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Performance and Stability of Communication
Networks via Robust Exponential Bounds

Opher Yaron, Student Member, IEEE, and Moshe Sidi, Senior Member, IEEE

Abstract— We propose a new way for evaluating the perfor-
mance of packet switching communication networks under a
fixed (session-based) routing strategy. Our approach is based
on properly bounding the probability distribution functions of
the system input processes. The bounds we suggest, which are
decaying exponentials, possess three convenient properties. When
the inputs to an isolated network element are all bounded,
they result in bounded outputs, and assure that the delays and
queues in this element have exponentially decaying distributions.
In some network settings, bounded inputs result in bounded
outputs. Natural traffic processes can be shown to satisfy such
bounds. Consequently, our method enables the analysis of various
previously intractable setups. We provide sufficient conditions for
the stability of such networks, and derive upper bounds for the
interesting parameters of network performance.

1. INTRODUCTION

N this paper, we consider data communication networks and

the problem of evaluating their performance. This problem,
in its most general formulation, is to characterize the service a
given network supplies when it is loaded with given user traf-
fic. In this context, the network is known by a full description
of the behavior of all its components (nodes and links), the user
traffic is given as known stochastic processes, and the service
is to be characterized by the distribution of its parameters
(such as the traffic in its links, the delays it causes, etc.). The
particular importance of this problem stems from the variety
of settings in which it is encountered. For instance, when a
new communication network is designed, which is supposed
to guarantee some predetermined parameters of service, one
wishes to calculate the amount and size of resources which are
needed to fulfill the requirements. Another example is when
a new user wishes to join arn already operational network.
Since modem real-time applications require some minimal
performance guarantees (such as very rare packet losses or
very short delays), the question here is whether the new
user can be admitted and accept its needed service while the
performance degradation other existing users sense will not
violate their needs.

A certain special case of this problem, which has been
addressed and studied very intensively, is the case of single-
node networks. Queueing theory (see, for example, [13]) deals;
basically, with the case of one node and one user. The input
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process in this case is some known stochastic point process,
and the server is described by the distribution of the time
it processes each “job.” Many other cases of single-node
networks have also been studied (see [8], [23], [10], (1], [15],
[18] and many others). These works consider a variety of input
and service processes, and address cases where the system has
more than one input link.

The other case, in which the network consists of more than
one single node, has proved to be very complex even in the
simplest settings. This complexity is essentially due to the
complicated way in which different traffic streams interact with
each other within the network, and to the dependencies which
are imposed by these interactions. A closed-form solution
in this case is known only for a limited class of networks,
known as Product Form Networks. A good example for this
class is the Jackson Network (see [13], [11]), where the
queue lengths of ail nodes behave as if they were indepen-
dent.

The subject of this paper are general communication net-
works operating in a packet switched mode, where routing
is performed on a session basis. Two original models for
analyzing such networks have been recently proposed ([5]-[7],
[16]). The first one, by R. L. Cruz, introduced the concept
of a burstiness constraint. A traffic stream with rate R(t) is
said to satisfy such a constraint if there exist some constants
p and o such that [° R(u)du < p(t — s) + o holds for all
0 < s < t. This concept ignores the stochastic nature of the
traffic, and must hold for any sample path of it. The analysis
Cruz presents achieves three major results:

1) If all input traffics to an isolated network element
(server) satisfy burstiness constraints, then so do the
output traffics from that element (not necessarily with
the same parameters, though). This claim is proved for
a variety of elements, with various service disciplines.

2) In this case, the delay suffered by each bit is upper
bounded by a constant D, which depends, of course,
on the parameters of the entering traffics and the nature
of the examined element.

3) If all input traffics to a network satisfy burstiness con-
straints, and if their parameters are small enough, then
all the traffic streams within the network also satisfy
some burstiness constraints.

These results enable the conclusion of upper bounds for the
size of the buffers needed within the network and the delays
each bit suffers in a single node, and during its life in the
system. Further progress within this model has been presented
by Parekh and Gallager in [20]-{22] for a special service
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discipline — the Packet-Based Generalized Processing Sharing
(PGPS).

The second model, by J. Kurose, deals with the discre;e-
time case. It does not ignore the stochastic nature of traf-
fic, but rather introduces the characterization of a traffic
stream by stochastically bounding the amount of data it might
carry in any fixed-length interval of time. In other words,
a traffic stream with rate R(t) is characterized by a series
{(Rx,k); k € N} of random variables if Pr{[’ R(u)du >
z} < Pr{R;_s > z} holds for all 0 < s < t and all z > 0.
Similar to the previous model, Kurose proves that if all input
traffics to a network element (a switch, in this case) have such
characterizations, then the same series (possibly shifted) of
random variables also characterizes the corresponding output
traffics. Moreover, the delays suffered by each packet in the
switch are upper bounded by some constant D. These results
are easily extended to any feedforward network, and an ad-
hoc iterative analysis is presented for a special case of the
nonfeedforward setting.

Motivated by the studies of Cruz and Kurose, we aim to find
upper bounds on the probability distribution functions which
describe the network operation and its quality of service. Our
target is to overcome the two limitations of their models. The
first is the deterministic nature of the input processes they
consider. Both of these studies assume that the bursts of the
input processes are of bounded length. Their methodologies
require the intervals over which the sum of the input peak rates
to a component exceeds its output capacity to be bounded. This
is not the case for most commonly used input processes, even
for the simple Bernoulli process or the well-known Poisson
process (which might have bursts of any length). The other
limitation of these studies is the partiality of the solutions they
present for the nonfeedforward case.

The issue of bounding traffic parameters has also been
addressed in some different settings. C. S. Chang, in his recent
studies [3], [4], proposed a multiclass model where customers
of distinct classes are routed differently and studied the single
(isolated) server thoroughly. He handled the deterministic case
similarly to the aforementioned works, and used the moment-
generating functions of the input processes in the stochastic
case to produce exponential bounds for the distributions of
queue lengths and delays. However, nonfeedforward networks
are only analyzed in the single-class case, which is rather
limited; in the stochastic model, it describes a Jackson-type
network. This model, of generalized Jackson networks (where
the routing is random and performed according to a routing
probability matrix), is studied in [17] where the input processes
are only assumed to have affinely bounded expectations.

In this paper, we propose a mew way for bounding a
traffic process. Rather than assuming that it has a bounded
burstiness, we impose exponential decay on the distribution of
its burst length. We then say that the traffic process at hand
possesses an exponentially bounded burstiness (E.B.B.). The
basic advantage of this bound over the ones mentioned earlier
is that it holds, as we show, for some natural processes that
have been studied earlier. There is no doubt it holds for most of
the processes one might encounter in modeling communication
networks. Two additional advantages make it applicable in
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many settings where the aforementioned models cannot be
used. First, it imposes no deterministic requirements on the
bounded processes and, hence, allows the analysis of systems
where the peak rates of the component streams might exceed
the system capacity over arbitrarily long intervals of time.
Moreover, it allows the analysis of compound systems with
correlated input processes — no independénce assumption is
needed when applying the analysis we present.

The first step we take is to examine the behavior of an
isolated network element that is fed with E.B.B. processes.
It turns out that its output traffic streams are also bounded
similarly and that the delays this element causes, and the
length of the queues which are built up within it, all have
exponentially decaying distributions.

In order to analyze general communication networks, our
target is to show that if all input processes to a communication
network are E.B.B., then so are all traffic streams within
that network. Once we have accomplished this, we will be
able to employ the previous statements concerning isolated
elements for bounding the distributions as well as all moments
of node performance measures in the network. Notice that we
require no assumptions regarding the input process’ statistical
dependencies, as opposed to the independence assumption
made in each of the aforementioned works [4], [16], [17], We
provide some numerical examples to illustrate our method.

In the case of feedforward networks, this target is rather
modest and fully achieved (see also [3]-[5], [7], [16]). The
case of nonfeedforward networks is much more complex, and
a full answer is not yet known in any of the models introduced
so far. Motivated by the specific example of a cyclic network
analyzed by Cruz [5], [7], we define and analyze a general
cyclic network. The results we get improve his findings, and
extend the scope of their applicability. The general case of
nonfeedforward networks is currently under study.

II. THE NETWORK MODEL

Our model for a communication network is a network of
queues, connected by error-free point-to-point communication
links. This model consists of a directed graph G = (V, E) and
a set {C(e); e € E} of nonnegative real numbers, each of
which might be finite or infinite. The collection £ C V x V of
directed edges represents the set of (directed) communication
links and the capacity of each link e € E is C(e). The set
V' of vertices represents the various elements of the network,
and it is due to these elements and their behavior that the
problem of analyzing the system as a whole is an interesting
and complicated problem.

A traffic stream flowing on a communication link of such
a network is characterized by its traffic rate R(t). This rate is
a stochastic process, expressing the instantaneous intensity of
data flow on the link — the amount of data flowing in this
stream from any time instant ¢, to any (later) time instant #,,
to be denoted by R'-*2, is exactly fttf R(t)dt. If the stream
is flowing in a link with finite capacity C, then for any ¢ its
rate must satisfy the obvious inequality R(t) < C.

Each node (queue) v in the network possesses a service rule
describing the way in which it handles the traffic entering it
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via its incoming links. This rule is a set {RY?; e € E?

out
of functions, one for each outgoing link e € E7,, from v.

Each of these functions determines the traffic rate exiting v~

via e— in the most general case, as a function of the whole
history {R./(s); € € E},, 0 < s < t} of traffic that entered
v through the set E},, of its incoming links during the time
it has been working. The amount of data stored in v (also
called backlog, or unfinished work) at any time ¢, subject to
its service policy, is

W (t) = /Ot

and we will naturally assume that W,(¢t) > 0 forall v € V
and all { > 0. If no work is created or destroyed in v and
its server never idles in front of a nonempty queue, then this
quantity actually expresses the amount of data that entered v
and is still to be processed there. In this case, v is called work
conserving (for a discussion of this concept, see [14, p. 113]).
A flow in a communication network is a collection {R.(t);
e € E} of traffic rates, defined for all ¢ € [0, 0o) and satisfying
1) 0 < R.(t) < Ce) for all ¢ € [0,00).
2) Re(t) = RY(Re(s); ¢ € EY,, 0 < s < t) for all
e € B,
These conditions merely say that the flow in each link is legal
at all times, and that the flows which exit any node in the
network are determined according to this node service policy.
Throughout this work we consider the continuous-time case
(of stochastic processes) as well as the discrete-time case. In
the latter case, the concept of traffic stream R(¢), t € R
reduces to a sequence { R(t)}, N of random variables, and all
other concepts should be understood accordingly. We always
assume that the system is started at ¢ = O and is then
empty (meaning that all network queues are empty). All the
results we present can be achieved in both (continuous and
discrete) settings. For simplicity of exposition, we stick to
the discrete model and assume all quantities (such as rates,
buffer occupancies, and capacities) to be integral. However,
the following section is exceptional and serves as an example
for the application of the continuous-time technique. Notice
that we enclose events in curly brackets and use the standard
abbreviations i.i.d. (for independent and identically distributed)
and r.v. (for random variable(s)).

> Re(s)— Y Re(s)|ds (D

ecEY. ecE?

out

III. EXPONENTIALLY BOUNDED BURSTINESS

The target of the analysis which will be herein presented
is to bound the probability distributions of the interesting
parameters of a communication network. The bounds we
are looking for will further enable the estimation of the
various moments (such as expectations) of these distributions.
We begin the presentation with definitions for a bounded
distribution and a bounded traffic rate.

A. Definitions

Definition 1: Let W (t) be any stochastic process. W (¢) is
exponentially bounded (E.B.) with parameters (4, «) -E.B.
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if it satisfies
Pr{W(t) > o} < Ae™*7

for all ¢ > 0 and all ¢ > 0.

Definition 2: Let R(t) be a traffic rate. R(f) has an
exponentially bounded burstiness (E.B.B.) with parameters
(p, A, o) — EB.B. if it satisfies

Pr { / R(u)du> plt - ) + a} < Ae-o

forall o > 0 and 0 < s < ¢. In this case, we say that R(¢)
is E.B.B., and refer to it as an E.B.B. process.

In both definitions, we call « the decay parameter of the
bound.

B. Basic Properties

Consider a traffic rate R(t), and assume it is (p,A,c) -E.B.B.
Let p be the upper limit of its long-term average rate, namely

i

E [R(u)du
p = limsup —2
t—s—00 - S
Then,
1 o0 t
]E/R(u)du: /Pr /R(u)du >0 pdo
s 0 s
p(t—s) t
= / Pr /R(u)du >0 pdo
0 L]
[ee} t
+ /Pr /R(u)du > p(t—9) —}—a}do
0 s
T A
<ot-9)+ [ Aeordo = plt- )+ %
0
Therefore,
E [’ R(u)d
p = lim sup __f_s,t_(i)_ﬁ < p.
t—8—00 — 8

It is for this reason that we call p an upper rate of R(t). Notice
that if R(¢) is (p,A,«) -E.B.B., then it is also E.B.B. with
upper rate v for any v > p. Moreover, it is most probable that
the decay factor attached to an E.B.B. characterization of R(t)
with upper rate v > p will be larger (and, hence, better) than
o. We discuss this tradeoff and illustrate it by a numerical
example in Section V-C.

An interesting characterization of an E.B.B. process emerges
when we look at the backlog it creates in some classes of
systems. This characterization can serve as an alternative
definition for E.B.B., and be employed when studying specific
traffic rates.
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Theorem 1: Consider a system that transmits at rate p, and
assume it is work conserving (which, in this context, means
it transmits information whenever possible). Suppose that it is
fed with a single stream of traffic rate R(t), and let W (t) be
the amount of data stored in the system at time ¢. We have:

» If W(¢) is E.B., then R(t) is E.B.B. with upper rate p.
« If R(t) is E.B.B. with upper rate p — ¢ for some ¢ > 0,
then W(t) is E.B.
Proof: By the assumptions of Part i), there exist some
positive A and o with

Pr{W(t) > 0} < Ae™*°

for all o > 0 and all ¢ > 0. Let 0 < s < t. Then,

{W(it)>o} D {/: R(u)du > p(t - 5) + a}

since the system can transmit no more than p(¢ — s) during
the time from s to ¢. Hence,

Pr {/tR(u)du > p(t - 8) + 0}
< Pr{sW(t) > g} < Ae™®°

which concludes the proof of Part 7).
To prove Part 4i), we note that by the assumptions here we
have some positive A, «, and e for which

Pr {/St R(y)du >(p—e)t—s)+ a} <Ae™™  (2)

holds for all & > 0 and all 0 < s < t. Fix some positive oy
and choose a small enough é such that 0 < § < Zpﬁ and

Aea(p—e)&

e 2 3)

'Suppose first that & > 0g; notice that, in the setting we
consider, the backlog W () [defined by (1)] has an alternative
expression, namely

W(t) = max { / " R(u)du — plt s)}

(see [6] for details and further references). Hence, there exists
some s < t such that

W(t) = / R(u)du — plt — s)

and, if we assume W(t) > o, then we have

/t R(u)du > p(t —s)+ o

Setting ¢ such that ¢ — 46 < s < ¢ — 46 + §, we get

/t;& R(u)du > /: R(w)du

>pt—s)+o>ibp—bp+o
It follows that

W) > o @{

R(u)du > i6p — 6p + a}

t—1ié

and thus, by (2) and a union bound, we get

Pr{W(t) > o} <) Ae~elibe=bpto)
=1
Aex(p=€)s
T 1

)

This concludes the proof, since (4) also holds for o < o by
3).

Remark: Using a somewhat different technique, which will
be introduced later (in the proof to Proposition 5), we can
show that in the discrete-time case

A e—aa
— e*aE

Pr{W(t) 2 0} < ¢

C. Sums of E.B. and E.B.B. Stochastic Processes

An interesting, and very useful, feature of E.B.B. processes
is that the sum of a finite number of E.B.B. processes is
itself an E.B.B. process. This statement holds regardless of
the statistical dependencies between the added processes.
However, better decay factors can be achieved when they are
independent.

Proposition 1: Let Ry(t) be (p,A,2)-E.B.B., and Ry(t) be
(n,B,6)-E.B.B. Then, Ri(t) + Ra(t) is (o +n,A+ B,~)-
E.B.B., where v = a‘fﬂ

Proof: Set0<s<tando >0,andlet0 < p < 1be
some constant. Then, we have

{[ )+ Rawrauz o+ e - o)+ )
C {/:Rl(u)du > p(t—s) +p0}
u {/:Rz(u)du > n(t—s)+ (1 —-p)a}

and so
e [ (Rl + Ratwdu > (ot -0+
<Pr {/t Ri(w)du > plt — s) +pa}
ere{ [ Fatwtu 2 0t 9+ (1 - o}

< Ae=9P9 | Be—Bl-p)o

B(1 — p). Then, p = —£. Setting

Choose p such that ap = P

— _af
’y - a+3?

pe{ [ () + Bz (o ) ) ro)

8

< (A+B)e”

we get

Notice that the coefficient -y satisfies

%min(a,ﬂ) <~ < %max(a,ﬂ)

A similar proof will show that the sum of two E.B. stochas-
tic processes is again an E.B. process, and its parameters are as
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mentioned above, for the E.B.B. case. It is worth mentioning
that the joint distribution of any two E.B. or E.B.B. processes
has a product form bound. For instance, if W7 is (A,«)-E.B.
and W is (B,8)-E.B., then

Pr ({Wl > 0'1} N {WQ > 0‘2}) < (A -+ B)6_7016—702

where + is defined as in Proposition 1. This is due to the fact
that

(W1 > o}n{W;y > 02} C {W1+ Wy > 01+ 02}

In the case when the added processes are independent, we
can use a different technique and achieve larger decay factors.
The following proposition states this claim for the case of
E.B.B. processes. Only very slight modifications are needed
for the case of E.B. processes.

Proposition 2: Let Ri(t) be (p,A,0)-E.B.B.-and Ra(t)
be (n,B,5)-E.B.B., and assume they are independent. Then,
Ry (t)+Ra(2t) is (p+n,A1,6 —U)-E.B.B. where § = min(«, §),
A" and ¥ depend on A and B.

Proof: Set 0 < s < t, 0 > 0, and let &k = t — s,
6 = min(w, 3). Assume o > (3 and, thus, § = (. Assume
further that Ri’t has a distribution density, to be denoted by

', such that

Pr{R}* >0} = / Pt (u)du = 1 —/ 9t (u)du
o 0
Then,
Pr{R}*+ Ry* > (p+ n)k + o}

= / Pr{R}" € [g,q + do)}
q=0

. Pr{R;’t >(p+nk+o—gq}

= / r7%(q) - Pr{Ry* > (p+ )k + 0 — q}dg (5)
q=0

Splitting the integral into three parts, and using integration by
parts, we get

pk
[t @Pes > (o4 k4o - )y
q=0
pk
< [ i @Pr{Ry 2 0k + o)dg
g=0
< Be P Pr{R}* < pk} < Be™P° (6)
pk+o
[ et @t 2 o+ w0 - b
q=pk
pk+o
< /rf’t(q)Be_ﬂ(”k+"_q)dq
q=pk
0o pk+o
= —/ri’t(u)du Be~Alokto—q)
q g=pk
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pk+o [/
+ / /ri’t(u)du Bpe~Plekto=a) g,
q=pk \q
:Be‘ﬂ"/rf’t(u)du—B / 3 (u)du
pk ph+o
pk+o [ co
+Bﬂe“’6"/ 3 (w)du | e PPE-D gy
q=pk \q
SBe_ﬁ"—{-B,Be—ﬂ”/ /Tf’t(u)du ePldg
7=0 k+q

< Be P 4+ ABBe~P° / elB=>egq
q=0

< (B + ABBg)e P )

/ " (q) Pr{R3" > (p+ )k + o — q}dg

q=pk+oc
oo

< / r1*(g)dg = Pr{R7" > pk + o}
q=pk+o
< Ae™ ®)

Substituting the expressions (6)—(8) into (5), we get

Pr{R}*+ Ry > (p+ n)k + o}
< Ae™®% +2Be A7 4+ 6 ABBe P

The result follows if we choose A’ and ¥ such that
A+2B+0ABB < A'e¥°

for all ¢ > 0.
Remark: A somewhat better result, namely

Pr{Ry" + Ry* > (p+n)k + 0}
< Ae™® 4+ Be P 4+ g ABe P

could be achieved in the discrete-time case by a simpler
analysis of (7).

Note that the choice of A’ and ¥ presents an interesting
tradeoff. The smaller ¥ one wishes to choose, the larger the
A’ that should be allowed. Note further that if we only need
the bound to hold for ¢ > oy for some gy > 0, then we can
choose smaller A’ and V. '

IV. INPUT PROCESSES

In the course of the following study, we would like to
analyze isolated network elements as well as interconnected
elements subject to the hypothesis that the data streams
entering the system under consideration by any of its users
are all E.B.B. The most obvious advantage of this bound over
the ones employed in [5]-[7] and [16] is that it applies to
standard stochastic processes.
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In order to prove that a specific given input stochastic
process is E.B.B., one can use a variety of approaches. The
direct one, which involves merely checking the conditions of
the appropriate definition, will be illustrated by the following
proof to the fact that a discrete Bernoulli process with param-
eter p has exponentially bounded burstiness with upper rate
p+ e for any € > 0. This claim is formalized in Proposition 3.

Proposition 3: Let {R(t)},c)v be a Bernoulli random
process with parameter p, and set ¢ > 0. Then, there exists
o > 0 such that

Pr{ Z R(u) > (p+e)(t—s)+ 0’} <e™
u=s+1

forall t > s > 0.

The proof of Proposition 3 is based on the following lemma,
which is rather general, and can be applied to a variety of
stochastic processes. °

Lemma 1: Let R(t) be a stochastic process, M**(f) the
Moment Generating Function of R®*. If there exist some
positive p and 6 for which M**(§) < e”(t=9)¢ for all ¢ >
s > 0, then R(¢) is (p,1,6)-E.B.B.

Proof: . Using the Markoff inequality (see [19, p- 114D,
we get

Pr{Rs,t > p(t _ S) + (T} =Pr {eaRs,t > ee(p(t—s)+o')}
< B ) 0e40) = et (g)e=0(r(i=s)+0)

Proof (of Proposition 3): Let ¥ = ¢t — s, and recall the
notation R*? = Zi:s-}—l R(u). {R(u)},—s1q are k iid. rv.,
distributed according to a Bernoulli(p) distribution. Hence,

M=H0) = (pe® +1 - p)*

Let f(8) = pe? +1—p, g(8) = e®+9°, We have f(0) =
g(0) = 1 and
df dg|  _
df 9=o< db er:o_p+6

Therefore, by the continuity of both f and g, f(6) < g(8)
for some positive , which is small enough. Setting a =
sup{0; f(0) < g(0)}, we have M*>"(a) = (f(a))F <
(9())* for all £ > s > 0. The result follows by Lemma 1.

A somewhat less straightforward way for proving the bound-
edness of a given stochastic process will be illustrated by the
following proof to the fact that the combined information
source analyzed in [1] is E.B.B. An on/off process is a
continuous-time stochastic process, which alternates between
two states: the “on” and “off” states. The alternations occur af-
ter exponentially distributed periods, which are all independent
of each other. The average “on” period is of one unit length,
and the average “off" period is of length % ‘While in the “on”
state, the traffic rate of this process stays constant at a level of
1 and transmits no data (R = 0) during the “off” periods. The
aggregate source we want to characterize herein is the sum
of N independent such on/off processes. The instantaneous
traffic rate of this process is = (for any integer 0 < r < N),
when exactly r of its N components are “on.”
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In order to prove that this source is E.B.B., we make use
of the characterization of E.B.B. given in Theorem 1. First,
we show that when such a stochastic process is fed into a
work-conserving server which transmits at a rate C' which is
high enough, then the distribution of the amount of data stored
in this server at any time is E.B. We then use Theorem 1 to
conclude the result. The first part is based on the following
proposition, which is proved in [1].

Proposition 4: If an aggregate on/off source (as described)
is fed into a work-conserving server with service rate C' and
the utilizatiqn factor p = C(If—i‘x) is less than 1, then there
exist some o9 > 0 and some 4 > 0 such that

Pr{W(t) > o} < Ae™™

for all o > oq, where

L+X(1-p)

C
1-%

To be precise, note that this statement is proved in [1]
only for the steady-state situation (when ¢ — 00). Applying a
coupling argument, it is clear that the result extends to any ¢
if the system is started empty with all input processes in the
“off” state.

Choosing

0<o<ag e~ro

B = max {A, max M}

where W is the backlog in steady state, we see that Pr{W >
o} < Be™" for any ¢ > 0. Employing Theorem 1, we
conclude that

Pr{/st R(w)du > Ot 5) + U} < e

and the source we are dealing with is E.B.B. with upper rate
C for any C > 1]\4’_—’}\ Notice that this is the best (smallest)
upper rate possible, since the average rate of the aggregate
source at hand is lji—);\

V. ISOLATED NETWORK ELEMENTS

We will now switch to the discrete-time context. The amount
of information transmitted on a link with capacity C = 1
during one time slot can be regarded as a (virtual) packet, and
we will regard it as such throughout the following exposition,
although each real packet of the system under consideration
might consist of several such packets.

The analysis we present herein considers network elements
that employ the Virtual Cut-Through Switching Technique,
introduced in [12]. However, only some very minor modi-
fications are needed to carry it out for the case of Store and
Forward elements as well. If a packet arrives at a virtual cut-
through element and the element is free to handle it, then it
will be handled and transmitted immediately without waiting
for the whole packet to be received. In the slotted model we are
dealing with, this can be interpreted as if the data which will
be received during a time slot is available at the beginning
of that slot and then virtually added to the element queue.
Work conservation for a virtual cut-through node means that



378

Rl(t)-\
Ro(t)——" W)

Fig. 1.

R(t)

A multiplexer.

it will transmit, in each slot, as much data as possible from
its available data.

The order in which a network element transmits the packets
that wait in its queue is dictated by its service discipline. The
analysis we present here assumes nothing about this discipline.
A finer analysis, which takes a specific element preferences
into account, may result in better bounds for that special
element.

The goal of the following sections is to show that when
the inputs to a network element are all E.B.B., then so are
its outputs. We will also show that, in such a case, all the
interesting parameters of the element behavior (such as queue
length and delays) are E.B. Such results will prove to be very
useful when we deal with communication networks. Just recall
that any network is built up of separate components, and the
outputs of one such component are the inputs to others.

A. A Multiplexer

A multiplexer is a work-conserving network element with
some number of inputs and a single output. Its function is to
merge multiple data streams into a single one. The information
packets that enter the multiplexer through any of its inputs are
stored in a common queue and are transmitted, one by one, on
its output. For the sake of simplicity, we will restrict ourselves
in this section to two input multiplexers. The results that follow
hold, however, for multiplexers with more than two inputs as
well. Generalization of the proofs to this more general case is
simple. See, for example, the proof of Theorem 2.

1) Output rate and queue length: If Ry(t) and Ry(t) are
the input traffic rates to the multiplexer, R(t) its output traffic
rate, and W(t) the amount of data stored in it, then the
multiplexer behavior is described by

W(t) = max(W(t — 1) + R1(t) + Ra(t) — C,0)
R(t) = min(W (¢t — 1) + R1(t) + Ra(t),C)

where C is the service rate of the multiplexer. A schematic
diagram of the multiplexer is given in Fig. 1.

Proposition 5: 1If the inputs Ri(t) and Ry(t) to a mul-
tiplexer are both E.B.B. with some upper rates p and 7,
respectively, and if p + 1 < C, then the output R(¢) from
the multiplexer is also E.B.B. with upper rate p + 7.

Proof: By the assumptions, there exist some positive A,
a and B, 8 such that

Pr{ Z Ri(u) > p(t—s) + o} < Ae™*?

u=s-+1

{Ene

>77t—s)+a}<Be pea
u=s+1
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hold for all integer 0 < s < ¢t and o > 0. Let d(s) be the
r.v. defined by

d(s) = min{u: W(s—u) =0}

The quantity d(s) equals the time (number of slots) that has
passed since the last time the queue was empty prior to s. As
we assume the whole system is empty at ¢ = 0, we know that
0 < d(s) < s. Letting k = t — s, we have

Pr {Rs’t (p+mk+o}
-ZPr {R*>(p+mk+oln{ds)=i}) )
=0

Notice that {d(s) = i} implies that, in each one of the i
time slots, s —¢ 4+ 1,8 — 4+ 2,...,s, C packets have been
transmitted, and {R** > (p+ n)k + o} implies that at least
additional (p + 1)k + o packets have been transmitted from
s to t. Moreover, {d(s) = 4} also implies that the queue of
the multiplexer was empty at s — ¢, and all these packets have
entered it from s — ¢ to ¢. Therefore,

{R** > (p+nk+ 0o} n{d(s) =i}
BT AR > (o kot ci} (10
Substituting (10) into (9), we get
Pr{R* > (p+n)k+0c}

<z:Pr{Rs ThE R;_i’t(p+n)k+a+0i}

—ZPr{Rs bty Ryt

> (pt+n)k+i)+o+i(C—p—n)}

We already know, however, that the sum of two E.B.B. traffic
rates is itself E.B.B. and so, using Proposition 1, we get

Pr{R> > (p+n)k+0o}

< Z(A + B)e~ (o +i(C=p=m)
1=0

_ A+ B

I (o vy

where v is again %

Proposition 6. If both inputs to a multiplexer are E.B.B.
and the sum of their upper rates is less than its service rate,
then the backlog W (t) in the multiplexer is E.B.

Proof: Using the notations of the previous proof, we can

write

—yo

Pr{W(t) > o}

t
=Y Pr{W(t) > o} n{d(t) = i}) n
i=0
and, by similar arguments, we get
{W(t) 2 o} n{d(t) = 4}
c {Ri“i’t + R > o4 Oz’} (12)
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Using (11) and (12), we can write

Pr{W(t > o)
<ZPr{Rt W RS ”>U+Ci} (13)

=0

t
=Y Pr{RT*+ RE
i=0
2 (p+m)i+o+i(C—p-n)}
and again, by Proposition 1, we conclude that

A+ DB

o
1—eCn®

Pr{W(t) >0} <

In the practical case, when the input links to the multiplexer
have bounded capacities as well, better results can be achieved.
Proposition 7: If the capacities of the two ingoing links of

a multiplexer are C; and C3 and if its input processes satisfy

the conditions of Proposition 6, then the decay parameter of
the backlog W (t) in the multiplexer is 'y(l + clc+cz— =
Notice that this value is greater than the decay parameter
achieved by Proposition 6, and might even be greater than the
smaller of the two input parameters o and ,6’ (when the ratio
between these two parameters is less than WéL%) Notice
further that we implicitly assume C; > p, Cy > 7, and that
in the case C1 + Cy < C' we have W = 0 at all times; hence,
we also assume C1 + Cy > C.

Proof: In the course of the proof to Proposition 6, we

arrived at the following relation (13):
t
Pr{W(t)>o} <) Pr {Ri_i’t +RIY > 04 Oz’}.
i=0

The input links we are now dealing with have bounded
capacities and, hence,
R7% 4+ R < (Cy + Cy)i.
Consequently,
(B + BT 204 Ci) =0

o g
for i < ToREs g Therefore,

Pr{W(t) > o}
t
< X Pr{RTHRTM >0+ ci}
=orve; e
and, by Proposition 1, we get
Pr{W(t) > o}
t
> pr{R{ 4 RE
=oréo

2 (p+n)i+o+(C—p—ni}
t
< X
i=01+g'2—c
A+ B
— 1 — e—v(C~p—n) €

IN

(A+ B)e—w(0+(0—p—n)i)

2) The stability condition: A direct consequence of the pre-
vious section is that the multiplexer queue is stable when
p+n < C. We now show that this condition is necessary.
Consider two independent sources for which there exist some
€ with

Pr{R(l)’t > pt} > ¢
Pr {Rg’t > nt} >e
and assume that p + 1 > C. Then,
& < Pr ({Ro’t > pt} N {RY > nt})
< Pr{RY" + RY' > (p+ )t}
< Pr{W(t) 2 (p +n — C)t}

where the last inequality is due to the fact that from 0 to ¢
no more than C? packets can leave the multiplexer through its
outgoing link. This equation, however, simply says that

EW() > (p+n - CO)t

which means that IEW (¢) diverges when ¢ tends to infinity.
3) Busy periods: The stochastic process d(t) we have intro-

- duced in the previous proofs specifies the time when the busy

period t resides in has started. More precisely, it specifies the
time that has passed in this busy period up to ¢. The rest of
this busy period, which is the time that is still to pass from
t on, until the first subsequent exhaustion of the multiplexer
queue, is defined by

D(t) = min{u : W(t+u) =0}
The length of the busy period in which ¢ resides is, then,
D(t) = d(t) + D(t)

In both the Cruz and Kurose models, these quantities were
bounded. In ours, they are not—rather, they are E.B.

Pr{d(t) >a}—ZPr{d =i}

< ZPr{ B 4+ BT > G
< i(A + B)e—v(C—p—n)i

A+ B

= 1= o(C-p-n)
1 — e—v(C—p-n)

Pr{D(t) > o} = Y Pr({d(t) = i} n{D(t) > o})

'—0

< ZPr {Rt B RV S O 4 0)}
1—0

(A + B)ev(C=p=m)(ita)’

A+ B

— e~ Y(C—p—n)o
1 — e~ ¥(C—p—n)
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Pr{D(t) > o}
=Pr{d(t) + D(t) > o}

=" Pr({d(t) =i} N {D(t) > 0 —4})
=0

< §Pr {Ri-—i,t+o‘—i 4+ RiTitto=i s Ca}
i=0
+ i Pr {Ri""’t + RV > Ci}
< S(A + B)e—v(c—p—n)a
i=0
+ i(A + B)e~1(C—pm)i

= (A + B)oe (C-p=m)e

__A_ig_ —(C—p—n)o
1 — e—Y(C—p—n) €
1
— > ) (C=p—p)e
=(A+ B) (0 + 1 e—’Y(C—p—n))e

and we can use the same trick as in Proposition 2 to conclude
that D(¢) is E.B. with decay factor v(C — p — ) — ¥ for any
positive V.

4) Further performance measures: Calculating bounds for
some other parameters of the multiplexer behavior is now
immediate. Such bounds are illustrated in the following corol-
laries.

Corollary 1: The expected backlog in a multiplexer whose
two inputs are (p,A,a)-E.B.B. and (n,B,8) E.B.B., respec-
tively, is upper bounded for all ¢ by {VIT‘;:—:, where M =
Tl?% and «y is as before.

Proof:

EW(t) = iPr {W(t) >0}
S = M

Corollary 2: In the previous multiplexer, the virtual delay
sensed by a (virtual) packet, if it came at ¢, is E.B. with decay
parameter y(C — p ~ 7). Furthermore, if the multiplexer em-
ploys a FIFO discipline, then this parameter can be improved
to ~C.

Proof: Let Vdelay(t) be the virtual delay at ¢. Then, the
first part of the corollary follows since Vdelay(t) = D(t).
The second part follows since, in the FIFO case, Vdelay(t) =
|72 < F

5) Independent input processes: Throughout the analysis of
the muitiplexer presented so far, we made no assumption
on the joint distribution of the two input processes, and
applied Proposition 1 whenever the sum of them have been
encountered. We can repeat this analysis, assuming the input
processes are independent and applying Proposition 2 instead.
Doing this with Propositions 5-7 will yield the following
bounds.
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Fig. 2. A switch.

Proposition 8: If the inputs R;(t) and Ry(%) to a multi-
plexer are independent and if they are both E.B.B. with the
same respective parameters as jn the previously mentioned
propositions, then

A e—(6—‘11)0'
P Gl Er=n)

Pr{R"* > (p+n)+0} < 7

A e—(&—-\Il)cr
— = (6-U)}(C~p-n)

Pr{W() > o} < 1

If we assume further that the input links to the multiplexer
have finite capacities C; and Cs, respectively, then

A —(6— _C=p-n
Pr{W (1) 20} < ——Zgye (6-0) (1+ oS50 ) o
where, as before, R(t) is the output rate from the multiplexer,
W(t) is the queue length in it, and §, ¥, and A’ are as in
Proposition 2.

The proof of these facts is essentially the same as the
original proofs to Propositions 5-7. The only modifications
needed are to replace the application of Proposition 1 at the
end of each proof with an application of Proposition 2, which
is suitable when the input rates are assumed to be independent.

B. A Switch

A switch is a single-server work-conserving element with
some number (not necessarily two) of incoming and outgoing
links. Its function is to switch the traffic of each session
passing through it to the comrect (predetermined) outgoing
link. The information packets that enter the switch through
any of its inputs are stored in a single common queue,
and are transmitted, one by one, on the appropriate outputs.
Notice that this model can also be used to describe switch
fabrics with more than one server or queue. For instance, the
output queueing model analyzed in [9] can be described by
a set of switches, one for each output link of the switch
fabric. The analysis we present assumes nothing as to the
switching technique (also called service disciplines) used or
its being work-conserving, in the sense that the switch does
not rest if it has work to do. Let R;(t), Ra(t),..., Bn(t)
be the traffic rates of the streams entering the switch, and
Ry ut(t), R out(t), ..., RN out(t) the corresponding traffic
rates of the exiting streams. Note that more than one input
stream may enter the switch through a single incoming link, the
same way that more than one output stream may exit through
a single outgoing link. A schematic diagram of the switch is
given in Fig. 2 (where the horizontal arrows indicate traffic
rates, not physical links).
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Theorem 2: If the inputs Ri(t), R2(t),...,Rn(t) to a
switch are all E.B.B. with some upper rates pl, P2,y PN
and if Y j=1Pj < C where C is the service rate of the switch,
then the output rates Ri1 ou:(t), R2 out(t), ..., RN out(t) are
also E.B.B. with the same respective upper rates.

Proof: By the assumptions, there exist A;, 4,,...
and a1, ag,...,ay such that

Pr{ Z Rj(u) > pi(t —s)+ 0} < Ajem%

u=s+1

aAN

holds forall ¢ > 0, 0 < s < tandall 1 < 57 < N. Let
k =t—s, and d(s) is again the time that has passed since the
last time the switch was empty prior to s. Then,

Pr {Ri:fmt >pk+o}
_ZPr {Rlout>p1k+o}ﬂ{d =1})

Using the same reasoning as in the proof of Proposition 5,
we get

{Rl out>p1k+a}m{d }
C{R™™ 4 ZR;‘“’ > prk+o+Ci
=2

Now, along the same lines of the proof of Proposition 1, let
P1,P2,...,pN be positive constants that sum to 1. Then,

N
Pr{ RS™HE 4 Z R > pik + 0 + Ci

<Pr{Rs St > oy (k+ 1)

en(o+i(c-3n)]

=1
N N
+¥ P {R;""s > pyi+pi (o +i(C - sz))}
=2 =1
< 3 g (orile-E, )
7=1
< Ae—olori(e-EL, )

where & = mini<;j<na;p; > 0, A = Zjvzl A;. Using all
of these, we get

Pr{Rl out < > Plk"l“U} < ZA @ ¢7-H(C Zl 1 ? ))
=0

A
1—¢“ (C—thzl p')
Maximizing « for all possible choices of sets {p;} yields

1
1 1
a+a—2+...

6-—040’

<

a = max min

ajp; =
(o} 1952w 2P

+ L

aN

TABLE I
E.B.B. CHARACTERIZATION OF A P = % BERNOULLI SOURCE
|A] o |
01571 | 041
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Fig. 3. Queue-length distributions and their E.B. bounds: Independent
sources.

where the maximum is achieved when ayp; = aspy = ... =
anypy = a. Hence, Ry . is E.B.B. with upper rate p; and
decay factor o = m, which satisfies
1

N 1<5<

Applying similar arguments, it is not surprising to discover
that the total amount of data stored in the switch queue, as
well as the amount of session j data (for all 1 < 5 < N)
stored in it, are all E.B.

1
min a]§a<— max oy
1<j<N

C. Numerical Results

In order to illustrate the proposed technique, we consider
a two-input multiplexer with output capacity C = 1 and
bounded input capacities C; = Cy = 1 and feed it with two
Bernoulli input processes, each with parameter P = %. An
appropriate E.B.B. characterization of the input processes can
be derived by Proposition 3, which allows a tradeoff between
the upper rate p and decay factor «. The results of applying
Proposition 3 for three different values of p are summarized
in Table I. Notice that the larger the gap one allows between
the true mean rate P and upper rate p of the characterization,
the better the decay factor one gets.

Using these bounds for the input processes, we can compute
E.B. characterizations for the queue length in the multiplexer.
Fig. 3 presents the results of applying Proposition 8 for the case
of independent input processes, with some actual simulation
results distributions.

The dashed lines show the computed bounds for two dif-
ferent characterizations of the input processes (with p = 0.2
and p = 0.3). The solid lines show the actual distributions at
five different time stops (¢ = 10,50, 100,500,1000) found
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Fig.4. Queue- length distributions and their E.B. bounds: Correlated sources.

by simulating the behavior of a multiplexer which has an
empty queue at ¢ = 0 for 100000 times. Considering these
actual distributions, it is apparent that the proposed analysis
captures the transient, as well as steady state, behavior of the
multiplexer queue. One further interesting observation is that,
in this special case, the convergence of the queue-length dis-
tribution to its steady state is rather quick. Thus, distributions
at different time stops are almost indistinguishable.

A similar analysis for the case of totally dependent sources
(namely, sources that transmit in exactly the same time slots),
where the bounds are calculated by Proposition 7 as for the
general case, yields the results presented in Fig. 4.

VI. NETWORK ANALYSIS

We know by now that when the input streams to an isolated
network element are all E.B.B., then so are all its output
streams. Furthermore, we know that in this case the interesting
parameters of that element behavior are E.B. If, in a network
setting, all the streams in the network are E.B.B., then the
previous results will imply that the parameters of the network
behavior (such as queue lengths and virtual delays in each
node) are E.B. As a direct consequence, we will get upper
bounds for the distributions of these parameters and their
moments, and will be able to conclude that the network is
stable. ‘

Our goal then is to learn when this is indeed the situation,
once we make sure that all the (outside world) inputs to the
network are E.B.B. A preliminary condition one must check is
that the total average load on each link in the network (which
is the sum of the upper rates of each of the streams that pass
through that link) is less than that link capacity. To see why
this condition, which we call the throughput condition, must
hold, consult Section V-A-2. Observe that the problem at hand
belongs to one of two fundamental classes. If there are no
cycles in the graph generated by the routes of the various
sessions, then the problem is feedforward; It is nonfeedforward
otherwise. Notice that the concept we have just introduced
depends on both the topology of the network and the specific
assignment of session routing within it. If, however, we ignore
the links that carry no traffic, then the resulting topology has
no cycles if and only if the original problem is feedforward.
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From here on, we will assume that all the links in the network
do carry some traffic and will call the network feedforward if
it has no cycles and nonfeedforward otherwise.

A. Theoretical Analysis

The case of feedforward networks is very simple since
we know that E.B.B. input processes to an isolated network
element result in E.B.B. output processes from it. Following
the same lines of argument that were employed in [5], [7], [16],
we can choose a peripheral node (which accepts only outside
world inputs), deduce that all its outputs are E.B.B., and drop
it. Continuing inductively, we prove that all the traffic streams
in the network are E.B.B. and bound their parameters. Notice
that, in this case, the previous argument works whenever the
throughput condition holds.

The case of nonfeedforward networks is much more com-
plicated, and none of the models we mentioned have solved it
completely. Motivated by the example analyzed in [5], [7] of
a four-node cyclic network and by the one analyzed in [16] of
a two-node cyclic network, we deal with the following special
case. Consider a cyclic network, defined by

V = {v1,v2,...,un}
E = {(v1,v2), (v2,v3), ..., (vn-1,vN), (un,v1)}

Each node in the network is composed of the following
components:

1) One incoming link, called its internal link, which con-
nects it to its predecessor node in the network. Packets
which are received on this link are called infternal
packets, and they accumulate and wait for service in
the internal queue of the node.

2) Some external links, through which the node accepts
outside world input. Packets which are received on
any of these links are called external packets, and they
accumulate and wait for service in one common queue
called the external queue of the node.

3) One server, which is capable of transmitting one packet
per slot (its service rate equals 1) to the internal link of its
successor node in the network. Thus, each internal link
in the network is either busy at ¢ (and then R.(t) = 1)
or idle at ¢ (and then R.(t) = 0).

The service discipline each node employs is cut through, in
the sense that it can transmit a packet in the same time slot
in which it arrives; it is work conserving, in the sense that it
will never idle if there is a candidate packet for transmission
(whether waiting in one of its queues or being received); it
serves the packets in its internal queue on a FCFS basis.
Note that priority is not necessarily granted to packets in the
internal queue over those in the external queue, and that when
the server chooses to serve a packet from the external queue,
it may serve any of the packets which wait there. One final
remark is that when a packet arrives at its destination node
(through its internal link, naturally), it is considered delivered
and does not join the internal queue of that node nor does it
need any further service. Let S(7) be the number of sessions
that enter the network at v;, R; ;(¢), the rate of the jth session
input traffic at v; (1 < § < S(4)). Notice that the network
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might experience time slots when there are packets transmitted
on its internal links but, nevertheless, no packet departs it
during that slot.

Theorem 3: Let W;(t) be the length of the external
queue of v; and W(t) be the total number of packets that
wait in the internal queues of the network. If R;;(t) is
(pij, Aij,ig)-EBB. forall 1 < i < N, 1< 5 < S(%3)
and if 37, . p;; < 1, then:

1. There exist some positive A and o such that

Pr{Wi(t) > a1; Wa(t) > 09;...; Wn(t) > on}
S Ae—a(01+0'2+...+0'N)

Thus, the joint distribution of W1(t), Wa(t),..., Wx(t)
is E.B.
2. There exist some positive A’ and o such that

Pr{W(t)> o} < Ale ™"

Thus, W(t) is E.B.

In what follows, we will use the term nerwork to refer only
to the set of all internal links and queues, and the term system
will refer to the whole structure, including the network and
all the external queues. Assume that the network (internal and
external queues) has last been empty at #y. Let m, be the
number of packets that have entered the network from ¢, to ¢
(meaning that they have passed at least one internal link of the
network) and set A, = my — (£ — tp). Define the evacuation
time of the network at ¢ to be the time that will pass from
t until the network becomes empty, when we ignore all the
external queues from ¢ on, and denote this time by €;. In other
words, ¢; is the time it takes until the network evacuates, if
no new packets enter it. The proof of Theorem 3 is based on
the following lemma.

Lemma 2: Assume that, at t; = 0, the whole system (and
its queues) is empty and it is never empty from ¢y on. Then,
Ay > ¢ forall t > 0.

Proof: By induction. For t = 0, we know that the system
is empty; so, Ay = €g = 0. Assume that the lemma holds for
t, and prove it for ¢ + 1. Define a station at time ¢ to be
an internal queue cell which is occupied by a packet at the
end of slot ¢. A station is created at time ¢ if its queue cell
is vacant at ¢t — 1 and is occupied at ¢. A station is deleted
at ¢ if its queue cell empties at £. Notice that a new station
cannot be created at ¢ in a node that does not transmit a packet
from its external queue in this slot. Moreover, since internal
packets receive FCFS service, each such packet proceeds to
the next station in each time slot. Hence, if no packets enter
the network from ¢ on, then each (internal) packet in it will
stop in some (e; — 1 at the most) of the stations at ¢, during
the following time slots, and will get to its destination and
leave the network (and the system) at the next slot. Let [ > 0
be the number of new packets that enter the network during
the ¢ + 1 time slot (these are the external packets that are
transmitted on an internal link at this time slot and become
internal packets). As mentioned earlier, we may regard these
packets as available at the beginning of this slot, and we
will describe their transmission in two stages. First, each new
packet creates a new station at the head of the internal queue

of its node. Then, it is transmitted to the successor node in the
network. According to our definitions, we have m; 1 = m;+I
and then A;y; = Ay + 1 — 1. It now remains to check the
value of e;q1.

Consider first a packet that was in the network at ¢. If no
new packets were to enter the network after ¢, then this packet
would have been evacuated from it in ¢, slots at the most. This
means, as we have just seen, that this packet had to stop in
€; — 1 stations at the most, and in the following slot to get to
its destination and leave the network. The new [ packets add
[ new stations in which a packet can stop, and therefore the
subject packet has ¢, +[—1 stations, at the most, in which it has
to stop if no new packets arrive. During the £+ 1 slot, however,
our packet proceeds one station (because of the FCFS nature
of the service internal packets get) and so its evacuation time
is €; + 1 — 1 at the most (¢; + [ — 1 for the stations, one more
for the slot in which it leaves the system, and one less for
its progress during slot ¢ + 1). Notice that this quantity is not
negative, since our assumptions assure that [ > 0 if e, = 0.

Next, consider a packet that entered the network at ¢ + 1
(a new packet) and check where this packet might stop, if no
packets enter the network from ¢ + 1 on. There are ¢, such
stations, at the most, where “old” packets reside and [ — 1
stations of the other “new” packets that entered at £ + 1. Note
that the network might contain much more than ¢, stations at
¢ but, nevertheless, a new packet will only have to stop in e,
of them at the most, the same way that each of the old packets
that reside in these stations will only have to stop in €; — 1 of
them at the most. Since one more time slot will be needed for
our packet to get from its last station to its destination, and
during the current slot this packet proceeds one station, we get
that it will be evacuated in €; + (I — 1) + 1 — 1 at the most.

These cases together imply that €;4; < ¢ + [ — 1 and,
therefore,

A1 =8¢ +1-126+1-1> €4

Since m; = A¢ +t > € +t > t, we have
Corollary 3: If the conditions of Lemma 2 hold, then
myg Z L.

Proof (of Theorem 3): Look at the system at some time
slot ¢, and let d(t) be defined similarly as before — it is the
time that has passed since the system was last empty prior to
t. We have

{Wi(t) > o1; Wa(t) > 095 .. .; Wn(t) > on}

= U {Wi(t) > o1; Wa(t) > o2;
k=0

-5 Wa(t) > on;d(t) = k}
Using Corollary 3, we get

{(Wi(t) 2 015 Wa(t) > 09;...; Wy(t) > on;d(t) = k}

C{Y R 201+0+...+on+k

2]

since the system was last empty at t—k and all the packets that
are queued at ¢ have not been submitted to the system prior to



384

t—k. Using the same technique used in proving Theorem 2, we
choose a set of positive numbers p; ; that sum to one and get

Pr{Wi(t) > a1; Wa(t) > 025 ...; Wn(t) > on}
Z"/v] Az’] e—a(01+¢72+...+0'N)

1— e“’(l‘zi,j pi’j)

where o = min; ; @; ;p; j, which concludes the proof of Part

i).

To prove Part i), we write

<

w UW(t>a d(t) = k}

Recall that an external packet can enter the network (and
become internal) only by being transmitted on an internal
link and, thus, no more than N new packets can enter the
network in each time slot (one at each node) regardless of
the amount of packets that join the external queues of the
system in this slot (which is theoretically unbounded). Thus,
W(t) < my < Nd(t), and we get

(Wty>otc |J (W) 20; dt) =k}

k>%
C U {d(t)
2%

Using Corollary 3, we have {d(t) = k} C {m; > k} and,
therefore,

{d@t) =k} C ZR” Rt >k

4

Applying our well-known technique, we get

Pr{W () > o} < Z ZA,] ORI, pi)
k=%
ZZ] A 2,5 _@Lj)g
= N
1— —a(l Z . Pi ])

Theorem 3 shows that all the queues in the system we afe
studying (both internal and external) are E.B. when Z -
1. Therefore, this condition is sufficient for the stablhty of thls
network. Let us now refer back to the example that motivated
this analysis [5], [7]. In this example, only one session enters
the network at each node, is destined to the predecessor node,
and whose traffic is assumed to be a (o, p) process (see [6]
for the notations). The analysis there proves the stability of the
previous example only when p < 5 Nl 5, while our analysis
holds for any p < + (notice that the throughput condition in
this case is p < w=7)-

B. Numerical Results

As an example of the application of the proposed method
in the network setting, consider the three-node arrangement
illustrated in Fig. 5.

In this system, R;(t) and Rs(t) are both Bernoulli with
P= 16, Ry(t) is Bernoulli with P = £, and all are mutually
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Fig. 6. Queue-length distributions in a three-node example network.

independent. Each packet introduced to the system by Ry(t) is
duplicated, and the two copies are routed to the two leftmost
nodes (one copy to each node). Notice that exact analysis
of this system is impossible, while our method produces
reasonable bounds. Applying Proposition 3, we characterize
both R;(t) and Rs(t) as (0.15,1,1.77)-E.B.B., and Rj(t)
is (0.3,1,2.06)-E.B.B. Applying Proposition & to bound the
output traffic of the leftmost nodes, and then Proposition 6,
we get an E.B. characterization for the queue length W(¢)
in the rightmost node. This bound, together with some actual
simulation results distributions, are presented in Fig. 6.

In the application of Proposition 8, we used o¢ = 3 and,
hence, could choose A’ = 3 ¥ = 0.4. Proposition 6 is
now valid only for ¢ > 6 and we calculate the bound
only for such values of o. The resulting bound for W(t) is
plotted on the dashed line. The solid lines show the actual
queue-length distributions at five different time stops (¢ =
10, 50, 100, 500, 1000) found by simulating the behavior of a
network which has empty queues at ¢ = 0 for 1000000 times.
Apparently, the nature of the simulated distributions is quite
similar to the one discussed in Section V-C.
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