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Abstract

This paper considers a class of two discrete-time queues with infinite buffers that compete
for a single server. Tasks requiring a deterministic amount of service time, arrive randomly to
the queues and have to be served by the server. One of the queues has priority over the other
in the sense that it always attempts to get the server, while the other queue attempts only
randomly according to a rule that depends on how long the task at the head of the queue has
been waiting in that position. The class considered is characterized by the fact that if both
queues compete and attempt to get the server simultaneously, then they both fail and the
server remains idle for a deterministic amount of time. For this class we derive the
steady-state joint generating function of the state probabilities. The queueing system consid-
ered exhibits interesting behavior, as we demonstrate by an example.

Keywords: Discrete-time queues, competing queues, priority systems, random access.

1. Introduction

This paper considers a class of two discrete-time queues that compete for a
single server. We assume that the two queues have unbounded buffers and that all
tasks that arrive to the queues need the same amount of service. Time is divided
into equal length intervals, called slots, that correspond to the time needed to
serve a single task. Service of a task may begin only at slot boundaries and we
assume that in each queue the tasks are served in a first-come-first-served order.

A single server is available for serving the tasks of the two queues. At the
beginning of each slot, a nonempty queue decides whether to compete for the
server and attempt to get it for the current slot or not. The main feature of our
model is that if the two queues decide to compete for the server in a particular
slot, then they both fail and the server remains idle during the slot. When only
one queue is competing, then it gets the server and the task at the head of this
queue is served during that slot and removed from the queue at the end of that
slot. Another important feature of the model is that one of the queues (number 2
in this paper) has priority over the other queue, in the sense that it always
competes for the server when it is nonempty. The decisions of the other queue
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(queue 1) whether to compete for the server or not, are randomized, and to
generalize, we assume that they depend on how long the task at the head of its
queue has been waiting in that position. Specifically, if the task at the head of
queue 1 has been waiting exactly k (k=0, 1, 2,...) slots in that position, then
queue 1 competes for the server with probability g,. We restrict our analysis to
systems for which ¢, = p = constant for & > K, where K is an arbitrary constant.
We assume that tasks arrive randomly at the two queues. In general, the arrival
processes to the two queues may be dependent. Let A,(¢) and A4,(¢) be the
number of tasks entering queue 1 and queue 2 from their corresponding sources
in the time interval (z, ¢+ 1], t=0,1,2,---. The joint input process
[A(2), A,(¢)] is assumed to be a sequence of independent and identically
distributed random vectors with non-negative integer-valued elements. Let

a(i, j) =Prob(4,(z) =i, 4,(r)=j) (i>0, j>0) (1)

and
F(x, y)=E[x"Oy:0] = ¥ ¥ a(i, j)xy’ (x| <1 |y|<1). (2
i=0 j=0

We assume that F(x, y), the joint generating function of the arrival processes,
depends on both x and y, namely that tasks do arrive at the two queues with
nonzero probability (otherwise one of the queues will be empty with probability
1) and that the two queues have infinite buffers.

It is easy to see that when N < M, the case K= N is a special case of K= M,
since for 0 < k < N the parameters ¢, for K= M can be chosen to be identical to
the parameters ¢, for K=N and for N <k <M we can choose g, =gy for
K =M. Therefore, when K increases, we expect to be able to improve the
performance of the system (certainly by properly choosing of the parameters g, ).

The queueing model described above has a variety of applications. The
application of specific interest is to the analysis of computer-communication
networks and local area networks that use broadcast medium for transmission of
information; see Kleinrock [1]. The queues in this case represent the nodes of the
network, the tasks are the packets transmitted by the nodes, and the server is the
shared broadcast channel through which packets are transmitted. The competi-
tion rules correspond to the rules used by the nodes for accessing the shared
channel. In that respect, the current model is a substantial generalization of the
access method considered by Sidi and Segall [4] that corresponds to K = 0.

The current paper is concerned with the description of stochastic aspects of the
above class of systems under steady-state conditions. Specifically, we are inter-
ested in the state probabilities of the system, the conditions for steady state, the
average delays etc. for a broad class of arrival processes. Generating functions are
used in order to characterize the state probabilities. As often happens with queues
that are coupled (Sidi and Segall [4], Fayolle and Iasnogorodski [7], Eisenberg
([8,9]), some boundary functions need to be determined during the solution
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process. A substantial effort is devoted in this paper for that task. In addition, we
indicate some interesting properties of competing systems with a single server
through an accompanying example.

Several discrete-time queueing systems that have been previously investigated
are related to our paper. In particular Konheim and Meister [3] and Morrison [2]
have considered systems without competitions, and Sidi and Segall [4] have
treated a special case of this paper.

2. Steady-state distribution

Fix K> 2. We say that the system is in state O if there are no tasks at queue 1
or the task at the head of queue 1 has just arrived to that position. The system is
in state k (1<k<K) if a task has been waiting at the head of queue 1 for
exactly k slots, and in state K if it has been waiting there for K slots or more. Let
P(m, n) (0< k<K, m>0, n>0) be the equilibrium joint probability that the
system is in state k and the queue lengths at queues 1, 2 are m, n respectively at
slot boundaries. The equilibrium equations are given by (henceforth g, =1 — g, ):

n

Py(0, n) =a(0, n)Py(0,0) + Y a(0, I)Py(0, n—1+1)

/=0
+a(0,n)§quk(l,0) (n=1) (3a)

Py(m, 0) =a(m, 0)[ P,(0, 0) + Py(0, 1)]
i f: a(l,0)P,(m—1+1,0) (m>0) (3b)

Py(m, n)=a(m, n)P,(0, 0) + ia(m, )Py (0, n—1+1)

nMw

i a(l, n)P,(m—1+1,0) (m>1, n>1). (3¢)

For 0 < &k < K we have

P 0,n)=0 (n>0) (4a)

P (m, 0) = lg) a(l, 0)[‘?k—1Pk—1(m —1,0)+ Ge—1Pp_1(m =1, 1)]

(m=1) (4b)
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m—1 (n—1

Pk(m7 n) = Z Z a(l, j)Qk—lpk—1(m_l> ”_f)
/=0 \ j=0

+ Y all, )G Peoy(m—1, n—j+1)
=0

+m_la(1, )G 1P (m—1,0) (m=1, n=1) (4¢)
and ~
P.(0,n)=0 (n O) (5a)
PK(””’O)=k % ) IZOa(l O)[Qk WPry(m=1,0)+ g1 Pr_y(m— 1, 1)]
(m>1) (5b)
PK(”’"’ n)= k_‘;_l{rj% [ngoa(l, D1 Pr_y(m—1, n—j)
+§:a(1 D@ Peoa(m—1, n—j+1)
R B
REMARK

Since the underlying Markov chain that describes the system is irreducible and
aperiodic, the condition for steady-state is that P,(0, 0) > 0.
Let

Gl y)= 3 Y Polm. m)x"y" (0 <k <K) (6)

m=0 n=0
be the steady-state queue length joint generating function when the system is in
state k. It can be shown (by straightforward manipulation of (3)—(5)) that:

GO(X? y) :F(Xa y){GO(O’ O)(l - QOxil) + [G0(07 y) - GO(O’ O)] yﬁl

+ % aGu(x, 02" (72
Gy(x, y)=F(x, )’){[Go(x’ y) = Go(x,0) — Gy (0, y) + Go(0, 0)]
X(q0+21'0y_1)+[GO(X,O)—GO(O,O)]%} (7b)

G (x, y) =F(x, y){[Gk—l(xa y) = Gk—l(x’ O)](qk—l +5Yk—1y_1)
+Gk—1(x70)—q—k—1} 2<k<K-1) (7¢)
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and

=§4_ HGk(X’ y)— Gk(xa 0)](Qk + ‘?k)’_l).

GAmﬂ=ﬂmﬂ{ 1

k

+G,(x, o)qk]}. (7d)

In order to uniquely determine G,(x, y) (0 <k <K), we have to find the
boundary functions G,(0, y), G,(x, 0) for 0 <k < K (a total of K + 2 functions)
and the constant G,(0, 0).

Determination of G,(0, y)

Let y, designate the solution of the equation F(0, y)y~' =1 in the unit disk
| ¥o| < 1. By Rouche’s theorem (Copson [6]) it can be shown that such a solution
exists and is unique. We now prove the following:

THEOREM 1

Go(0,0)( gt —y7")
1 _F(O> y)y_l

GO(O> y) :F(O’ y) (8)

Proof
Let x — 0 in (7a). Then

%ww=ﬂmwkmmwﬁmmw—%mmh*

K
+ Z QkPk(L 0)},
k=0

which gives

GO(O: O)(l _y_l) + Z QkPk(17 O)
GO(()? y) =F(0> y) 1 _F(O y;(;gl

Since Gy (0, y) is analytic for | y| <1, we have X5_og, P (1, 0) = G, (0, 0)( y5 ' —

1), and therefore (8) follows. O

Determination of G(x, 0) (0< k< K)

The determination of the K + 1 boundary functions G (x,0) 0<k<K)is
much more complex. For convenience let us use the following definitions for
0<k<K:

bk(y)éQk+‘7ky_17 dk(y)éqk_bk(y)' )
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Using these definitions we see from (7d) that:

N(x, y)
1—F(x, y)bK(y),

Gy (x, y)=F(x, y) (10)

with
N(x, Y) = GK-l(xa Y)bkﬂ()’) + GK(X> O)dK(y) + GK—l(xa O)del(Y)-

Now recursive substitution of (7¢) for k=K —1, K—2,---,2 in this last expres-
sion yields:

K—1
N(X, y) = GK(xa O)dK(Y) + Z dk()’)Bkﬂ(J’)FK_kfl(x’ )’)Gk(x’ 0)
k=1
+B1(y)FK72(x’ y)Gl(x? y)’ (113)
where
K—1
B.(») 2 T1b(y)0<k<K—1, Be(y)=1. (11b)
i=k
Using (7b) in (11a) we obtain
K—1

N(x, y)=Gg(x, 0)dy(y) + kgodk()’)BkH()’)FK_k_l(X, y)Gi(x,0)

+FE 7 (x, Y){[Go(x’ y) = Gy (0, )’)] By(y)
—do(y)Bi(y) G (0, 0)} (12)
Now using (7a) in (12) we finally obtain:

N(x, y)= kéODk(x, y)G,(x,0)+ M(x, y), (13a)
where

Dy (x, y) =de(»)Beoy () FE7 7 x, p) + By(y) F¥(x, y)x gk

0<k<K-1 (13b)

Di(x, y)=dg(y)+ By(y)F(x, y)x'qx (13¢)

M(x, y)=F'(x, y){ B(»)[y"'F(x, y) —=1]Gy(0, »)
+[<1 —qox ! —y_l)BO(y)F(x, ) _do(y)Bl()’)]Go(O’ 0)}
(13d)

Note that the functions D, (x, y) (0 <k <K) are all known and M(x, y) is
known up to the constant G(0, 0).
We now state a theorem whose proof appears in the appendix.
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THEOREM 2
Each boundary function G.(x, 0) (1 <k <K) can be expressed as a linear
combination of G,(x, 0) as

Gi(x,0) = C(x)Gy(x,0) + Hi(x) (1<
k

where the functions C,(x) and H,(x) for 1 <

<K), (14)

k
< K are known. 0O

Define Cy(x) 21 and H,(x) = 0. Substitution of (14) in (13a) yields:
K

N(x, y) = Go(x, O)k{ZODk(x, P)Ci(x) + M(x, y), (15a)
where
M(x, y)=M(x, y)+ k);ODk(x, y)H(x). (15b)

Now for | x| <1 let f=f(x) be the unique solution of F(x, f)bg(f) =1 with
the property |f| <1. It can be shown by Rouche’s theorem (Copson [6]) that
such a solution exists and is unique. Since G (x, y) is analytic in the polydisk
|x] <1, |y| <1, itis clear from (10) that N(x, f) =0 so that from (15a) we
have

THEOREM 3

Golx, 0) = ——— M 1) (16)
EOD;((X: f)Ci(x)

Thus Gy(x, 0) is determined up to the constant Gy(0, 0). Consequently, from
theorem 2, it is clear that G,(x,0) 1<k <K are all determined up to the
constant G,(0, 0). Finally, G,(0, 0) is determined by using the normalization
condition

f G.(1,1)=1. (17)
k=0

Now that we have determined the boundary functions G,(0, y), G,(x, 0)
(0 < k < K) and the constant G,(0, 0) we see from (7) that G,(x, y) (0 <k <K)
are all uniquely determined. The steady-state generating function of the queue
lengths at the queues at a random slot boundary is

G(X, y) = k;()Gk(x’ y)

From G(x, y) any moment of the queue lengths at the queues can, in principle,
be derived.
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REMARK

Although the analysis in this section was restricted to K > 2, it is easy to see
that the cases K=0,1 were implicitly included in the analysis, simply by
choosing ¢, = ¢, = g, and ¢, = q,, respectively.

3. Independent Bernoulli arrival processes

We now illustrate the results of the previous section by a particular example
where the arrivals into queues 1 and 2 are independent Bernoulli trials with
probability of an arrival equal to 7, and r, respectively, so that

F(x, y)=(xr1+i_‘1)(yr2+?2) (F=1-r). (18)
For this case we immediately find from (8) that

Go(0, y) = Gy (0, 0)[1'*“)”’2/’_'2]- (19)
Using the results of the appendix we find that

Gi(x,0) = Ff(x)[Gy(x, 0) = G,(0, 0)] o, (1 <k<K—1) (20a)

and

Gy (x, 0) = {[Gy(x, 0) — G,(0, 0)] |1 — F(x) 7!

qo T+ Z_: QkFlk(x)ak”

k=1
+Go (0, 0)[1—ﬂ(x)]}/Fl(x)fzaKx‘l, (20b)
where Fi(x) = xr, + 7, and the coefficients «, are given by:
with the coefficients a , determined via the following recursion:
1 n=20
@, 0=/ n=1 (204)
0 2<n<K-1

1 Sn+l (n+1—1)
Qe = -+ 1‘]k—1 Z:,l LB (O)ai,k~l

I
- n n—i = n
+q_4 Z ( i )Fz( )(O)ai,k—l + ‘]k—le( )(O)O‘O,k—l (20e)
i=1

O<sn<K* N 1<k<K—1)
and FO0) =7, FP0)=r, and F”0)=0 n>2.
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Using (16), Gy(x, 0) is determined up to the constant Gy(0, 0). After tedious
algebra, a closed form expression for the constant G, (0, 0) is found to be:

K1
Bx+7 3, ak(:BkCIK‘"IBKQk)
Go(0,0) =7 {1 —r k=0 _ , 21a)
° ? ' ax(Gx —15) (
where the constants 8, (0 <k < K) are given by:
k
Bk:(k+1)Qk§K+‘7k_QkZ‘7j O0<k<K-1,
j=0
K-1
Bk=K‘1K‘_1K+‘7K_‘1K Z 4.7]'- (21b)
j=0
Specifically, if we define g, =p we obtain:
- "np
Go(0,0)=r)|1 - ———| forK=0 22
0.0 =71 -~ 2] @)
= (o _
G, (0, O)=7’2[1—r1p (r = 90)(P rz}} for K=1 (23)
p(p—n)
G, (0, 0)
_ [1*’, 2pp "‘l_’_P(E]—o""‘.—h)+7’2(P—‘Io+(l?_¢]1)(1“40ﬁ))
? ! p(p—r)
for K=2. (24)

Recall that for K'=0, queue 1 competes and attempts to get the server, when
nonempty, with constant probability p. For K =1, queue 1 competes for the
server when a task just arrives to the head of its queue with probability ¢, and if
it doesn’t get it, it continues to attempt to get it with probability p. For K =2,
queue 1 competes for the server when a task just arrives to the head of the queue
with probability g, if it doesn’t get it, it attempts again with probability ¢, and
afterwards with constant probability p.

From (23) we see that for K =1, G,(0, 0) is a monotonic increasing function of
qgo for all r, r, and p. Therefore, when K =1 Gy (0, 0) is maximized for ¢, = 1.
For K'=2 we have found from (24) (by numerical search) that gy,=1, ¢, =0
maximize Gy(0, 0) for all values of r,, r, and p.

The explicit expressions for the average time delays in the system (that are
derived from the average queue lengths at the queues by Little’s [5] result) are too
complicated to be given here. However we shall present several numerical results
for K=0, 1, 2. A somewhat surprising result for K =1 is that the average time
delay at queue 2 is independent of qo- The average time delay at queue 1 and
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TOTAL AVERAGE DELAY (SLOTS)

PROB. OF EMPTY NODES -Gg (0,0)

G4 (0,0)
10—

0.8

0.6

04

0.2

0'OO,O 0.2 0.4 0.6 0.8 1.0

TRANSMISSION PROB. AT NODE |
Fig. 1. K=0,1,2: G4(0,0) vs. p (g5 =1, ¢, = 0).

g =0.1

lO.O 0.2 04 0.6 0.8 1.0
TRANSMISSION PROB. AT NODE |

Fig.2. K=0,1,2: T vs. p (g5 =1, g, =0).
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Tmin
e TWO NODES

MINIMAL TOTAL AVERAGE DELAY (SLOTS)

0 N N RN N P
0.0 0.2 0.4 0.6 08 1.O

TOTAL THROUGHPUT

Fig. 3. K=0,1,2: Ty, vs. Y.

hence the total average delay in the system are decreasing functions of go-
Consequently, to minimize the total average delay for K =1 we have to Bhoose
4o = 1. For K =2 we found that the total average delay is minimized when go=1,
g, = 0. The fact that the optimal ¢, is ¢; = Q is not surprising, since if queue 1
attempts to get the server with probability 1 (g, = 1) then if it is unsuccessful, it
indicates that queue 2 is nonempty. Therefore, in order to insure that queue 2 will
get the server, queue 1 must forgive (¢, = 0) for one slot.

Comparisons between the three cases appear in Figs. 1-3. In all these figures
we choose go=1 when K=1 and ¢;=1, ¢, =0 when K=2. In Fig. 1 the
probability for empty system Gy(0, 0) is plotted versus p for different arrival
rates. In fig. 2 the total average time delay 7 is plotted versus p. From these
figures we see that as K increases the performance of the system is improved. We
also note that both T and G(0, 0) are almost independent of p for low arrival
rates (except for very large or very small values of p). The reason is that in this
case most of the tasks at queue 1 are served as soon as they arrive to the head of
the queue. However, in each of the three cases the parameter p plays a role. We
can find the optimal p that minimizes the total average delay for any arrival
rates. In fig. 3 the minimal total average delay is plotted versus the total arrival
rate - y when r, =r,=r (clearly y=2r) for the three cases (K=0, 1, 2). As
expected we see again that the performance of the system improves when K
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increases. Finally, we note that when r; = r, = r, the steady-state conditions for
K=0,1, 2 are that r <0.25, r <0.295, and r < 0.309, respectively.

4. Extensions

Some extensions of the system of the two competing queues that was investi-
gated in this paper are of interest. For instance, one extension that can be easily
analyzed is to incorporate routing into the system by allowing a serviced packet
at some queue to join the other queue with some probability or to leave the
system with some probability. Another extension, that does not seem to be easy
to analyze, is to allow arbitrary number of slots (not necessarily constant) needed
to serve packets rather than a single slot (the assumption made in this paper). An
assumption of geometric service time might be reasonable as a first step in this
direction. The most challenging extension is to allow both queues of the system to
compete randomly for the server, namely that none of queues will have priority
over the other. A first step towards this direction is given by Nain [10], where it is
assumed that both queues compete for the server with some constant probability
and that the arrivals are independent Bernoulli trials.

5. Appendix

In this appendix we prove theorem 2, namely, that each of the boundary
functions G, (x, 0) (1 <k <K) can be expressed as a linear combination of
G,y(x, 0) and a known function. We use the notation G{™(x, y) and F"(x, y)
to denote the n-th derivative of G,(x, y) and F(x, y), respectively, with respect
to y. From (7a) we see that:

¥Go(x, y)=F(x, y)[ya(x) + Gy (0, y) = Go(0, 0)], (A1)
where

g(x)=G,(0,0)(1 — gox™") + x_lkgoquk(x, 0). (A.2)
Therefore:

yG§P (x, y) +nG§{" P(x, y)
=F"(x, y)[yg(x) + Go(0, y) ~ Go(0, 0)]
+rF"V(x, y)|g(x) + G0, )]

FL (1) ao ) a2
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Let y — 0 in (A.3). Then

Go(x, 0) = F(x, 0)[g(x) + P,(0, 1)] (A4)
and forl<n< K—1:

G5 (x, 0) = Go(x, 0)c, o(x) + R, o(x), (A.5)
where

¢uo(x)=F"(x,0)/F(x,0) (A.6)

hyo(x) = h—:lﬁ : (” : 1 )i!F<"+1—">(x, 0) P, (0, i). (A7)

Recall that P.(m, n) are the equilibrium probabilities. Now from (7b) we see
that

yGi(x, y) = F(x, J’){[Go(x, y) = Go(x,0) — Gy (0, y)

+G0(Oa O)](‘Zoy + ‘70) +y6’10[Go(x, O) - GO(O, O)] } (A-S)
Therefore:

yG{"(x, y) +nGi" P(x, y)

—(%y+%>z()f“’wxynqu,n—wwwmyn

=0
n—1
- 1 n—1—i i i
+ngy 3 (" ; )F i, p)[GP(x, y) = G§P(0, y)]
i=1
+3o[Go(x, 0) = Gy (0, 0)] [yF ™ (x, y) + nF" (x, y)]. (A.9)
Let y — 0 in (A.9). Then
4"V (x, 0) = z()ﬂ"%xmwwuo%m%mzﬂ
=1
n—-1 1
+q, Y (”l )F(" =D (x, 0)[ G (x, 0) — i'Py (0, 1))
i=1
+3o[Go(x, 0) — G, (0, 0)] F*~P(x, 0). (A.10)
From (A.10) we finally obtain for 0 < n < K — 2 that
G§n)(x>0)=cn,l(x)G0(x:0)+hn,l(x)’ (All)

where
n+1

6ral(2) = BoF (e, 0) 4 g X7, 0)eia ()

n

0% ()P0 (x, 0)e,o(x) (A12)
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hn,l('x)_n}_]_ onz,l(n-l_l)F(nH 1)(X 0)[ o(x)—l'Po(O l)]

+q Z (}:)F(n—i)(x’ O)[hi,O(x) —i'Py(0, l)]

i=1
—3,G, (0, 0)F™(x, 0). (A.13)
Now from (7c) in the same way we obtained (A.10) we have for 2 < k< K—1:

G V(x, 0) = —qk 12( JFO0(x, 0)G{2, (x, 0)

e lz( HEeT 0 (x, 0062, (x,0)

+ i 1Gi_1(x, O)F" " D(x, 0). (A.14)
Assume that
Gy (x, 0) = nk—l(x)Go(xa0)+hn,k~1(x) (0<n<K-k). (A.15)

We have proved (A.15) for k=1, 2 in (A.5) and (A.11). Substituting (A.15) in
(A.14) yields:

G (x,0) = ¢, (x)Gy(x,0) +h, ,(x) (O<n<K—k—1), (A.16)

where
1 n+1

+1 n —i
Cn,k(x)= n+1Qk 1 Z (n . )F( . )(X:O)ci,k—l(x)

i=1 l

Gk Z( ) F= l) x O)Ci,k—l(x)+qk—1co,k—1(x)F(n)(x» 0)

(A.17)

n-+1

nk(x)_ 1‘]k+1 Z (n+1)F(n+1 (x, O)hzk 1(x)

g1 Z ( )F(n 1)(3‘ 0)h i,k—l(x) +qk—1h0,k—1(x)F(n)(x’ 0)-
(A.18)

Then by induction (A.15) is proved for 0 < & < K — 1. So we have shown that for
0 <k < K-—1 we have:

Gi(x,0)=C(x)Gy(x,0)+ H,(x), (A.19)
where
Co(x)=1; Hy(x)=0 (A.20)

Ci(x)= Co,k(x)§ H,(x) =hoi(x) (I<k<K-1).
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Finally, from (7a) using (A.19) we obtain:

G (x,0) = Ce(x)Gy(x, 0) + He(x), (A.21)
where
)= [x-F(e,0) T 03| a3, (A 22)

Hy(x) = = F(x, o>[xz>o(o, D+ Gol0.0)(x=ap) + X g, (x)

/qKF(x’ O)a (A23)
thus proving theorem 2. [
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