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Erasure, Capture, and Noise Errors in Controlled
Multiple-Access Networks

ADAM SHWARTZ AND MOSHE SIDI

Abstract—We consider an ALOHA-type communication system with
many nodes accessing a common receiver through a time-slotted shared
radio channel. Due to topological and enviroumental conditions, the
receiver is prone to fail to detect some or all of the packets transmitted in
a slot; this phenomenon is called erasure. The receiver may also capture,
that is, detect a single transmission out of many. In addition, noise errors
may cause the receiver to detect nonexistent collisions. Using the feedback
information of detecting 0, 1 packet or a collision at the receiver, the
nodes determine their transmission policy.

A class of decentralized muiltiaccess algorithms that maintain system
stability under the above phenomena is presented, and the maximal
throughput they can support is determined. The most remarkable feature
of these algorithms is that their maximal throughput is insensitive to some
noise errors and erasures.
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1. INTRODUCTION AND MODEL DESCRIPTION

We consider ALOHA-type algorithms (ATA) that operate
in presence of the following kind of errors [9]: 1) noise
errors—no node is transmitting or a single node is transmit-
ting, but the nodes are informed that there was a conflict in the
channel; 2) erasures—at least one node is transmitting, but
none of the transmitting modes are heard, hence the nodes are
informed that the slot was idle; 3) captures—two or more
nodes are transmitting simultaneously, but one of them
captures the channel and is heard correctly, hence the nodes
are informed that the slot contained a successful transmission.
The effects of this kind of errors on collision resolution
algorithms (CRA) have been studied in [5]-[9], and it was
observed that CRA are quite sensitive to destructive errors
such as noise errors and erasures. We study the effect of noise
errors, erasures and captures on ATA. The ATA we use are
those of [1]-[3] and we determine their stability region in the
presence of noise errors, erasures and captures using the
method of [2]. The remarkable property of these algorithms is
their robustness in the presence of destructive errors.

We assume that new packets from all nodes are generated
according to a Poisson process Uy with intensity N\ packets/
slot. The packet transmission duration is exactly one slot. At
the end of each slot each node knows (without error, via some
feedback channel) whether the slot was an idle slot, a success
slot or a conflict slot.\ Moreover, if the slot is a success slot,
the node whose packet was successful knows that (for
instance, by recognizing its packet), so that a captured packet
will not be retransmitted.

The model for errors is probabilistic. Specifically, when no
node is transmitting, then the nodes detect an idle slot with
probability g or a conflict (noise error) with probability .
= 1 — my. Similarly, when a single node is transmitting, the
nodes detect an idle slot (erasure) with probability my, a
success with probability my; or a conflict (noise error) with
probability my, (w1 + 71 + m = 1). When two or more
nodes are transmitting, the nodes detect an idle slot (erasure)
with probability .o, a success (capture) with probability =
or a conflict with probability 7. (weo + Ta + Tee ='1).
When a conflict is detected, all packets (if any) transmittei{
during that slot have to be retransmitted at some later time.
Similarly, when a success is detected, all packets (if any) that
were transmitted during that slot, besides the successful
packet, have to be retransmitted at some later time. Note that
this model differs from that in [2]-[3] where the errors are
assumed to affect only the feedback information and not
the actual transmissions. ‘

II. STABLE ALOHA—TYPE ALGORITHMS

The class of ALOHA-type algorithms presented here is
essentially identical to that presented in [1]-[3]. Specifically,
when a packet is generated at a node in slot j, then with
probability f;,, the packet is transmitted in slot j + 1. If the
transmission is successful, then the packet leaves the network.
Otherwise, (either the packet collided with other packets, or it
was erased or corrupted by noise), the packet is retransmitted
in subsequent slots, with probability fi in slot &, until it is
successfully transmitted. Note that a packet is successful only
if it is either the only transmitted packet and it is neither erased
nor corrupted by noise or if it is captured. The sequence {f¢}
is generated by

Siw1=min {8, fra?(z)} M

where @ is arbitrary 0 < 8 < 1, v > 0, and a(+) is a real-
valued function. The feedback observed at the end of slot k,
Zk, takes the values 0, 1, e according as an idle slot, a success
slot or a conflict slot, respectively, are detected.
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Let N, be the number of packets waiting to be retransmitted
at the beginning of slot k (the backlog). Then, when N is
“‘large”’ or f; is ‘‘small,”” the number of attempted transmis-
sions in slot k is approximately Poisson with rate Ay = Nify
[1], and the conditional throughput of the algorithm is

Prob {SUCCCSS/Nk, fk} =Ake~Ak7l'11 +{1 ’-'(1 +Ak)e‘Ak]1re,
(2)

where the first term corresponds to transmission of a single
packet that is neither erased nor corrupted by noise, and the
second term corresponds to capture. For wy > g, the
conditional throughput is maximized for Npfy = 7y /(7w —
) and its maximal value is

T*=ag + (my — Wel)e""ll/("'ll"”el),

3)

If vy < w. the maximal conditional throughput is
(achieved with f = 1) and in this case the system behaves as a
discrete-time queuing system with state-dependent service
times. When N, = 2, the service time is geometrically
distributed with parameter 7, and when N, = 1 the service
time is geometrically distributed with parameter ;. Let g; =
limy— o Prob {N; = i}, i = Oand let G(z) = £, g:z'. Then

_go(l "‘Z_l)"rel'*'gl(l —Z)(ﬂ'“—"rel) e)\(z—l)

A<
l"e)\(z—l)[z_l"rel""l_ﬂ'el] .

G(2)

4

where go = (wo — N)/[weo + (€* — (7 — wy)/ 7] and
g1 = go(e* — 1)/ ;. The system is stable for A < m,y and the
average number of backlogged users in steady-state is E[/V]
= Rra(l = g) — NV[2(wa — N1

When 7, > w. we follow the approach of [1]-[3]. Let ¢4
= In {max (N, Dfi}, ¢* = In {7,/ (7, — w)} and mf =
¢+ — ¢*. The a(-) should be chosen so that when the backlog
grows, the product Nify drifts towards its optimal value, i.e.,
e®*, thus maintaining the conditional throughput at its maxi-
mal value. To that end, m} should drift towards zero. The
expected conditional drift of m} is E[m} | — m}/Ny, fi] =
Eléri1 — ¢x/Nifi] and when Ny is sufficiently large, it is
approximately E[ln {fi+1/fi}/Ni, fil, which for f; small
reduces to v E[in {a(zx)}/ N, fi]. Straightforward calculation
of the last conditional expectation for large Ny yields

E{m},  —mEINg, fil=vd(éy);
d(de)={e "%, Ge=%, 1 - (1+G;)e %}
- P{C,, Cy, G}T (5)

where Gy = e®k; C, = In {a (idle)}, C, = In {a (success)},
C, = In {(a (conflict)}; P = {=;} and i, j take the values 0, 1
and e; we assume throughout this correspondence that P is
invertible. In calculating (5), binomial probabilities are
approximated by Poisson probabilities, as in [1].

In order that N.f} stays close to its optimal value, we need
to choose C,, C), C, so that d(¢) = O for ¢, = ¢o*, d(dy) <
0 for ¢ > ¢* and d{(dy) > 0 for ¢, < ¢*. With such a
choice, when the backlog grows, the maximal achievable
throughput increases to its maximal value T*, so as long as A
< T* the system is stable. In the following we use the results
of [1], [4] and a Liapunov function approach [2] to make this
intuition precise and to show that a possible choice of C,, Ci,
G, is {Cg, C], Cz}r = p-! {e -1, -1, —I}T

It may be desirable not to operate near ¢* (because of
robustness considerations, see Section III). So, we fix some ¢°
= ln A°, which implies that f; should satisfy ¢° =~ In {max
(Ni, )fi}. We show that if

A< A% M +[1—(1+A%e"Y]n, ©6)
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then C can be chosen so that the system is stable for all y small
enough. To that end, define m.« ¢, — ¢°, and assume that
C is chosen so that

Al d(¢°)=0, and for some 8, >0,
d’'(¢)<0 for |¢—p°| <3;
|d(¢)]| > e for |p—¢p°|=8.

The choice of C is discussed in Section III, where we show
that it can be chosen so the A1l holds.
To proceed, for r, A > 0 define

12 t|<A
aa(t)y=1{ 2A(t—-A/2) 1>A @)
—-2A(t+A/2) t<—A
Vi=Ni+rga(mg) k=0,1,2, ---. 8)

If we show that for some & > 0 and D, E{e*"k] < D, for all
k, then the stability is established, since N} =< ‘¥}. To show
that, we use a simplified version of [4, Theorem 2.3] (here
1(4) = 1 if 4 is true, otherwise 1(4) = 0). =~

Proposition: If for some o«; > 0 and Dy, E[e“tVe] < D,
and for somes > 0,a > 0

E[(Vies1— Vi )U(Vi>a)/ Ny, fi] <0 )

(10

where p,, p, are constants and Uy are Poisson (\), then for
some o > 0 and D, E[e*V%] = D. :

In the Appendix we prove that: '

Lemma 1: Assume Al and (6). Then there are some s > 0,
a > 0 so that for iy small enough (9) holds.

Lemma 2: Equation (10) holds.

In the proof of Lemma 1 we essentially consider three cases;
the case that Ny is large and m{ small (¢ = ¢°); the case that
Ny is large and m¢ large (¢, # ¢°); the case that N is small.
When N is large and m is small, then on the average g, ()
does not change much, so (6) implies (9). If Imzl is large, then
on the average g,(mj) is decreasing, so choosing r large
ensures that V} will decrease on the average. If IV, is small and
Vi is large, then necessarily f; is smaller than it’s optimal
value, so g, will decrease. In the proof we indicate the values
for the constants r, A, a and v, so that for all vy < v,, (9)
holds. Lemma 2 holds since g, has linear growth, and changes
in N are Poisson.

Finally, using the proposition, Lemma 1 and 2, and the fact
that 0 < N; = V}, we obtain the following.

Stability Theorem: Assume Al and (6). Assume N, and f,
are such that, for some o; > 0 and D,, E[e*1¥V0] < D;. Then
for sufficiently small v and for some o > 0, E[e*"k] = D <
oo and so the system is stable.

'Vk+l— Vkls,ua'*'ﬂaUk

1. SENSITIVITY AND ROBUSTNESS

Assuming that the matrix P is nonsingular and that 7, <
11, it is straightforward to show that the choice {C,, C), C;} T
= P '{e ~ 1, —1, ~1}7 satisfies condition Al for ¢° =
¢*, and therefore ensures that the system is stable for A < T*.
Let {C,, Ci, C3}T = P{C,, Ci, C,}7, then it is easy to see
that if G, < 0 < C,, then for some ¢° Al holds. :

An important feature of the algorithm presented here is that
the maximal throughput it can support depends solely on the
probabilities of successful transmissions and w, and
therefore it is not sensitive at all to destructive errors such as
noisy idle slot or erasure of at least two packets (unlike CRA).
Thus, as long as P is invertible, the system will be stable for
any arrival rate N that is smaller than the maximal throughput.
This insensitivity property is due to the ability to easily
incorporate the effects of the destructive errors into the way
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one computes the retransmission probabilities (by a proper

choice of C).

Another nice property of the algorithm is that there are some
degrees of freedom in choosing Cy, Cy, and C;. Consequently,
one can choose these parameters so that the operation of the
algorithm (the way the retransmission probabilities are up-

dated) does not depend on some of the probabilities of erasure, -

capture, or noise. Consider the case where only . and . are
positive: then C; = C, is a feasible choice and the operation of
the algorithm does not depend on 7y, and . Consequently,
the algorithm can be applied without even knowing . and
! The maximal throughput of the algorithm does depend on
these probabilities [see (3)].

The algorithm is also robust to changes in the error
probabilities in the following sense. Assume that 7,y < A <
T* (for A < m, taking f; = 1 yields a stable algorithm for
any values of the destructive errors). For such X the equation A
= Ae~rmyy + [1 — (I + A)e~A]x, has two distinct solutions
in the range A = 0. Let A! and A? denote the solutions where
Al < A? (Note that A! < 7y /(my — 7a) < A?). Fix some
AO(A! < A% < A?), and let $° = In A°. Choose some C so
that Al holds. Now assume that the system operates with this
set of C and some of the error probabilities such as m,q or mg,,
etc., are changed. This may reflect imperfect knowledge of the
system parameters. Due to the continuity of d (¢9) in all
parameters, the system would remain stable for any slight
changes in the parameters (even though C is not changed).
Moreover, for a proper choice of C, even relatively large
variations in some of the system parameters would still yield a
stable system [12]. Consequently, the algorithm is quite robust
to imperfect knowledge of the parameters of the system.

APPENDIX

Denote by e;, ey, and eyssome functions which are bounded
by Kf, KN~! or both, respectively; these change from usage to
usage. g;(§;) denote the probabilities P(X = i) for Binomial
(f, n) [Poisson (fm) resp.], i = 0,1, g1=1 — go — gy and
similarly for §. The Poisson approximation [1], [12] gives

(AD)

Details of this and claims that follow are in [12]. In addition,
we have the following.

Lemma A: 1) |bxs1 — ¢4l < (Ve — DV 117! (U + 1)
+ yK where Uy is Poisson (A). Also

2) E(($rs1= )| Ni, f) SKI(Ne= 1D V 1] 72+ Ky2
(A2)

|qi—qi|5enf! i=0: ls 2.

Proof: ‘¢k+1 - (25/(‘ = |111 (Nger V VN V l)l + |ln
(f2a? @] A B/fi] = 1/ (Ne= 1)V DINgsy ~ Nie| + max;
v] In a(i)}, and 1) follows. Using this calculation (A2) follows
since Uy is Poisson and independent of Ny f;.

Proof of Lemma 1: We use Poisson approximation.
Define Ay = N fi. Using (Al), 4

E(Niv1—Ni| Ny fi)

=A— {)\ke_)‘kW11+ n-Q +)\k)e_)‘k]7f,;,x}+€)vf. (A3)

Denote f = 8/max;|a(i)}| and note that f; < fimplies fi+
= fi * a¥(zk). We get

E ($x+1— 9% N, Jo)
_E [ln N vV 1+ln [fea®(z)] A 43]

Ny vl S
=F [ln

Near V1

AR ] +vE (Ina(z))+e(fi)  (Ad)
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where, since In (*) in increasing, ¢;(f) =< 0 and equals O if f
=< f. Using (A1) and Lemma A,

E(brs1— | N, f) =en+vd(N)PC+ yens+ e (fi)-
(A5)

Since by Taylor’s theorem ga(x) — ga()) = g4 (¥)x — )
+ a(x, y)x — »)? with || =< 1,

E(rga(mis1) — rga(mi)| N, fi)
=rg s (M) E(brs1— bx| Ni» fr)

+7E (a(me, Myei 1) (@1 — 01)*| Ny Si)- (A6)

By (A5) the first term equals rgi(m)yd(A\)PC +
rgi(my)len + vens + e(fi)l where |gf] = 2A. Since |a| =<
1, Lemma A implies that the second term in (A6) is bounded
by ry2K + rK((Ny + 1) V 1)~2. Collecting terms and using
(A3), (A6) we obtain the approximation for the dynamics V

E (Vi1 = Vil Ni, Ji)
=h—{\ee My + 1= (1+N)e M, }
+rg (M) yg(N) PC
+enp+ 18 s (my)len+ vens+ e (fi)l
+ry2K+rK(Ne+ 1) v 1) -2 (A7)

If Vi > a, theneither IV; > a, or rga(my) > a, where a; + a,
= a. If Ny is large and m, is small, choose x so that |[{ — ¢
< x = & implies [c.f. (2)] that for some positive s, e¥e~* 1y,
+ A - (1 + eYe¥)my — N > 2s, that is, the
(approximate) probability of success is larger than the arrival
rate; this is possible by (7). Note that by Al and (7},
gi(md(dr): = ga(mp)d (N )PC < 0, and that if N is large
and my, small, then necessarily f; is small, and so e;(fy) = 0.
Choose a; large and v, small enough so that Ny > a3, v < v,
imply

eny+r2Alen+ven ] +ry?K+rKN 2 <s. (A8)

Then, for Ny > a; and |¢; — ¢° < x, (9) holds. Now
suppose N; > a; is large and my small, so |¢ — ¢° > x.
Note that the second term in (A7) is uniformly bounded in A,
and that, if A > x and |¢, — ¢°| > x, then by Al for some ¢,
> 0, ga(m )d(Z)PC < —2xe;. Now either ¢, <.9¢°, so
Je < Fsoei(fi) = 0, or, if ¢ > ¢°, then g{ (m)e, (fi) < 0.
So, choosing r, large, for r = r,/vy, N — 2xeyyr + 25 < 0.
Now choose v, < v small and for any v < v;, choose a; =
a4(y) > aj so that this and (A8) both hold. Then (9) holds for
N, > a, and all ¢. Finally for Ny < a4 and rga(dy) > a
large, necessarily f; is small. Choose b > 1 and a, so large
that

fi<J 50 ei(fi)=0, |p—do|>b - A,
N,
E |1 N V1
Ny vl

This is possible whenever X > 0. Recalling (AS5), (A9) we
have E[¢rs:r — (ﬁk‘Nk, ] = ‘Yq-PC + vens From the
definition of g, under (A9) this function is affine at ¢, with
slope (—2A), so

E[ga(my,1)—ga(m)| Ne, fil < —=2AE i1 — di| Nie» Si]
+E[|galmi1) = (= 2A(my + A/2)| | Ni, fil  (A10)

where the last term is O if my;,; < —A. We show that by
choosing b large enough, the last term can be ignored. Since
|ga (s )| < |Mpsr], we have ey : = |ga(Mes1) + 2A(Mis1)

Nk,fk:l =0. (Ag)
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+ A/2)| = 4A[my,,| + A? and

lmk+l|Sh’l (Nk+ Uk-t 1)+ |11’1 fkaV(zk)I + l¢0‘
<ln a;+In (1 + Up/a) +yK+|¢°]

U
<K+-—. (AlD)
. ay

But my,,.; > —A and m, < —bA implies Uy = e4(d)
where e,(b) increases with b (Lemma A). Thus,

Eles| Ni, fil <E( K+ KU1 Uy > es(D)| Nis i)
=E((K+ KU1 Ux>es(D)]) (A12)

since U, is independent of Vg, fi. The last term goes to zero as
b — oo, and so does the last term of (A10). Using this and Al
we get for large b and some as > a; (sO that fy is small
enough)

Elga(@rs1) — a0 Ne, fil S —2AvGPC
+2A'YeNf+E(e3(b)‘Nk, fo)< —Avye. (Al3)

Now E (Vier — VilNi fi) = N = {Ne Moy + [1 = (1 +
e May} + ens — ryAe = —s(A3), (A13)ifr, = reyis
large and f; small, since eyy is bounded, so (9) holds for a =
a, + a4 and y small enough.

ProofofLemma 2: |Vk_.1 - Vk‘ = ‘Nk-#—l - Nkl +
rlga(mis1) — galmo)| < INkor — Ni| + 2rAldest — il
But from the proof of Lemma A, the last term is smaller then
2)‘A‘Nk+1 - Nkl + rK, and SOIVk+| - Vk‘ = 2‘Nk+1 - Nkl
+ rK = p, + p,Uy and the Lemma is established.
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