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Abstract. In this paper we study the performance of tree-like splitting collision resolution algo-
rithims in channels with markovian capture. In particufar, we assume that in each slot the channel
can be in one of two states -b (for “bad’’) and g (for “good’”). When the channel is in state b, a
capture can never occur. When the channel is in state g and n nodes (n > 2) are transmitting, a
capture occurs with probability 7, . The sequence of channel states is assumed to be a homogene-
ous Markov chain. We derive the throughput of a splitting tree-like multiple access algorithm for
this channel. We also provide simulation results for the average delay.

1. INTRODUCTION

In the multiple access sysiems considered here a
time-slotted shared channel is used by many nodes to
send packets to a single central receiver. In many stud-
ies of these systems it has been assumed that each slot
can be either an idle slot (no packet is transmitted), or a
success slot (exactly one packet is transmitted), or a col-
lision slot (two or more packets are transmitted and
none is correctly received). It has been further assumed
that the receiver is able to discriminate between idle,
success, and collision slots, and transmit appropriate
feedback signals, LACK, ACK, and NACK, respective-
ly. This is known as the ternary feedback model.

Ideally, when each transmission of a node is heard by
the receiver and when the forward channel is noiseless,
the above feedback signals are always faithful. In prac-
tice, however, due (o topological and environmental con-
ditions, the receiver is prone to fail to hear some of the
packets transmitted in a slot, or it may hear correctly a
transmission of a node in presence of other transmissions.
The phenomena of detecting a single transmission out of
many is called capture. The reasons for captures in practi-
cal systems are that mobile users (nodes) may occasional-
ly be hidden (for example, because of physical obstacles),
or have different distances from the receiver, or transmit
in different power levels, or because of fading problems.
Note that whenever a capture occurs, an ACK is sent with
the identity of the node that captured the receiver.

Multiple-access algorithms which handle deterministic
captures, in which the nodes of the network are divided
into priority groups, have been studied in [2, 9]. Models
that considered probabilistic captures were studied in [3,
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8]. There it has been assumed that the probability of a
capture in a slot may depend on the number of users that
transmit during that slot, but is independent from slot to
slot; i.e., the capture phenomenon has been assumed to
be memoryless. This is of course a simplifying assump-
tion, as the causes for captures can be with memory. It is
the purpose of this paper to study the performance of
tree-like algorithms that operate in channels in which the
capture phenomenon is with memory. In particular, we
are interested in the effect of different types of memorie,
persistent and oscillatory [5], on the performance of a
collision resolution algorithm. Persistent memory corre-
sponds to a channel that remains in a state that allows
captures to occur for long periods, while oscillatory
memory corresponds to a channel that remains in a state
that allows captures to occur for short periods.

The paper is structured as follows: in section 2, we
describe the channel model and the basic assumptions
that we use. In section 3, we describe the tree-based
multiple access algorithm. In section 3.A, the algorithm
is analyzed and its performance is evaluated in terms of
maximal throughput supported. We describe and ex-
plain the results in section 3.B for various capture pat-
terns. In section 3.C we provide simulation results for
the delay of packets in the system. Finally, in section 4,
we summarize the paper.

2. THE MODEL
We consider a communication system that consists of
many nodes accessing a common receiver. The forward

channel is assumed to be a time-slotted radio channel. In
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a given slot, each node can transmit at most one packet

whose duration is one time slot. The beginning of a trans-
mission is synchronized with the beginning of a time-slot.

During any time-slot one of the following events may
occur: a) Idle slot - none of the nodes of the network is
transmitting. For an idie slot, the receiver sends a
LACK feedback signal that is received by all nodes of
the network. b) Success slot - either a single node is
transmitting and being received properly or one node
out of several transmitting nodes is being properly re-
ceived by the receiver (capture). For a success slot, the
receiver sends an ACK (f) feedback signal (i is the iden-
tity of the node whose packet is received properly) to all
nodes. ¢) Collision slot - at least two nodes are transmit-
ting and none of them is correctly received by the re-
ceiver. For a collision slot the receiver sends a NACK
feedback signal to all nodes.

The channel model that we use is similar to [5]. In
particular, we assume that in each slot the channel can
be in one of two states -b (for “bad’’) and g (for
“good’’). When the channel is in state b, a capture can
never occur. When the channel is in state g and n nodes
(n 2 2) are transmitting, a capture occurs with probabil-
ity 7,,. The state of the channel does not affect idle slots
or slots during which a single node is transmitting, i.e.,
when a single packet is transmitted, it is always re-
ceived successfully. Let Z, be the state of the channel at
time (slot) 1 (r =0, 1, 2, ...). The sequence of channel
states {Z,, t 2 0} is assumed to be a homogeneous Mar-
kov chain with state transition probabilities:

PZ=glZ =g)=ry; P(Z;=blZ_=g)=1-r1,
.1
P(th g/Z,_I =b)=r, ; P(Z,= ])/Z,~1 =h)=1 -7

The probabilities r, and r;, are the probabilities to oc-
cupy the good channel state given that the previous
channel state was good or bad, respectively.

One should observe that with this model when node i
transmits a packet in a certain slot and is acknowledged
by an ACK (j) (i # ), it is aware of the capture that oc-
curred. Subsequently, such nodes whose packets were
not captured by the receiver will be considered to belong
to a lapsed set until they retransmit their packets again.

3. THE TREE COLLISION RESOLUTION
ALGORITHM

If the channel were free of captures, then the collision
resolution algorithm (CRA) is as follows [10, 11]. After
a collision, all nodes involved flip a binary coin; those
flipping O retransmit in the very next slot; those flipping
I retransmit immediately after the collision (if any)
among those flipping 0 has been resolved; no new pack-
ets may be transmitted until the initial collision is re-
solved. It is said that a conflict is resolved precisely
when all nodes of the system become aware that all in-
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itially colliding packets have been successfully retrans-
mitted. In [10] Massey describes a very simple algo-
rithm that can be distributively implemented by the
nodes of the system so that each node will know when
to transmit and when a CR1 ends. The time elapsed from
an initial conflict until it is resolved is called a conflict-
resolution-interval (CRI). If captures occur no changes
in this basic CRA are needed except that all nodes that
transmit in a given slot and are not heard by the receiver
due to a capture, retransmit at the beginning of the next
CRI. This is called the wair scheme [3]. Recall that node
i learns about its failure to be heard by the receiver due
to capture, by examining the feedback indication; if it
transmits and the feedback indication is an ACK (j) with

J # 1, then node i knows that it has not been heard by the

receiver and therefore it joins the lapsed set.

Regarding the first-time transmission rule, namely,
which packets are transmitted for the first time at the
beginning of a CRI, we adopt the standard idea to “de-
couple’ the transmission times from arrival times [4,
10, 11]. We define an arrival epoch of length A (meas-
ured in slot units) where the i-th arrival epoch is the
semi-opened interval [iA, (i + 1) Al. The rule that is
used is to transmit a new packet that arrived during the
i-th arrival epoch in the first utilizable slot following the
CRI for new packets that arrived during the i — 1 arrival
epoch [10]. Here A is a fixed length epoch adjusted to
maximize the achievable throughput.

Note that in addition to packets that are transmitted
for the first time at the beginning of a CRI (according to
the above rule) some residual packets are also transmit-
ted. The residual packets are those packets, which
joined the lapsed set during the previous CRIL

3.A. Analysis of the algorithm

Our goal in this section is to determine the maximal
output rate (throughput) attainable with the algorithm
described above. Similar to [3] and [5] we define X; to
be the total number of packets transmitted at the begin-
ning of the i-th CRI. In addition, let T; denote the first
slot of the i-th CRI, 7; denote the last slot of the i-th
CRI and Z, denote the state of the channel (b or g) at
slot £. When colliding, nodes split into two subsets; p is
the probability of being in the first group, and (1 - p) is
the probability of being in the second group. Therefore,
0, () = (") pi (1 - p)== is the probability of j out of n
nodes to be in the first subset.

With the above definitions we have X; = Xq,, Zy, is
the state of the channel! at the beginning of the i-th CRI
and Z, is the state of the channel at the end of the i-th
CRI Let @, (f)AP(Z, =f/Z; =5,X;=n) denote the
probability that the channel state at the end of the i-th
CRI is f, given that the CRI started with the channel be-
ing at state s and » transmitting nodes.

The probabilities @} (f) can be computed recursively
forn=0and s, fe (b, g) as follows. Obviously, for any
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nz0andse (b, g) we have @, (h) =1 — w,; (g).
Forn =0, I we have that

of (g)=0f (8)=1 1 g (s)=a](g)=0 G.D

The reason for (3.1) is that for n = 0 and n = 1, the
first and the last slot of a CRI are the same slot, so they
have the same channel state.

For n 2 2 we have,

T, ) i 0, (/)
{[':q o} () + (1= 1)) ()]

oy (g)=m, +(1

[/;, wf_;(g)+ (l - ) o’ ; (g)]+ (3.2)
[/'g % (b) + (l - ) (b)]
[l (&) +(1-n)o) (g)]}
ZQ,, Wl of (0)+ (1= 1)) ()]
[) o;5_; (g)+ (1 - rg)a),’;_j (g)] +
3.3

[z,, £ (h)+ (1 - r,,) wf (b)] .
[ o8 (9)+(1- 1)l (2)]}

The explanation of (3.2) is as follows. If a capture oc-
curs (with probability ) the CRI ends immediately.
Otherwise, (with probability | — ,) there is a collision
and the CRI is splitted into two sub-CRIs (that on their
turn split into two sub-CRIs etc.). Then we condition on
J out of n packets transmitted at the beginning of the
first sub-CRI. The channel state at the beginning of the
first sub-CRl is g with probability 7, and then the state
of its last slot is g with probability wf(g). The channel
state at the beginning of the first sub-CRI is » with prob-
ability (1 - ro) and then the state of its last slot is g with
probability®? (g). Thus, the first sub-CRI ends in chan-
nel state g with probability r, @7 )+ (L -1y of (g)
Then, the second sub-CRI begms with channel slate g

P(ZT,:H =2,Y,=y/Z =7'.Y;_, =k)=

ZP(ZTM =21 :y/ZTi :Z,’Y,'_l =k, Z,

with probability r, and ends with channel state g with
probability wf_ j (g), or begins with channel state » and
ends w1lh channel state g with probabilities (1 — r,)
and co,, i (&), respectively. Thus, the second sub-CRI
ends in thls case in state g with probability r,m,’;(g) +
(1=ry) a),, ; (8)- The other term in (3.2) is related to the
case that the first sub-CRI ends in channel stalc b. This
occurs with probability r, a)"’ D)+ A —ry) a) (b), and
then the second sub CR[ ends in channel state g with
probability r, @%_;(g) + (1 — 1) w” ;(8). Altogether,
the sum in the curly brackets in (3.2) represents the
probability of the whole CR! to end with channel state
g- The explanation of (3.3) is similar except that the CRI
starts in channel state b and a capture is not possible.

Equs. (3.2) and (3.3) are essentially two recursive
equations with the variables @ () and a) . (g) that can
be computed with the initial conditions (3. 1)

Continuing with the analysis, we define A; to be the
number of new packets transmitted at the beginning of
the i-th CRI, and Y; is the number of residual packets at
the end of the i-th CRI. We have,
Xi=A+7Y (3.4)
since at the beginning of a CRI A; new arrivals join Y;_
residual packets from the previous CRI for transmission.
We assume that {A;, i = 1} is a sequence of independent
and identically distributed (i.i.d.) random variables with
a Poisson distribution, so P(A; = m) = (AA)" e-2/m!.

Given ¥, | and Zy, the random variables ¥; and Zyz,,,
are independent of Y; and Zr,,, for j <i — 1. In other
words, the number of residual packets and the channel
state at the end of a CRI depend upon the number of re-
sidual packets and the channel state at the beginning of
that CRI - so these two random variables contain all the
relevant information regarding the probable evolution
of the CRI. Consequently, {Z;, Y;_;, i = 1} form a Mar-
kov chain. To proceed, we first need to determine the
transition probabilities of this chain:

P(z,y/z',k) =
P(z,.,,_u =2,Y,=y/Z, =2V, = k) z,2’¢{b,g}
Note that Zr,,, and Y; are not statistically independent.

However, by conditioning on Z, (the channel state at
the last slot of a CRI) we have,

=3)-P(2Z, =212, =2 Y, =k)=

(3.5

> Pz, =212, =2)-P(Yi=yIZ =2 Y =k Z, =2} P(Z, =512y =Y, =k)=
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Z, =412 =7Y,_, =k)

2,72'.7 € {b,g}
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where in the {irst equality we used Bayes law and in the
second equality we used the independence that follows
from the fact that the evolution of channel states does
not depend on the algorithm.

For a more compact notation let Pi (y, ) =P (¥; =y,
Z, = 2/Zy;=z", Y,y = k). Since T; and T}, are consecu-
tive slots, the four probabilities P (Zy,,, = z/Z, = ) are
defined in (2.1). Substituting in (3.5) the probabilities
from (2.1) we obtain for z = g:

P (ZTM: g Y= y/ZTi =z, Y =k=
) . (3.6)
re Pi (0, @)+ 1, Pi (3, D)
and for z = b:
Py, =bYi=y/Zy=2"Y =k =
(3.7)

(1 =1 PE (. &) + (1 - 1) P§ (v, b)

Using (3.4) we have,

P (w2)=P(Y, =32, =2/Z; =2Y,  =k)=

=

m=0

D e (02 P (A = m)

m=0

where p3 (y, #) WP(Y y, _ —Z/Z-,'—Z Xi=n)isa
probability similar to P} (y 9) defined above, except for
the conditioning on X,, the total number of packets
transmitted at the beginning of CRI, instead of condi-
tioning on Y, . Using this notation and changing indi-
ces we have:

()’,2) = Z /);:;zl+k ()’,5) ’

m=0

P (A,- = m) =

3.9

The equations for computing pZ (y, £) recursively for
n>0,0<y<nandz’, £ e {b, g} are similar to those of
o, () in (3.1) - (3.3) and they are given in Appendix A.

Having computed p3 (y, 2), we use the P01sson prob-
ability for A; and Eq. (3.9) to compute P, (v, 8). Note
that in (3.9) as n increases beyond a certain point, P(A;=
n — k) becomes very small and the contribution of addi-
tional terms of pZ (y, ) to P;"\,'(y, 2} computation is negli-
gible. This consideration also determines how many
terms of pZ (, z) are to be computed to achieve adequate
precision in P;_’(y, %) computation. The probability P;:,’(y,
#) represents the transition in channel state and number
of residual packets between the first slot of the i-th CRI
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P(1,=2.2,

ZP(Y, =2, =2[Z; =2, X; =m+k A = m)-P(Ai =m)=

(Zy;=z", Yy = k) and the last slot of the CRI (Z, =2, ¥,
= y). With the aid of (3.6) and (3.7) P (y, #) is used to
compute the probabilities P(Zy,, = 2z, Y; = y/Zy, = 27,
Y, | = k) which are the transition probabilities of the
{Z7,, Yi1, i 2 1} Markov chain. Following the analysis
in |3] and using thesc transition probabilities from (3.6)
and (3.7), the steady-state probabilities P§ (n1) A P(Zy=
z, Y =m), m 2 0 of the chain {Zy,, Y, i 2 1] can be
computed (assuming that it is ergodic) via

P (m)=

S Pz, ==

Y, =m, Z.,} =zY_, =k)=

ZZ[’(m,z/k,z')P)f/ (k)= (3.10)
kooz
> [P(m.z1k.g) PE (k) + P(m,z/k, b)Py”( )]
k=0
z€ {b,g},m 20
i Ly =2 X - A =k):
(3.8)

To continue with the analysis, let the average length
(in slots) of a CRI that started with m residual packets
and with channel state z be denoted by L,Zn =E{l;/Zy, =z,
Y,y = m]. As with the computation of P (y, %) and pZ (y,
2), we first compute the average Iength of CRI, which
started with X; = n total number of packets and with chan-
nel state z, which is denoted by IZ = E [l;/Z1, =z, X; = n].

Forn=0, | we have:

lg=1i=1 G.11H
Fornz2andz=g:
18 =1+(1-n, ZQ,,
j=0
{/e[l +( ), +w?(b)r,,) it
(a)f 1—1 (b)( 1,,)) i ,]+ (3.12)
(l )[//’ ( ](q)/ +®; (b)r,,)l,’fj
() ( @) ()1 - n))ie, )}
For 1122311dz=b:
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=1+ }: 0, ()

=0
{15+ (5 ()7, + 0 () )15+
(@ () (1= 1)+ @5 B)(1-m))ir, ]+
(1=m)[17 + (@] (&) + 0} (), )15 +
(@} (6)(1=r) + 0} )1 =)0z, ]
The explanation of (3.12) - (3.13) is similar to that of
(3.2) - (3.3).

Averaging on the number of new arrivals we com-
pute L7,

(3.13)

L, =E[l1Z; = 2.Y, =m|=
E[/i/Z7} =7,X; - A = m]:
iE[l,/ZTi =X, =mtk A =k
k=0 J

P(A=K)= Y15 P(A=k)=

k=0

Zl,fP(A:n—m)

n=mn

(3.14)

zelbg}

where P (A = k) is the Poisson probability to have k new
arrivals in a time interval of length A. With the the sta-
tionary probabilities obtained in (3.10) the average
length of a CRI is

L=E[L,]|=Y Y L5 P(Zy ==Y =m)=

m z

(3.15)

oo

L, Pf(m)= LS, PF (m) + Li’,, Pl (m
2 2

m oz m=0

The average number of new arrivals in a A-interval is
E (A) = AA . Therefore,

TA throughput of the system = iA_
' L

(3.16)
Note that a necessary condition for the stability of the

system is that the average length of a CRI would be

smaller than the arrival epoch A (see [11], page 127).

3.B. Numerical results

Let V (g) and V (b) be the invariant probabilities of [Z,,
t 2 0]. We have V (g) = rp/(1 - retrpyand V(h)y=1-V
(g)- In Fig. 1 we depict the throughput T as a function of
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1, that is changed from 0 to | while keeping V (g) con-
stant. Note that for constant V (g), small r, represents
very slow oscillations between the two channel states -
which we call a persistent type of memory. The other
case when 7, is close to | represents relatively quick
transitions between the two states - which we call an os-
cillatory type of memory. In Fig. | we use 7,=1,n=2,
3; m,= 0, n > 3. We note that the throughput is higher
when the channel is persistent. Similar behavior has been
observed for all other patterns of capture probabilities
that were considered. The reason for this is not readily
seen and in the following we provide an explanation.

0.75
—_— V=09 |
070 |
5 Vi{g)=08
g OO~ v@=o7r |
g
£ o060} Vig =06
©
% 0.55 | Vi@-05
p Vig)=04
050 | T~ V@=03 my=n3= |
~V@=02 =0 24
0.45 1 1 1 I IO | i 1
0 02 04 06 0.8 1
My

Fig. 1 - Maximal throughput versus ry, for various values of V (g).

In the memoryless case r, = r, = V (g). Holding V (g)
constant, let us denote this 1, as r;, (ML) and the corre-
sponding throughput as 7L From the numerical com-
putations of the stationary probabilities P§ (m) we ob-
serve that for the memoryless case X, P§ (m) =V (g). In
other words, the channel states at CRI beginnings are as
likely to be good as those of any arbitrary slot along the
time axis. For the persistent type channel r, < r, (ML)
and 7> TML, we observed that ., P§ (m) > V (g). There
are more good channel states at CRI beginnings than
their occurrence in an arbitrary slot. The opposite is true
for the oscillatory type channel in which r, > r, (ML),
T< THML and 3, P§ (m) >V (g). The reason for this is
that the last slot in each CRI is always either empty or a
success. This gives the channel state in the last slot of a
CRI a preference to be more likely in the good state.
Then, the channel state in the next slot, which starts a
new CRI, is more likely to remain in the same state
when the channel is persistent, and is more likely to
change its state when the channel is oscillatory. When a
CRI begins with a good state, it exploits the capture
more efficiently because this slot is the more likely to
contain two or more transmitters. This explains the im-
provement in throughput when the channel is persistent.

3.C. Average delay - simularion results

The delay in a multiple access system is defined as the
time from the arrival of a packet to the node until its suc-
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cessful transmission. A program that simulates the oper-
ation of the algorithm was written in order to obtain its
performance in terms of the delay induced on the pack-
ets. The average delay in slots is depicted as a function
of A (the arrivals rate) in Fig. 2 for the two types of
memory. For both types the same A is used which is not
necessarily the optimal A of both (each type has a differ-
ent optimal A). This gives a common base for the com-
parison between the two types. For small arrival rates
both types of memory induce the same average delay,
which is reasonable because no collisions, nor captures
oceur, and the algorithm is not affected by the channel
states. For arrival rates close to the throughput, the delay
with the persistent type channel becomes smaller than
the oscillatory type channel, which is consistent with the
results in the previous section. For moderate arrival
rates, the oscillatory type channel shows better perfor-
mance, because its lapsed set (and the occurance of cap-
tures) is smaller than that of the persistent type channel.

This reduces the average delay because the first time
transmission rule we used in the simulation does not let
packets transmit when the current time is less than the
time that was resolved (on the arrival time axis) plus A.

70
Vig)=05

A=19
mo=ng=1, my =0 nx4

60 -

50 K
Persistent '
40 . ,'

l

/

/

= = - - Oscilatory
30 -

Average Delay

0 T |
0 0.1 0.2 0.3 0.4 0.5 0.6

Average Arrival Rate A

Fig. 2 - Average delay as a function of the arrival rate — .

APPENDIX A
Recursive equations for p (y, 7).

For n =0, 1 we have that

0 %z
pi (n2)=pi (n8)={1 y=0 z'=% (A.1)
0 y=0
Forn>2,0<y<n-2
n y
P (12)=(1-7,) 3,0, () (e [ (o)1, + pf (m ) | +
j=0 m=0
(l - rg)[p;’ (m.g)r, + p}’ (m,b)n, ]) pi_i(y—m2)+ (I:g, [pf (m,g)(l - ):q) +pf (m,b)(1-1,) ] + (A.2)
(l —r )[ ' (m, g)(l - )+p, (m,b)(1-1,) ]) p,],’_j (y—m, 2)}, zelbg}
Similarly:
n y »
ph (y.2)= 2{(/,, [p m,g)rg + pf (nz,b)rb] +
i=0 m=0
(1- ) [pj-’ (m,g) Iy + p? (m,b) r,,]) P (y—-m2)+ (r,, [pf (m,g)(l - ’b) +pf (m,b)(1 - ) ]+ (A.3)
(1 - r,]) [p}’ (m,g)(l - )+p (m,b)(] - r,,) ])} D j (y m, z)} ze {b,g}
ETT
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Fornz2,y=n-1

P (n=1.8) =, +(1=m,){0, (O) 7. repf (n = 1.8) +(1-1,) b} (n~1,0)] +

b . . g -
0, (O)(l -~ rg)[r,J pi(n=1,8)+(1=1)p) (n- 1,g)]+Qn (n)r, [p;f (n—1,8)r, + p§(n—1,b) Ib] + (A4)
2 b
o, (n)(l - rg> [p,,’ (n—1,8)r, +p, (n— l,b)r,,]}
- )0 .
i (1= 1.6) = (1= 7, {0, (0) 1t (1= 1.0) + (1 1) of (= 10)] 0, ()1 - 1)
b
[r,, pE(n—1,b)+(1=1,)p}(n~ I,b)]+Q,, (n)r, [p,’f (n- l,g)(l - rg) +pf(n-1b)(1- r,,)] + (A.5)
b b
Q, (1) (1 - rg)[p,,’ (n- l,g)(l - rg) +p, (n=1b)(1-1, )]}
! .8 AN .
p,(n-1,8)=0, (0){1‘,, [/&, py(n—1,8)+ (1 - ;R)p” (n— l,g)] +(1-1,)-
Y0 . 4 . .
[ P (2= 1.8) +(1=1,) pl (1~ 1..g) ]} +0, (0| (n=1,8)r, +pf (n— 1,61, |+ (A.6)
. b . b )
(1 - 1,,)[1)” (n- l,g)lg +py (n=1,b)r, ]}
b . . b R .
p,(n-1,b)=0, (0){1,,[(1 —zg)p,,’ (n-1,p) + r, Dy (n- 1,b)]+(1 - ’b)'
N Yt . . .
[1,, pi(n=1,b)+(1~n)p} (n—-1,b) ]} +0, (n){n, [pﬁ (n- l,g)(l - )g) +p§ (n—1,b)(1 - 1,,)] + (A7)
. ; . L .
(1- r,,)[p”’ (n- l,g)(l - /g) +p, (n-1,0)(1- /b)]}
Manuscript received on May 15, 1993.
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