, we note the suggested improvement
to the FCFS algorithm that hasn’t been thoroughly inves-
tigated. Also, the finite population model could present
options for optimizations and algorithms that could possi-
bly achieve better energy efficiency, since we have more
information in this model (e.g., the number of contending
packets is known to be bounded).

Appendix A. FCFS energy efficiency calculations

Here, we develop a system of equations to find Y and
upper and lower bounds on its solution. We use the follow-
ing notations for the analysis:

L, length of the CRI;

d,
 length of the resolved interval;

‘,
 length of the allocation interval;

d,
 the lag of the algorithm;

V,
 the cumulative number of transmissions in a CRI.
We first define the random variable yd as the cumulative
number of transmissions when we count starting from the
beginning of a CRI with lag d, until we reach a CRI with
d = 1. From the operation of the algorithm, we have

yd ¼
V ; L ¼ 1;

V þ yd�dþL; L > 1;

�
81 6 d 6 D ðA:1Þ

y ¼ V þ y ; 8d > D; ðA:2Þ
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where d 2F, F being the set of all possible values d can
take, which was found to be a denumerable dense subset
of the interval [1,1) in [12]. We denote Y d ¼ yd . Taking
the expectation in (A.1), and denoting V x as the expected
number of transmissions in a CRI, given that at the begin-
ning of the CRI ‘ = x, we get

Y d ¼

V d þ
P
r;s
s 6¼1

Prðr; sjdÞY d�rþs; 1 6 d 6 D;

V D þ
P
r;s

Prðr; sjDÞY d�rþs; d > D;

8>><
>>: ðA:3Þ

where Pr (r, sjx) is the joint conditional probability distribu-
tion of d and L, at d = r and L = s, given that ‘ = x. We
note that, by definition, Y = Y1, so if we had the solution
for (A.3), we could easily find Y. Using the method suggest-
ed in [9], we develop lower and upper bounds for the solu-
tion of (A.3) by looking for sequences fL0

d ; d 2Fg and
fU0

d ; d 2Fg that will satisfy the following inequalities:

U0
d P bd þ

X
j2F

pdjU
0
j P 0; 8d 2F; ðA:4Þ

L0
d 6 U0

d ; 8d 2F; ðA:5Þ
L0

d 6 bd þ
X
j2F

pdjU
0
j ; 8d 2F; ðA:6Þ

where

bd ¼
V d ; 16 d 6D;

V D; d >D:

(
pdj¼

P
s6¼1

Prðdþ s� j;sjdÞ; 16 d 6D;

P
s

Prðdþ s� j;sjDÞ; d >D:

8><
>:

ðA:7Þ
Once we find these sequences, [9] assures us that a finite
solution to (A.3) exists and that fU0

d ; d 2Fg is an upper
bound to this solution, while fL0

d ; d 2Fg is its lower
bound. Moreover, if we generate the sequences

U1
d ¼ bd þ

X
j2F

pdjU
0
j ; 8d 2F; ðA:8Þ

L1
d ¼ bd þ

X
j2F

pdjL
0
j ; 8d 2F ðA:9Þ

then fU1
d ; d 2Fg and fL1

d ; d 2Fg, are tighter bounds on
the solution to (A.3).

Let U0
d ¼ cy

1d þ cy
2; d 2F, where cy

1 and cy
2 are real con-

stants, and define

U1
d ¼ bd þ

X
j2F

pdjU
0
j ; 8d 2F: ðA:10Þ

Substituting (A.7) into (A.10), and noting that

Prðr; 1jxÞ ¼ ð1þ kdÞe�kd ; if r ¼ x;

0; otherwise;

�
ðA:11Þ

yields

U1
d ¼U0

d þ
V d þcy

1ðLd �dd �ð1þkdÞe�kdÞ�cy
2ð1þkdÞe�kdÞ; 16 d 6D;

V D�cy
1ðdD�LDÞ; d >D:

(

ðA:12Þ
The conditional expectancies in (A.12) can be computed
according to the formulas in [8,9] and in (10). It is known
[7] that the algorithm is stable if

dD > LD: ðA:13Þ
We note that when (A.13) holds, and cy

1, cy
2 are chosen

as

cy
1 ¼

V D

dD � LD

; ðA:14Þ

cy
2 ¼ max �cy

1; sup
16d6D

ðqðdÞÞ
� �

; ðA:15Þ

where

qðdÞ ¼ V d þ cy
1ðLd � dd � ð1þ kdÞe�kdÞ
ð1þ kdÞe�kd

ðA:16Þ

we get that inequality (A.4) is satisfied and
U1

d 6 U0
d ; 8d 2F. Similarly, it can be shown that if we de-

fine L0
d ¼ cy

3d þ cy
4; d 2F, inequalities (A.5) and (A.6) can

be satisfied if we choose

cy
3 ¼ cy

1; cy
4 ¼ inf

16d6D
ðqðdÞÞ; ðA:17Þ

where cy
1 and q (d) are as given in (A.14) and in (A.16). Col-

lecting it all, we have that

L1
d 6 Y d 6 U1

d ; 8d 2F ðA:18Þ

or more specifically, Yl
6 Y 6 Yu, where we define Y u

,U1
1

and Y l
,L1

1, and where

Y u¼V 1þcy
1½1þL1�d1�ð1þkÞe�k�þcy

2½1�ð1þkÞe�k�; ðA:19Þ
Y l¼Y u�ðcy

2�cy
4Þ½1�ð1þkÞe�k�: ðA:20Þ

Using the same method, it was found in [8,9] that
Hl
6 H 6 Hu, where

H u¼L1þch
1½1þL1�d1�ð1þkÞe�k�þch

2½1�ð1þkÞe�k�; ðA:21Þ
H l¼H u�ðch

2�ch
4Þ½1�ð1þkÞe�k�; ðA:22Þ

ch
1¼ch

3¼
LD

dD�LD

;

ch
2¼max �ch

1; sup
16d6D

ðq0ðdÞÞ
� �

; ch
4¼ inf

16d6D
ðq0ðdÞÞ;

q0ðdÞ¼Ldþcy
1ðLd�dd�ð1þkdÞe�kdÞ
ð1þkdÞe�kd

:

Appendix B. LCFS energy efficiency calculations

To find W, we follow [8] and define the random variable
wd as the cumulative delay of all packets when we count
starting from the beginning of a CRI with virtual lag d,
until we reach a CRI with d = 1. From the operation of
the algorithm, we have

wd ¼
wþxþN ; L¼1;

wþxþNþdN 0þwd�dþL; L>1:

�
816d6D ðB:1Þ

wd ¼wþxþNþdN dþwd�dþL; 8d>D; ðB:2Þ



Table B.1
Notations used in the analysis of the LCFS algorithm

Notation Meaning

d Length of the resolved interval,
N Number of packets transmitted in a CRI (i.e, the number of packets in d),
N0 Number of packets that where included in the beginning of the CRI, but were not resolved (i.e., the number of packets in ‘ � d),
Nd Number of packets that are unresolved and are not included in the current CRI,
L Length of a CRI,
x Cumulative delay of all N packets from the beginning of the CRI to the time a packet is transmitted,
w Cumulative delay of all N packets from their arrival until the beginning of the next CRI.
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where the notations used in the last two equations are ex-
plained in Table B.1. Denoting W d ¼ wd and taking the
expectation in (B.1) and (B.2) yields

W d ¼

wd þxd þN d þ dN 0
d þ
P
r;s

s6¼1

Prðr; sjdÞW d�rþs; 16 d 6D;

wDþxDþNDþ dN 0
Dþ dNd

Dþ
P
r;s

Prðr; sjDÞW d�rþs; d >D:

8>>><
>>>:

ðB:3Þ
Substituting NddD ¼ kðd � DÞdD in (B.3) gives

W d ¼

wd þxd þNd þ dN 0
d þ
P
r;s

s 6¼1

Prðr;sjdÞW d�rþs; 16 d 6D;

wDþxDþNDþ dN 0
Dþ kðd�DÞdDþ

P
r;s

Prðr; sjDÞW d�rþs; d >D:

8>>><
>>>:

ðB:4Þ

Let U0
d ¼ cw

1 d2 þ cw
2 d þ cw

3 ; d 2F, where cw
1 , cw

2 , and cw
3 are

real constants. Following a similar procedure to the one tak-
en in Section 3.2.2, and after some algebra, we get for d > D,

U1
d ¼ U0

d þ wD þ xD þ ND � kDdD þ dN 0
D

þ d 2cw
1 ðLD � dDÞ þ kdD

� �
þ cw

1 ðL� dÞ2D þ cw
2 ðL� dÞD

and for 1 6 d 6 D,

U1
d ¼ U0

d þ wd þ xd þ Nd þ dN 0
d

þ cw
1 2dðLd � ddÞ þ ðL� dÞ2d � ð1þ kdÞe�kd
h i

þ cw
2 ðL� dÞd � ð1þ kdÞe�kd
h i

� cw
3 ð1þ kdÞe�kd :

For this algorithm, stability is also maintained if (A.13) is
satisfied. When the algorithm is stable, if we choose

cw
1 ¼

kdD

2 dD � LD

	 
 ; ðB:5Þ

cw
2 ¼

wD þ xD þ ND � kDdD þ dN 0
D þ cw

1 ðL� dÞ2D

dD � LD

; ðB:6Þ

cw
3 ¼ sup

16d6D
ðqðdÞÞ;

where

qðdÞ ¼ 1

ð1þ kdÞe�kd
wd þ xd þ N d þ dN 0

d

n
þcw

1 ðL� dÞ2d � 2dðd� LÞd � ð1þ kdÞe�kd
h i

þcw
2 ðL� dÞd � ð1þ kdÞe�kd
h io

ðB:7Þ
we get that (A.4) holds and U1
d 6 U0

d ; 8d 2F. Similarly, it
can be shown that if we define L0

d ¼ cw
4 d2 þ cw

5 d þ
cw

6 ; d 2F, inequalities (A.5) and (A.6) can be satisfied if
we choose

cw
4 ¼ cw

1 ; cw
5 ¼ cw

2 ; cw
6 ¼ inf

16d6D
ðqðdÞÞ; ðB:8Þ

where cw
1 , cw

2 and q (d) are as given in (B.5), (B.6) and in
(B.7). Thus we can write

W l

kHu ¼ Dl
6 D 6 Du ¼ W u

kHl ðB:9Þ

where Hl and Hu are given in (A.21) and (A.22), and
with

W u ¼w1þx1þN 1þ dN 0
1þ cw

1 1þðL� dÞ2þ 2 L1� d1

	 

�ð1þ kÞe�k

h i
þ cw

2 1þðL� dÞ1�ð1þ kÞe�k
h i

þ cw
3 1�ð1þ kÞe�k
� �

;

W l ¼W u�ðcw
3 � cw

6 Þ 1�ð1þ kÞe�k
� �

: ðB:10Þ
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