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ABSTRACT

The purpose of this paper is to present the applications of the
canonical approximation technique to performance analysis of multihop
packet radio networks. The canonical approximation gives a closed — form
approximation of global performance measures. The computational com-
plexity of the method is independent of the size of the network, whereas the
precision increases exponentially with the size of the system. The method
is applied to analyze some packet radio networks operating under CSMA
with perfect capture and C-BTMA protocols.
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1. INTRODUCTION

In this paper we apply the method of canonical approximation to
the performance analysis of multihop packet radio networks. The method
is used to analyze some packet radio networks operating under CSMA with
perfect capture and C-BTMA protocols.

A packet radio network (PRNET) consists of geographically dis-
tributed radio units broadcasting data packets over a limited range. A key
design problem of a PRNET is to resolve interference which occurs when-
ever two or more nodes try to transmit over the shared channel within the
same neighborhood. This is accomplished by means of a multiple access
protocol - a set of rules which define the process by which a node proceeds
to transmit.

Given an access protocol and a packet radio network, one would
like to compute a number of important performance measures. The primary
performance measure is the throughput - the average number of packets
delivered successfully per unit time. Other measures of interest include
steady-state probability distribution of the number of transmissions, the
fraction of the channel capacity used for successful transmission, the prob-
ability that a scheduled transmission is successful and average number of
packets in the system.

Most of the work on multiple access protocols has been confined
to the single hop case: a transmission of each node may interfere with
transmissions of all other nodes. The work on the performance analysis
of protocols in multihop environment, where spatial reuse of the shared
channel is possible, is still in progress ([Boor80, Braz85, Toba80, Toba83,
Silv83]). In practice, different schemes can be analyzed only numerically
or through simulation and only for very small and simple networks. In
this paper we present a new method to approximate performance measures
of interest. The computational complexity of the method is independent
of the size of the network, whereas the precision increases exponentially
with the size of the system. The method is applied to analyze some packet
radio networks operating under CSMA with perfect capture and C-BTMA
protocols.
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2. THE MODEL

The model of multihop packet radio networks that is used here
is the one introduced by Boorstyn and Kerschenbaum ([Boor80]). In this
model the network consists of N nodest with a specified “hearing matrix”.
For any two nodes { and j the hearing matrix specifies whether or not
i can hear j. The points in time when new and retransmitted packets
are scheduled for transmission are called scheduling points. Packets are
retransmitted either because at some scheduling point they were inhibited
from transmission or because their transmission has been interfered. The
process of scheduling points from a node is assumed to be Poisson with
parameter A. In general, one need not to assume the same rate of )\
for all the nodes. The lengths of packets are assumed to be distributed
exponentially with parameter p. For notational convenience, we assume
# = 1. The model assumes negligible propagation delay.

Two protocols are considered - Carrier Sense Multiple Access (CSMA)
with perfect capture and Conservative Busy Tone Multiple Access (C-BTMA).

Under CSMA, 2 node wishing to transmit senses the channel. If
the channel is sensed idle, the node starts transmitting, else it waits for the
next scheduled point in time and repeats the above procedure. Under the
perfect capture assumptiont, the transmission of a packet from i to j may
not be successful only if any of the “hidden nodes” k (neighbors of 5 but
not of §) are transmitting to j at the time i starts its transmission.

Under the C-BTMA, any node that senses carrier emits a busy
tone. If a node ¢ transmits a packet to node j, all the other neighbors of
i transmit busy tone, thus blocking all nodes in a region within twice the
“hearing radius” of node 5. Note that under C-BTMA, once a node starts
transmitting, it is guaranteed of success.

For these protocols with the above assumptions of Poisson arrivals
and exponential service time, it can be shown ([Boor80, Toba83]) that the
equilibrium probability distribution x(s) of having i simultaneous transmis-

sions in the system is given by

tN will be used to indicate both the set of nodes and network size as long as no confusion
arises. |

tThe capture assumption is defined as the ability of the receiver to correctly receive a
packet despite the presence of other time overlapping transmissions. Perfect capture
is the ability of receiving correctly the first packet regardless of future overlapping
packets, whereas zero capture means the complete destruction of the first packet by
any overlapping transmission. We will consider only perfect capture in this paper.
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(i) = - (1)

where p = X/ and Zy, the “partition” function of the system is given by:

N
In =} ajp’ (2)

=0

where aly denotes the number of ways to have § concurrent active nodes.
The partition function is a generating function for the concurrency levels
of the system.

A number of important measures can be obtained once the parti-
tion function is computed. The most important performance measure in
a packet radio network is the nodal throughput S; which is defined as the
average number of successfu! transmissions processed by node i per unit
time. Note that it is not just the average number of concurrent transmis-
sions, since some of these will not be received by their destinations. The
maximum node throughput is called the node capacity.

To calculate the node throughput, let us first calculate the link
throughput S; y, the average number of successful transmissions over i-to-§
link per unit time. Let A;; denotes the set of nodes that must be silent
at the initiation of the i-to-j transmission. The probability of success of
i-to-j transmission is then

Lsema, P _ZNna,

P.',j = P(A,',j xdle) = ZN ZN

(3)
Note that if the set of nodes N can be represented as N = N; U
Nz where Ny and N, do not interfere with each other, then

In = ZNn,ZN, (4)

If pi; denotes the traffic intensity for the packets from node i to
node j, then from (1) one obtains

ZN\A,,
ZN

(5)

Siy = pijPij = pij
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And therefore, the nodal throughput is given by

S = 2:5.',,' (8
7

3. CANONICAL APPROXIMATION

From the above discussion it is clear that the main difficulty in
analyzing networks operating under CSMA with perfect capture and C-
BTMA is the computation of the partition function. Usually, the partition
function is difficult to express in a closed form. To overcome this prob-
lem, we propose the method of Canonlcal Approximation. The term
canonical is borrowed from statistical physics where a similar method is
used to show the equivalence of canonical and grand canonical ensembles

(|[Path84]).

To apply the method, one first computes the generating function
of Zn,

Za(t) = i ZntN (7
N=0

By analogy with physics, one calls Zg(t) the grand partition func-
tion. This function is usually much easier to compute than Zn. By
Cauchy’s theorem

_ _L_ Zc(t) .
Zn = 27rx'f i o (®

Assuming that Zg(t) is a meromorphic function whose smallest
(in magnitude) pole t, is real, positive and of order 1, one can approximat
the partition function as follows ([Henr77]):

—Res|Zg(to)|

In (NH
]

where Res|Zg(to)] denotes the residue of Zg(t) at to. In Appendix I
we prove the correctness of the above approximation and show that it
(relative) error is decreasing exponentially when N increases.
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4. APPLICATIONS

4.1. TANDEM NETWORKS: CSMA

Consider a tandem of N packet radios operating under the Carrier
Sense Multiple Access (CSMA) scheme ([Boor 80]). In such a system all
nodes share the same bandwidth and each node (except for the end nodes)
can communicate with two neighbors. To calculate the partition function
Zn one applies the canonical approximation as follows.

t,eg'l‘ To calculate the grand partition function, derive a recursive relation

for aN, the number of configurations involving § transmissions. To that end,
suppose one more node is added to a tandem of size V. Let us examine
a configuration involving i transmissions. There are clearly two cases to
consider:

Case 1: the (N + 1}st radio is not transmitting. There are aly such
configurations.

Case 2: the (N + 1}-st radio is involved in a transmission. There are ot
such configurations.

Therefore
oy =anl+ay  for N2L1<i<N (10)
ad =ao} =1
0 N
This implies the following recursive relation
ZN41 = Zn + pZN-1, Zo=1,21=1+4p (11)
Therefore, the grand partition function is
1+¢
~ 3z = e (12)
N=0 —iTe
Step 2. Find the smallest positive pole of the grand partition function.
ty = ———— (13)

+1+4p


Moshe Sidi

Moshe Sidi

Moshe Sidi

Moshe Sidi

Moshe Sidi


146 E. Pinsky, et al.

Step 3. Compute the residue of the grand partition function at ¢o

Res|Zo(to)] = — ot Plo . 1HVRY 10
2t + 1 2/T+4p

Step 4. The partition function is given by
Res|Zc(to)] 1 (1 + m)"’“
ZN ~ — =

o 2

tév“ V1i+4p

For this particular example, one can solve the simple recurrence
equation (11) to get an exact expression for the partition function

o ]

The relative error of the approximation is therefore
1 (VTFap-1\""
—0 (16)
VITa\WVI+i+1

and it decreases exponentially with N.

(15)

Error =

To calculate the link throughput S; ;41 under the perfect capture
assumption, consider a typical node i. The transmission of 1 to node 5+ 1
will be successful, if at the start of the transmission, all of the nodes in
Aij={i-14i+1,5+ 2} are silent. The sets of activities generated by
the subsets of nodes Ny = {1,...,i — 2} and Nz = {i+3,...,N} are
mutually non-interfering and correspond to two tandems of sizes i — 2 and
N — i — 2 respectively. Therefore, using equations (3) and (7) one finds the
probability of successful transmission from node 1 to node {+ 1 is

2
Py = ZizaZn—izs = 1 ( 2 ) (17)
In JIFap\1+ T+ 4p

Assuming that node i is equally likely to transmit to node i +1
as to node i — 1, (that is piiy1 = p/2) the link throughput is given by

i1 = 2P, (18)

2
2
3 IRES £ ( )
2Vi+4p\ 14 T+ 4p
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The nodal throughput is obviously S; = 25; ;41. Figure 1 gives
the graph for the throughput as a function of the load. The link capacity
(maximal link throughput) of ;41 = 0.0857 is achieved at p = 1.2. For
p = 1 the throughput is 0.085 as has been shown in [Boor80, Toba83| by us-
ing numerical methods and simulation. However, one gains a slight improve-
ment in the throughput if packet retransmission attempts are generated
faster than the average transmission duration time (p == 1.2).

4.2. TANDEM NETWORKS: C-BTMA

Let’s consider the tandem of N packet radios as before, but as-
sume that it operates under the C-BTMA protocol. This means that a node
can transmit only if its immediate neighbors as well as the neighbors of the
immediate neighbors are silent. As before, one can derive a recurrence
relation for the partition function by adding one more node to the tandem
and examining the number of configurations having { transmissions. One
would get

oy, = aky + it N2>2
Sy Sy bohoe N2 (19)
0 =& =0y =

The partition function then satisfies

Inyr = IN+pZn-2 N2>2 (20)
Zo=1,2=14p,Z2=1+2
From the above, the grand partition function satisfies:
1+ pt + pt?
TP 1
Zo(t) = {55 (21)

Let to be the smallest (positive) pole of Zg(t) (See Appendix 1 for
the existence and uniqueness of this pole). In Appendix 1 we show that the
residue of Zg(t) at to is given by

1+ pto + pt?

ReB[ZG(to)] = - 3pt§ n 1

(22)
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Figure 1: Nodal Throughput: CSMA and C-BTMA (d=1)
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Applying the canonical approximation, one gets the following ex-
pression for the partition function

_Res|Zg(to)] _ L+oto+pil
tg*! (30tF + 1)eg’ !

AR (23)

To calculate the throughput, consider a typical node §in a tandem.
This node will be successful in a transmission to node s+1 if the set of nodes
one and two hops away A iy1 = {i—-2, i—1,i,i+1,i+2} are silent. The
sets of activities generated by the subsets of nodes Ny = {1,2,...,i—3}
and N = {i +3,..., N} are mutually independent and correspond to two
tandems of sizes {—3 and N —i—2, respectively. Therefore, the probability
of success :

ZisZNn_i-2 ~ 1+ pto + Ptgt4
ZN (Bot3+1) °

Piiy1 = (24)

Assuming that a node is equally likely to talk to any two of its
neighbors, the link throughput S; ;41 is given by

p p1+pto+ptd
S' : == —P~ : g —-e—
ii+1 2 i,i+1 9 (3pt§+l) 0 (25)
The nodal throughput is
1 14 t2
Si=28; 41 = p_jﬂ_-.’:_’i_o_ 4 (26)

(Bpt3 +1) °

To calculate the capacity, note that once a node is permitted to
start a transmission, the success of transmission is guaranteed. Therefore,
the capacity is achieved at p = oo. For large p the pole can be approximated
by to ~ p~}¥. With this approximation

LIRS
5= PP 40 4
3p} +1

—

; (27)

The throughput per node is 1. This is what one expects: as p + o0
the tandem will be densely packed with transmissions. One would expect
every 3-rd node to be active.
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It is interesting to compare the above results to the simulation
studies on ring networks reported in [Toba83]. The link throughput for a
ring under C-BTMA exhibits a quasi-periodicity of period 3: all rings with
a number of nodes which is a multiple of 3 have a little higher throughput
than those which are not multiples of 3. The diflerence decreases as the
number of nodes increases. This can be explained using the canonical
approximation. First, note that tandem and ring exhibit similar behavior,
especially for large N. The grand partition function has three roots -
one is to (real, positive and smallest in magnitude) and two are complex
conjugates. If one considers the exact expression of the partition function, it
is dominated by the smallest root. However, for small N, the contributions
from the complex roots are not negligible. These contributions are the
largest when IV is a multiple of 3. As IV increases, the contributions from
these complex roots become smaller as the partition function is increasingly
dominated by to. For large N, the partition function is insensitive to the
divisibility of N by 3. The simulation results were reported for relatively
small size (N < 20) rings.

Figure 1 gives the the nodal throughput and compares it to the
one using CSMA with perfect capture. For p < 0.43, CSMA outperforms
C-BTMA. This says that for lighter loads, there is no need to be overly
restrictive (“conservative”). For heavier loads when there is a lot of inter-
ference, being restrictive helps.

4.3. LINEAR ARRAY: CSMA

Consider a packet radio network of N nodes placed on a linear
array of degree 2d - nodes can transmit up to d nodes in either direction.
To calculate the partition function Zn one can derive a recursive relation
for al;.

Suppose one more node is added to the network. Let’s examine
a configuration involving i transmissions. There are clearly two cases tc
consider:

Case 1: the N+1-st radio is not transmitting. There are af, such configurat.

Case 2: the N + 1-st radio is involved in a transmission. There are oty
such configurations.

Therefore,


Moshe Sidi

Moshe Sidi


The Canonical Approximation 151

2
aly =1 N<d (28)
The above relation implies the following
ZN+1 =ZN+pZN_4 fOl'NZd 29
Zny =14pN for0<N <d (29)
It follows then
d -1
Zo(t)— Y Zutt = t[ZG(t) =Yzt + a1 Z6(1)
k==0 =0
which after some algebraic manipulations reduces to
t—1+4 ptdtt —pt
Zo(t) = e (30)

E-1)(1—t— ptd¥)

The residue of the grand partition function at its smallest pole ¢o
(see Appendix 1 for the existence and uniqueness of this pole)

—pt}
(1 —to)f1 + d(1 —to)]

Res|Zg(to)] = — (31)

Applying the canonical approximation, one obtains the following
expression for the partition function:

Res[Zg(to)] _ ptl
g+t (1= to)[1 4 d(1 — to)]ed ™

ZN ~ - (32)

To calculate the throughput, consider a typical node § and let
Siivx (0 < kL d) be the throughput of a link connecting nodes § and
i + k which are k hops apart. Since node § can communicate with up to d
successive nodes in either direction, under the perfect capture assumption,
the transmission to node i + k (0 < k < d) will be successful if the set of
nodes A; ipx = {i—-d,i—-d+1,...,:'-—1,:',:'+1,...,i+k+d} are silent at
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the initiation of that transmission. The probability of success is therefore

Zn A
Pc',€+k = P(A,',H.k idle) = ——\Z;-j—k =
i de1 LN —i—k—
_ Zima1ZNick=d _ peost 710124+ (33)

ZN

Let us consider the case when the traffic is equally distributed
among 2d outgoing links from node i, that is p; i+& = p/2d. In such a case,
the link throughput

2,2d4+k42
pt0++

P
Siive = 5P
bk = gl S o )L+ d(1 — o)) (34)
The nodal throughput of ¥,
4 p212ets 1—td
S=2 Sis ==
kz; A S T o)L+ d(1—to)] 1~ to
to(1 ~t3) (35)

= 1+ d(1—to)]

Figure 2 gives the curves of the nodal throughput as a function
of load for d = 3, d = 5 and d = 10. The corresponding capacities are
S; = 0.0826 at p == 0.735, Si = 0.0544 at p = 0.525 and S; = 0.0293 at
p = 0.31.

Let us calculate the capacity for large d. From equation (35) one
differentiates the nodal throughput Si with respect to to and solves the
2quation S'(to) = 0.

One would obtain

Pt —(d+ 1) +d+1=0 (36

For large d, the pole to is very close to 1. Therefore, writing to =
1 — o and using the approximation (1 - a)! ~ 1 — da one gets that the
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Figure 2: Nodal Throughput: CSMA and C-BTMA (d=3,5,10)
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capacity is achieved at

¢ 1-——
oM IT IR (37)
From equation (35) one gets that the capacity is
d
Ti_l 1- (1 - T}Fl') 1-1
S I (a8
: i1+ %) 2d 4 )
The corresponding load
1- to €
p= a ~ g (39)

4.4. LINEAR ARRAY: C-BTMA

Consider the same linear array of packet radio nodes but now
operating under the C-BTMA scheme. As before, one can derive a recur-
rence relation for the partition function by adding one more node and con-
sidering the corresponding two cases. Because of the C-BTMA the recur-
rence relation becomes alyy; = al + ajoq for N > 2d with initial con-
ditions a}y = N for N < 2d

This gives
Znyr = ZN +pZN—2a for N2> 2d (40
Zny =14+ pN for0<N < 2d

The grand partition function Zg(t) can be shown to satisfy

t— 14 pt2dtl — pt

Zs(t) = (t—=1)(1 =t — pt2d+1) (41

Let to be the smallest positive pole. (See Appendix for the exic
tence and uniqueness of this pole.) The residue is then

to— 14 pt3 —pty
(to — 1)(1 + p(2d + 1)t3%)

RedlZG(to)] = —


Moshe Sidi

Moshe Sidi


The Canonical Approximation 155

=- pls (42)
(1 —to)[1 + 2d(1 - to)]
The partition function is given by
Res|Zg(to)] pt2
In ~ - = Pa— 43
N ty+t (L —to)[1 + 2d(1 — to )tV +1 (#3)

As in the previous case, define S; s (0 < & < d) to be the link
throughput between nodes ¢ and i+k that are k hops apart. Because of the
C-BTMA, the node i it will be successful at every transmission to i + k. It
can initiate a transmission if the set of nodes A = {i—2d,i-2d+1,...,i+
2d} is silent. The probability of that is

Piipx = Z‘—zd—}ziN—"““ ~ Res|Zg(to)]tdd =

t(‘)d+2
= to)[;) +2d(1 — to)] (#4)

Assuming that node i is equally likely to talk to any of its 2d
neighbors, the link throughput is given by

P p2t34+2
S = P .
itk = ggPhie N o T+ 21 = 1a)] (#9)
The nodal throughput
4 2,4d+2
t
S = 2Esi,i+k 3 £ (46)

(1—=to)[1 +2d(1 — t,)]

i=1

~Since every transmission results in success, the capacity is achieved
at p = co. For large p the pole can be approximated as follows

to = p~TFT (47)

The asymptotic nodal throughput is easily seen to be S; = 1/(2d+
1). This is what one would intuitively expect - for very large p the linear
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array will be packed with transmissions. Since every i-to-j transmissions
blocks 2d + 1 nodes and the system is densely packed, one would expect

that the throughput per node is 1/(2d +1).

It is interesting to compare the capacity SP*** for CSMA with
perfect capture and C-BTMA for large d. For CSMA we obtained that

. 0318
SMeF oy 5 (48)
For C-BTMA
S7Tet %5- (49

This says that for the same (large) d the capacity under CSMA i
369 worse than under C-BTMA.

Figure 2 gives the nodal throughput and compares it with CSM
with perfect capture for d = 3,d = 5and d = 10. Just as in the casec
d = 1, for lighter loads CSMA outperforms C-BTMA. However, we not
that as the level of interference increases (d increases), the range of th
loads for which CSMA is better decreases. The reason is that one shoul
be more and more restrictive as the interference increases.

5. CONCLUSION

This paper presented an application of the new method of canor
cal approximation to analyze CSMA and C-BTMA protocols with perle
capture for 2 number of network topologies. The method allows to analy
a number of network topologies with relative ease. Further work will exte
the application of the new method to study other multiple access protoc

and network topologies.
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APPENDIX 1

Theorem 1. Let to be the smallest pole of the grand partition function.
Then for large N one has ([Henr77))

ZN ~ —Rea[ZG(to )|

tN+l

Proof. Let tg,t;,...tx be the singularities of Zg(t). Assume that there
are a finite number of poles and all poles are of order 1. For more general
case, the proof proceeds along similar lines and is given in [Pms85]

0 < Jto] < Jta] < - < |ti]

Let C be the circle around the origin excluding all the poles and
let C' be the circle around the origin surrounding all the poles of Zg(t).
Then by residue theorem ([AIfh66])

1§ Zalt) Ek:Res[ZG(t;)] L L Zolt) ,, _

N= 27” ctN'H tf"“ il tN'H

f2=0

— Rea[Zc(to ZRGBIZG N+1 +_];: ZG(t)dt
N+‘ Res[ZG oaniJo tVH

But since

ma-xcec'[ZG(‘)]
[t}

I f 2ol
2riJor tN‘H

and ]:—‘:] < 1 one obtains that for large N

—Res|Z5(to)

In = NF ][1+E]
0

With the (relative) error of the approximation

E Resl Ze(tal (to\V ], maxeecrtZaltl(t0 )T
,-;R”lzc(%)](ts) ¥ "Reel Zs(to) ([‘]) °
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Therefore, for large N

—Res|Zg(to)]

ZNN tN+1
0

(50

The partition function is asymptotically determined by the small
est pole of its grand partition function. |

To use the above approximation, one must be able to comput:
residues fast. The calculation of residues becomes very easy with the hel;
of the following theorem ([Alhf66]):

Theorem 2.  Suppose f(t) has a pole of order m at t = t, and pu
9(¢) = (t —to)f(t). Then the residue of f(t) at point t is given by

1

Res|f(to)] = =)

T (Y] (51

In particular, if Zg(t) is of the form

F(t)
Zelt) = Ty pm

and tp is a simple pole of Zg(t) then

F(ty)

Res[Zg(to)] = — (n+ DptZ +1

Theorem 3. The function f{t) == 1 —¢ — pt™ == 0 has only one positive
root 9. This root is of order 1 and is the smallest in magnitude among al
other roots.

Proof. Since f(0)=1> 0and f(1)= —p < 0the function has a root t
satisflying 0 < to < 1. Moreover, since f/(t) < 0 for ¢ > 0 it follows that
/(t) is a decreasing function for positive ¢ and hence, the root is unique and
of order 1.
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For any other root ¢; one can write {; = Rcosd + {Rsinf where
8 5 0. Since t; satisfles 1 —t; — pt} = 0 one obtains

9(R,8) = 1— Rcos§ — pR™cosnd =0 (53)

But g(R,0) > 1 — R — pR™ = f(R). The function f(R) has only
one positive real root R = t;. Moreover, the function f(R) is decreasing
for larger R. Therefore, g(R, §) is bounded below by a decreasing function
intersecting the X -axis at to. But this implies t; > ¢o. 1
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