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New call blocking versus handoff blocking in cellular networks

Moshe Sidi and David Starobinski
Electrical Engineering Department, Technion, Haifa 32000, Israel

In cellular networks, blocking occurs when a base station has no free channel to allocate to a mobile user. One distinguishes between
two kinds of blocking, the first is called new call blocking and refers to blocking of new calls, the second is called handoff blocking and
refers to blocking of ongoing calls due to the mobility of the users. In this paper, we first provide explicit analytic expressions for the
two kinds of blocking probabilities in two asymptotic regimes, i.e., for very slow mobile users and for very fast mobile users, and show
the fundamental differences between these blocking probabilities. Next, an approximation is introduced in order to capture the system
behavior for moderate mobility. The approximation is based on the idea of isolating a set of cells and having a simplifying assumption
regarding the handoff traffic into this set of cells, while keeping the exact behavior of the traffic between cells in the set. It is shown that
a group of 3 cells is enough to capture the difference between the blocking probabilities of handoff call attempts and new call attempts.

1. Introduction

Future wireless networks will provide ubiquitous com-
munication services to a large number of mobile users
[4,16,17]. The design of such networks is based on a cel-
lular architecture [1,3,7,12,19] that allows efficient use of
the limited available spectrum. The cellular architecture
consists of a backbone network with fixed base stations in-
terconnected through a fixed network (usually wired), and
of mobile units that communicate with the base stations via
wireless links. The geographic area within which mobile
units can communicate with a particular base station is re-
ferred to a cell. Neighboring cells overlap with each other,
thus ensuring continuity of communications when the users
move from one cell to another. The mobile units com-
municate with each other, as well as with other networks,
through the base stations and the backbone network. A set
of channels (frequencies) is allocated to each base station.
Neighboring cells have to use different channels in order to
avoid intolerable interferences (we do not consider CDMA
networks). Many dynamic channel allocation algorithms
have been proposed [5,11,20]. These algorithms may im-
prove the performances of the cellular networks. However,
for practical reasons, the channel allocation is usually done
in a static way. In this work, we will consider only fixed
(static) channel assignment.

When a mobile user wants to communicate with another
user or a base station, it must first obtain a channel from
one of the base stations that hears it (usually, it will be
the base station which hears it the best). If a channel is
available, it is granted to the user. In the case that all
the channels are busy, the new call is blocked. This kind
of blocking is called new call blocking and it refers to
blocking of new calls. The user releases the channel under
either of the following scenarios: (i) The user completes
the call; (ii) The user moves to another cell before the
call is completed. The procedure of moving from one cell
to another, while a call is in progress, is called handoff.
While performing handoff, the mobile unit requires that

the base station in the cell that it moves into will allocate
it a channel. If no channel is available in the new cell,
the handoff call is blocked. This kind of blocking is called
handoff blocking and it refers to blocking of ongoing calls
due to the mobility of the users. An example of new call
and handoff call is illustrated in figure 1. The motivation for
studying the new call and handoff blocking probabilities is
that the Quality of Service (QoS) [2,13] in cellular networks
is mainly determined by these two quantities. The first
determines the fraction of new calls that are blocked, while
the second is closely related to the fraction of admitted
calls that terminate prematurely due to dropout. Therefore,
a good evaluation of the measures of performance can help
a system designer to make its strategic decisions concerning
cell size and the number of channel frequencies allocated
to each cell.

In this work we present a model that captures the differ-
ences between new call blocking and handoff blocking. We
consider movements of users along an arbitrary topology
of cells. Under appropriate statistical assumptions, the sys-
tem can be modeled as a multi-dimensional continuous-time
Markov chain. Multi-dimensional Markov chains usually
don’t have a product-form solution and are hard to solve
even numerically due to the explosion of their state-space.
However, we show that in two asymptotic regimes, i.e.,
for very slow mobile users and for very fast mobile users,

New CallHandoff Call

Figure 1. New call and handoff call.
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product-form results prevail. For these regimes, we provide
expressions for the new call blocking and the handoff block-
ing probabilities and show the fundamental differences be-
tween them for fast mobility.

Next, we introduce an approximation approach that
attempts to simplify the solution of the general multi-
dimensional Markov chain. The approximation is based
on the idea of isolating a set of cells and having a simpli-
fying assumption regarding the handoff traffic into this set
of cells. This approach has been used in [6,9,14] where a
single cell is isolated and it is assumed that the handoff at-
tempts into this cell are characterized by a Poisson process.
The rate of the Poisson process is related to various parame-
ters of the system such as blocking probabilities, mobility of
the users, etc. As is shown in [9], when no priority is given
to handoff call attempts over new call attempts, no differ-
ence exists between these call attempts. In other words, due
to the PASTA (Poisson arrivals see time-averages) prop-
erty, the handoff and the new call blocking probabilities
are identical. In the new approximation that we introduce,
we isolate a group of cells and make no approximations
regarding the handoff traffic between the cells in the group.
The handoff traffic into cells of the group from cells outside
the group is approximated by a Poisson process. It will be
shown that a group of three neighboring cells is enough
to differentiate between handoff call attempts and new call
attempts. Thus, the underlying Markov chain won’t be too
complex and results may be easily obtained for any para-
meters of the system.

The paper is organized as follows. In the next section we
describe our model and present the analysis and results for
two asymptotic regimes. In section 3, we present our ap-
proximation and compare it with prior approximations and
with simulations. The last section is devoted to discussion
and open problems.

2. The model

2.1. General user motion

Assumptions
We consider a model in which the users move along

an arbitrary topology of M cells. Each cell has the same
capacity of N channels. In each cell i, new calls are gener-
ated according to an independent Poisson process with rate
λi. Each call holding time Tc, not prematurely dropped, is
assumed to be exponential with mean T c = 1/µ. For a new
call arrival in a cell, if all N channels in that cell are busy
then this arrival is blocked. The fraction of new calls that
are blocked or the new call blocking probability in cell i is
denoted by PBi . The sojourn time of every user in a cell
Thi is assumed to be exponential (see [8] for such kind of
assumption) with mean Thi = 1/(αiγ) ≡ 1/γi, where αi is
a variable depending on i only. The parameter γ represents
the degree of mobility of the users. As users move faster, γ
increases. When a call is attempting a handover from cell i

then with probability pik it is to cell k (
∑
k 6=i pik = 1).

For an on-going call that is attempting handover to another
cell, if all N channels in the other cell are busy, then this
call is dropped. We denote by PHik the handoff blocking
probability which is the probability of dropout for a call
given that this call is attempting handover from cell i to
cell k. We denote by PTi the forced termination probabil-
ity which is the probability that a call of an admitted user
in cell i will terminate due to dropout.

Channel occupancy and blocking probabilities
The above model may be described by an M -dimens-

ional continuous-time Markov chain (CTMC). This is be-
cause arrivals of new calls are distributed according to in-
dependent Poisson processes, the length of a call is distrib-
uted according to a negative exponential distribution and
the time that a user stays in a cell is also distributed ac-
cording to a negative exponential distribution. A simple
example of the CTMC for M = 2, N = 3, γ1 = γ2 = γ

and λ1 = λ2 = λ is shown in figure 2.
To describe the chain we define the vector ~n:

~n
4
= (n1,n2, . . . ,nM ).

Let E(~n) represent the state where there are n1 active users
in cell 1, n2 active users in cell 2, . . ., nM active users in
cell M . For all i, we have 0 6 ni 6 N since there are
N channels in each cell. The transitions between the states
E(~n) correspond to transitions of a continuous-time Markov
chain. We denote by π(~n) the steady-state probability to
find the system in state E(~n). We introduce the following
notations:

• ~n(i)
a

4
= (n1,n2, . . . ,ni + a, . . . ,nM ),

• δ(i) 4=

{
1, ni > 0,
0, ni = 0,

• β(i) 4=

{
1, ni < N ,
0, ni = N.
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Figure 2. A Markov chain describing 2 cells with 3 channels.
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For any ~n the continuous-time Markov chain satisfies
the following equilibrium equation:

π(~n)
M∑
i=1

λiβ
(i) + π(~n)

M∑
i=1

ni(µ+ γi)

=
M∑
i=1

λiδ
(i)π
(
~n(i)
−1

)
+

M∑
i=1

δ(i)
M∑
k=1

(nk + 1)pkiγkβ
(k)π
(
~n(i,k)
−1,+1

)
+

M∑
i=1

(
1− β(i)

) M∑
k=1

(nk + 1)pkiγkβ(k)π
(
~n(k)

+1

)
+

M∑
i=1

(ni + 1)µβ(i)π
(
~n(i)

+1

)
. (1)

The steady-state probabilities π(~n) must also satisfy the
normalization condition∑

n1,n2,...,nM

π(~n) = 1 . (2)

The left-side of eq. (1) represents the rate of departures from
state E(~n). Departures from state E(~n) may occur either
when a new call is admitted into the system or when a call
leaves a cell (because of handoff or because a call has been
completed). The right-side of eq. (1) represents the rate
of arrivals into state E(~n). Transitions to state E(~n) may
occur from state E(~n(i)

−1) (ni 6= 0) when a new call arrives

at cell i, or from state E(~n(i,k)
−1,+1) (ni 6= 0, nk 6= N ) when

a successful handoff from cell k to cell i happens, or from
state E(~n(k)

+1) (ni = N , nk 6= N ) when an unsuccessful

handoff from cell k to cell i happens, or from state E(~n(i)
+1)

(ni 6= N ) when a call has been completed in cell i.
We obtain the following expressions for PBi and for

PHki :

PBi =
∑

n1,n2,...,ni−1,ni+1,...,nM

× π(n1,n2, . . . ,ni−1,N ,ni+1, . . . ,nM ), (3)

PHki =

( ∑
n1,n2,...,ni−1,ni+1,...,nM

nk

× π(n1,n2, . . . ,ni−1,N ,ni+1 . . . ,nM )

)
×

( ∑
n1,n2,...,nM

nkπ(n1,n2, . . . ,nM )

)−1

. (4)

Eq. (3) is based on the fact that Poisson arrivals see time
averages (PASTA). The probability that a new call that ar-
rives at cell i will be blocked is equal to the sum of all
the steady-state probabilities π(~n) with ni = N . Eq. (4)
for PHki represents the ratio of the rate of unsuccessful
handoffs attempts from cell k to cell i to the total rate of
handoff attempts from cell k to cell i (the factor pkiγk, ap-

pearing both in the numerator and in the denominator, was
cancelled).

Unfortunately, the above Markov chain does not have
a product-form solution. Yet, in the next section we will
show that exact analytical results can be obtained in two
asymptotic regimes – slow mobility and fast mobility.

2.2. Asymptotic regimes

Very slow mobility
When users move very slowly, γ tends to zero. In this

case, we obtain from eq. (1) the following equilibrium equa-
tion:

π(~n)
M∑
i=1

λiβ
(i) + π(~n)

M∑
i=1

niµ

=
M∑
i=1

λiδ
(i)π
(
~n(i)
−1

)
+

M∑
i=1

(ni + 1)µβ(i)π
(
~n(i)

+1

)
. (5)

From eq. (5), we see that there is no interaction between the
cells. Therefore the distribution of the number of users in
each cell corresponds to an M/M/N/N queue. Let πi(ni)
be the marginal probability to find ni users in cell i. Then

πi(ni) =

ρ
ni
i

ni!∑N
j=0

ρji
j!

,

where ρi
4
= λi/µ is the offered load in cell i.

Now we can derive an expression for the probability
π(~n) to find the system in state E(~n):

π(~n) =
M∏
i=1

πi(ni) =
M∏
i=1

ρ
ni
i

ni!∑N
j=0

ρji
j!

. (6)

Substituting eq. (6) in eqs. (3) and (4) we obtain the fol-
lowing expressions for PBi and PHki :

PBi =
∑

n1,n2,...,ni−1,ni+1,...,nM

πi(N )
N∏
j=1
j 6=i

πj (nj)

= πi(N ) =
ρNi
N !∑N
j=0

ρji
j!

, (7)

PHki =

∑
n1,n2,...,ni−1,ni+1,...,nM

nkπi(N )
M∏
j=1
j 6=i

πj(nj)

∑
n1,n2,...,nM

nk

M∏
j=1

πj(nj)

= πi(N ) =
ρNi
N !∑N
j=0

ρji
j!

, (8)
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and we conclude that for very slow mobility environment
PHki = PBi . This result may be explained by the fact
that in this environment the cells are statistically quasi-
independent.

The ratio γi/(µ + γi) is the probability that a call will
need to perform one handoff. In the very slow mobility
regime, the probability that a call will need to perform
more than one hand-off is negligible. Thus, as long as this
probability is very small, i.e., γi/(µ + γi) � 1, we can
approximate the blocking probabilities by the expression
given by eq. (7) (or eq. (8) which is identical). Besides
that, using eq. (8), we obtain the following approximation
for PTi in the very slow mobility environment:

PTi ≈
γi

µ+ γi

M∑
k=1

pikPHik ≈
γi

µ

M∑
k=1

pik

ρNk
N !∑N
j=0

ρjk
j!

. (9)

Very fast mobility
When users move very rapidly, γ tends to infinity. Intu-

itively, we note that in this case there may not be (except for
very short periods) more than N users in the network. Let
us, first, consider the case of two cells with N = 1 channel
in each cell. Suppose that at a given moment both chan-
nels are occupied. Very soon after this moment a handoff
will occur, since users move very fast. This handoff will of
course be unsuccessful and thus only one active user will
stay in the network. In the more general case, suppose that
there are N + 1 users in the network. Then, since the users
move very quickly, almost instantaneously one of the users
will attempt handover to a cell whose N channels are occu-
pied by the N other users. Since there are only N users in
the network, a very large number of handoff attempts suc-
ceed. Therefore, a handoff failure is a very rare event and
the handoff blocking probability tends to zero (this intuition
is formally proved below). However, as we will show, the
new call blocking probability does not tend to a zero value
in the very fast mobility environment.

We establish now the steady-state probabilities π(~n) in
the very fast mobility environment. Eq. (1) may be rewrit-
ten as follows:

π(~n)
M∑
i=1

λiβ
(i) + π(~n)

M∑
i=1

niµ

−
M∑
i=1

λiδ
(i)π
(
~n(i)
−1

)
−

M∑
i=1

(ni + 1)µβ(i)π
(
~n(i)

+1

)
+ γ

[
π(~n)

M∑
i=1

niαi

−
M∑
i=1

δ(i)
M∑
k=1

(nk + 1)pkiαkβ(k)π
(
~n(i,k)
−1,+1

)
−

M∑
i=1

(
1− β(i)

) M∑
k=1

(nk + 1)pkiαkβ
(k)π
(
~n(k)

+1

)]
= 0. (10)

In the limit, when γ → ∞, the expression between the
squared brackets in eq. (10) is equal to 0:

π(~n)
M∑
i=1

niαi

−
M∑
i=1

δ(i)
M∑
k=1

(nk + 1)pkiαkβ(k)π
(
~n(i,k)
−1,+1

)
−

M∑
i=1

(
1− β(i)

) M∑
k=1

(nk + 1)pkiαkβ
(k)π
(
~n(k)

+1

)
= 0. (11)

First we consider the cases that ` < N , where `
4
=∑M

i=1 ni . For such `’s, eq. (11) is simplified to

π(~n)
M∑
i=1

niαi −
M∑
i=1

δ(i)
M∑
k=1

(nk + 1)pkiαkπ
(
~n(i,k)
−1,+1

)
= 0, (12)

because a transition to state E(~n) due to failure in handoff
is not possible.

We claim that the solution of eq. (12), for a vector ~n
with

∑M
j=1 nj = `, is given by

π(~n) = π`
`!∏M

j=1 nj!

M∏
j=1

(Pj)nj , (13)

where the quantities Pi (1 6 i 6 M ) are determined via
the following equations:

Piαi =
M∑
k=1

pkiαkPk for 1 6 i 6M , (14)

with the normalization condition

M∑
i=1

Pi = 1. (15)

The quantity Pi can be interpreted as the steady-state prob-
ability to find a user in cell i. The left-side of eq. (14) can
be understood as the rate of departures of a user from cell
i and the right-side of eq. (14) as the rate of arrivals of a
user to cell i, where the factor γ appearing in both sides of
eq. (14) was cancelled. Summing (13) over A` where

A`
4
=

{
n1,n2, . . . ,nM |

M∑
i=1

ni = `

}

and using eq. (15), we obtain that
∑
A`
π(~n) = π`. There-

fore, we note that π` is the steady-state probability to find
` users in the network. These probabilities will be deter-
mined later.

To show the correctness of the claim, i.e., that (13) in-
deed satisfies eq. (12), we substitute it into the left-side of
eq. (12) and using eq. (14), we obtain
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π`
`!∏M

j=1 nj!

M∏
j=1

(Pj)nj
M∑
i=1

niαi

− π`
`!∏M

j=1 nj!

M∏
j=1

(Pj)nj
M∑
i=1

δ(i)
M∑
k=1

pkiαkni
Pk

Pi

=

(
π`

`!∏M
j=1 nj!

M∏
j=1

(Pj)
nj

)

×

(
M∑
i=1

niαi −
M∑
i=1

niαi

)
= 0.

Therefore, (13) satisfies the equilibrium equations when
` < N .

We examine now the cases where ` > N . We will show
that π`, the steady-state probability to find ` users in the
network, tends to 0 for ` > N . We define E` as the state
where there are ` users in the network. In the situation
of statistical equilibrium the rate of transitions from EN to
EN+1 is equal to the rate of transitions from EN+1 to EN .
The rate of transitions from EN to EN+1 is given by∑

AN

π(~n)
M∑
i=1

λiβ
(i). (16)

These transitions are due to new calls which are accepted
in the system.

The rate of transitions from EN+1 to EN is∑
AN+1

(N + 1)µπ(~n)

+ γ
∑
AN+1

π(~n)
M∑
i=1

(
1− β(i)

) M∑
k=1

pkiαk. (17)

These transitions are due to calls which leave the system
because they have been completed or because they have
experienced an unsuccessful handoff.

The equality between expressions (16) and (17), and the
fact that γ tends to infinity imply that

π(~n)
M∑
i=1

(
1− β(i)) M∑

k=1

pkiαk → 0, ~n ∈ AN+1. (18)

Without loss of the generality, let cell 1 and cell 2 be such
that p21 6= 0. From (18), we have π(N , 1, 0, . . . , 0) → 0.
From eq. (11) it is clear that

π(~n)
M∑
i=1

niαi → 0

⇒
M∑
i=1

δ(i)
M∑
k=1

(nk + 1)pkiαkβ(k)π
(
~n(i,k)
−1,+1

)
→ 0. (19)

Substituting π(~n) = π(N , 1, 0, . . . , 0) in (19) we obtain
π(N − 1, 2, 0, . . . , 0)→ 0. Substituting π(~n) = π(N − 1, 2,
0, . . . 0) in (19) we see that π(N −2, 3, 0, . . .0)→ 0 and so
on. So for all n1, N > n1 > 0, we have π(n1,N + 1−n1,
0, . . . , 0)→ 0.

Clearly, there is a cell, say cell 3, such that either p31 6= 0
or p32 6= 0. If p32 6= 0 then beginning with π(n1,N +
1 − n1, 0, . . . , 0) → 0 and using N + 1 − n1 − n2 times
the implication of (19), we have π(n1,n2,N + 1 − n1 −
n2, 0, . . . , 0) → 0. If p31 6= 0 then beginning with π(N −
n2 +1,n2, 0, 0, . . . , 0)→ 0 and using N+1−n2−n1 times
the implication of (19), we have π(n1,n2,N + 1 − n1 −
n2, 0, . . . , 0)→ 0. Using the same procedure we obtain that
for all ~n ∈ AN+1, we have π(~n) → 0. Thus, πN+1 → 0
since for all ~n ∈ AN+1, π(~n) → 0. Clearly, the rate of
transitions from EN+1 to EN+2 tends to zero, therefore
πN+2 → 0. With the same argument, it can be concluded
that for all ` > N + 1 we have π` → 0.

We can now determine π(~n) for ~n ∈ AN . We have
shown that for all ~n ∈ AN , β(k)π(~n(k)

+1)→ 0 and thus

M∑
i=1

(
1− β(i)

) M∑
k=1

(nk + 1)pkiαkβ
(k)π
(
~n(k)

+1

)
→ 0.

We conclude that for all ` 6 N , eq. (11) reduces to eq. (12)
and that eq. (12) is satisfied by

π(~n) = π`
`!∏M

j=1 nj!

M∏
j=1

(Pj)nj .

The steady-state probabilities π` to find the network in
state E`, that is, there are ` calls in progress in the system,
are determined by considering a simple birth-death process.
The equilibrium equation of this birth-death process is

Λπ` = (`+ 1)µπ`+1, 0 6 ` 6 N − 1, (20)

where Λ
4
=
∑M
i=1 λi is the total rate of arrivals in the sys-

tem. The left-side of eq. (20) represents the rate of transi-
tions from state E` to state E`+1. Such transitions are due
to new arrivals in the system. The right-side of eq. (20)
represents the rate of transitions from state E`+1 to state
E`. Such transitions occur when users complete their calls
and thus leave the system. Solving eq. (20) together with
the normalizing condition

∑N
`=0 π` = 1, we obtain

π` =

Λ`

µ``!∑N
i=0

Λi

µii!

. (21)

The final expression for π(~n) is then obtained by substitut-
ing eq. (21) into eq. (13):

π(~n) =

Λ`

µ`∑N
j=0

Λj

µjj!

∏M
j=1 nj!

M∏
j=1

(Pj)nj

for 0 6 ` 6 N. (22)

The derivation of the new call blocking probability at
cell i, PBi , is now straightforward:

PBi =
∑

n1,n2,...,ni−1,ni+1,...,nM

× π(n1,n2, . . . ,ni−1,N ,ni+1, . . . ,nm)
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= π(0, 0, . . . , 0,N , 0, . . . , 0) + 0

=

ΛN

µNN !∑N
j=0

Λj

µjj!

(Pi)
N . (23)

We observe that the blocking probability PBi is strictly
positive. The handoff blocking probability,

PHki =

( ∑
n1,n2,...,ni−1,ni+1,...,nM

nk

× π(n1,n2, . . . ,ni−1,N ,ni+1 . . . ,nM )

)
×

( ∑
n1,n2,...,nM

nkπ(n1,n2, . . . ,nM )

)−1

,

tends, as expected, to 0 because for all nk > 1,

π(n1, . . . ,ni−1,N ,ni+1 . . . ,nM )→ 0.

This shows a fundamental difference between the new call
blocking probability and the handoff blocking probability
in the very fast mobility regime.

We learnt recently that a similar result has been pre-
sented in [18].

2.3. Homogeneous traffic systems

Motivation
The goal of this section is to present special results for

homogeneous traffic systems, including the forced termina-
tion probability PT . Note that the computation of PT for
non-homogeneous systems is still an open problem. First,
we give the mathematical definitions to homogeneous traf-
fic systems. Then, using the results of section 2.2, we
compute the blocking probabilities in the two asymptotic
regimes. The computation of PT in the very fast mobility
regime can be carried due to the fact that in homogeneous
traffic systems we have Pi = 1/M for all i, as is shown in
the sequel.

Definitions
We will say that the traffic is homogeneous when: (i)

the rate of new call arrivals is identical in each cell, and
(ii) the rate of handoff arrivals and departures are equal
and identical in each cell. Mathematically, conditions (i)
and (ii) can be formulated as follows:

λi = λ ∀i, (24)

γi = γ ∀i, (25)
M∑
k=1

pki = 1 ∀i. (26)

Since the homogeneous traffic system is only a particular
case of the general model, it is described by the same M -
dimensional continuous-time Markov chain that has been
introduced in section 2.1.

µλ

λ µ

γ/2

γ/2

γ/2
γ/2

γ/2
γ/2

Figure 3. A ring with 10 cells.

An example of a system with homogeneous traffic con-
sists of a ring of M cells (see figure 3).

New calls are generated according to a Poisson process
with rate λ in each cell. The sojourn time of every user in
a cell Th is exponential with mean Th = 1/γ. A call may
attempt handover to its left neighbor with probability p and
to its right neighbor with probability 1−p (in figure 3, p =
0.5). Each call holding time Tc, not prematurely dropped,
is assumed to be exponential with mean T c = 1/µ. It is
trivial to see that this model satisfies conditions (24), (25)
and (26).

Blocking probabilities
(i) Very slow mobility regime. In the very slow mobility

regimes, we obtain from eq. (6)

π(~n) =
M∏
i=1

πi(ni) =
M∏
i=1

ρni

ni!∑N
j=0

ρj

j!

, (27)

where ρ
4
= λ/µ is the offered load which is identical for

each cell. The expressions for PBi and for PHki are derived
in the same manner as in section 2.1:

PBi =
∑

n1,n2,...,ni−1,ni+1,...,nM

πi(N )
N∏
j=1
j 6=i

πj (nj)

= πi(N ) =
ρN

N !∑N
j=0

ρj

j!

, (28)

PHki =

∑
n1,n2,...,ni−1,ni+1,...,nM

nkπi(N )
M∏
j=1
j 6=i

πj(nj)

∑
n1,n2,...,nM

nk

M∏
j=1

πj(nj)

= πi(N ) =
ρN

N !∑N
j=0

ρj

j!

, (29)
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and we conclude that for very slow mobility environment
PHki = PBi , as in the general system. Furthermore, the
blocking probabilities do not depend on i and k.

(ii) Very fast mobility regime. In the homogeneous traffic
system, the steady-state probability Pi that a user is in cell
i can be easily found. First, we recall eqs. (14) and (15):

Pi =
M∑
k=1

pkiPk, for 1 6 i 6M ; (30)

M∑
i=1

Pi = 1. (31)

We define the transition matrix B as consisting of elements
pik , that is,

B = [pik]. (32)

Moreover, if we define the vector p = [P1,P2, . . . ,PM ],
eq. (30) may be rewritten:

p = Bp . (33)

The matrix B is a double-stochastic matrix due to condi-
tion (26) and due to the fact that

∑M
k=1 pik = 1 is always

true. The unique solution to eqs. (33) and (31) is therefore

Pi =
1
M

for 1 6 i 6M . (34)

Now, we can obtain, from eqs. (22) and (34), the steady-
state probabilities π(~n) in the very fast mobility regime:

π(~n) =

Λ`

µ`∑N
i=0

Λi

µii!

∏M
j=1 nj!

(
1
M

)`
for 0 6 ` 6 N , (35)

where

Λ
4
=

M∑
i=1

λi = Mλ and `
4
=

M∑
i=1

ni.

For ` > N , π(~n) = 0. The new call blocking probability
PBi ≡ PB is identical for each cell:

PB =

ΛN

µNN !∑N
i=0

Λi

µii!

(
1
M

)N
. (36)

The handoff blocking probability tends to zero, as in the
general traffic system.

Forced termination probability
(i) Very slow mobility regime. We recall that the general

expression for PTi , in the very slow mobility regime, is

PTi ≈
γi

µ

M∑
k=1

pikPBk . (37)

By substituting conditions (25) and (26) and eq. (28) for
PBk (all valid for homogeneous traffic systems) in eq. (37),
we derive the following approximation for PTi :

PTi ≈
γ

µ

ρN

N !∑N
j=0

ρj

j!

. (38)

We conclude that for very slow mobility, PTi does not de-
pend on i.

(ii) Very fast mobility regime. Let π′k be the probabil-
ity that a new admitted call finds the system with k other
active users. Let PDk+1 be the probability that a call will
prematurely finish given that there are k + 1 active users
(including the new one) in the system. This probability
is the same at any point of time due to the memoryless
property of the distribution of the calls length. We note,
also, that PDk+1 is identical for a new call and for older
calls since all the calls are identical (each user can be in
each cell with the same probability). Thus, in the very fast
mobility regime PTi ≡ PT does not depend on i. PT may
be expressed in the following way:

PT =
N∑
k=0

π′kPDK+1 . (39)

The probability π′k that an admitted user will find k other
active users in the system is found as follows. First, we
denote by A the event that a user is admitted. We have

P (A|k) = 1 for k = 0, 1, 2, . . . ,N − 1, (40)

P (A|N ) = 1−

(
1
M

)N
, (41)

where eq. (41) may be understood in the way that when
there are N users in the system, a new call may be blocked
in a specific cell only if at the same time all the N users are
in the same cell. Second, using Bayes theorem, we obtain

π′k = P (k|A) =
P (A|k)πk
P (A)

. (42)

Last, substituting P (A) = (1− PB) in eq. (42), we obtain

π′k =
πk

1− PB
for k = 0, 1, 2, . . . ,N − 1, (43)

π′N =
πN − PB
1− PB

. (44)

PDK is found with the following recursive equations:

PD1 =

(
Λ

Λ+ µ

)
PD2 , (45)

PDk =

(
Λ

Λ+ kµ

)
PDk+1 +

(
(k − 1)µ
Λ+ kµ

)
PDk−1

for N > k > 1, (46)

PDN =

(
Λ′

Λ′ +Nµ

)
PDN+1

+

(
(N − 1)µ
Λ′ +Nµ

)
PDN−1 , (47)
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PDN+1 =
1

N + 1
+

N

N + 1
PDN , (48)

where Λ
4
= Mλ and

Λ′
4
= Mλ

(
1−

(
1
M

)N)
.

The left-side of eq. (46), PDk , represents the probability
that a user (say user X) will be forced to terminate its call
before its natural completion, given that there are a total of
k users in the system. This probability is equal to the sum
of the following probabilities (right-side of eq. (46)): (i)
the probability that a user establishes a new call before any
of the k active users being in the system has completed its
call and then with probability PDk+1 user X will terminate
prematurely, and (ii) the probability that one of the k −
1 other active users will complete its call before user X
and before any user establishes a new call, and then with
probability PDk−1 user X will terminate prematurely (when
K = 1, this probability is of course zero, thus eq. (45)), (iii)
the probability that user X will complete its call before any
of the k − 1 other active users in the system and before a
new call is established. Then, since user X has successfully
completed its call, the probability of forced termination for
it is, of course, zero.

Concerning eq. (47) we note that when there are N users
in the system, the rate of arrivals of new users in the system
is only

Λ

(
1−

(
1
M

)N)
since, as explained previously, a fraction (1/M )N of new
calls is blocked. We know from the analysis of the previous
section that when there areN+1 users in the system, one of
them will fail instantaneously in a handoff attempt. Since
each user can initially be in each cell with the same prob-
ability, each one has the same probability to fail. Eq. (48)
states that with probability 1/(N+1) user X will encounter
a forced termination and with probability N/(N+1) it will
be forced to terminate with probability PDN .

Claim 1. For k 6 N , PDk is related to PD1 by the follow-
ing relation:

PDk =
PD1

Λk−1

k−1∑
i=0

(k − 1)!
(k − 1− i)!

Λk−i−1µi. (49)

Proof. By induction (see appendix A). �

From eqs. (47)–(49) we have

PDN+1 =
(Λ′ +Nµ)PDN − (N − 1)µPDN−1

Λ′
,

PDN+1 =
1

N + 1
+

N

N + 1
PDN ,

PDN =
PD1

ΛN−1

N−1∑
i=0

(N − 1)!
(N − 1− i)!

ΛN−1−iµi,

PDN−1 =
PD1

ΛN−2

N−2∑
i=0

(N − 2)!
(N − 2− i)!

ΛN−2−iµi,

and we obtain the following expression for PD1 :

PD1 =Λ′

(
[Λ′ + (N + 1)Nµ]

N−1∑
i=0

AN−1
i ξi

− (N + 1)(N − 1)µ
N−2∑
i=0

AN−2
i ξi

)−1

, (50)

where Anp = n!/(n− p)! and ξ = µ/Λ.
Thus, given the parameters λ, µ, N and M , the value

of PT is calculated using eqs. (50), (49), (48), (44), (43)
and (39).

Comparison with a special case
In [10] a special case where N=1 and M = 2 was ana-

lyzed (2 cells with one channel each). In this case analytical
expressions are provided, for any γ, for PB , PH and PT :

PB =

(
ρ+

ρ2

1 + Γ

)
1

1 + 2ρ+ ρ2

1+Γ

, (51)

PH =

ρ2

1+Γ

ρ+ ρ2

1+Γ

, (52)

PT =
1

1 + 1
ΓPH

, (53)

where ρ
4
= λ/µ and Γ

4
= γ/µ. When γ tends to zero, we

obtain

lim
γ→0

PB =
ρ

1 + ρ
, (54)

lim
γ→0

PH =
ρ

1 + ρ
. (55)

It is easy to see that eqs. (54) and (55) are respectively
identical to eqs. (28) and (29). When γ tends to infinity,
we obtain

lim
γ→∞

PB =
ρ

1 + 2ρ
, (56)

lim
γ→∞

PH = 0, (57)

lim
γ→∞

PT =
ρ

1 + ρ
. (58)

Eq. (56) is identical to eq. (36) when N = 1. Eq. (57)
tends to zero, as expected, for large values of γ. From
eq. (50) we have PT1 = ρ/(2 + ρ). Using eqs. (49), (48),
(44), (43) and (39), we obtain PT = ρ/(1 + ρ) which is
equal to eq. (58).
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3. An approximation

3.1. Motivation and model

Since the state-space of the problem under consideration
is very large even for moderate values for the number of
cells M and the number of channels N , one has to resort
to approximations in order to obtain results for interme-
diate mobility regimes. The approach presented in [9] to
approximate the blocking probabilities is based on isolating
a single cell and approximating the handoff traffic into this
cell. Our analysis of the asymptotic regime of very fast
users showed that PB and PH behave differently. The goal
of our approximation is to capture as much as we can of this
difference. To that end, instead of trying to isolate a single
cell as in [9], we suggest to isolate a group of neighboring
cells (see figure 4).

For simplicity, we consider movements of users along a
topology of cells arranged as a ring (beltway). The new call
arrivals follow an independent Poisson process with rate λ
in each cell, the call holding time is distributed exponen-
tially with mean 1/µ. The sojourn time of every user in a
cell is assumed to be exponential with mean 1/γ. A call
may attempt handover to its left neighbor with the same
probability as to its right neighbor. Due to the symmetry
of the network we have for each cells i and k, PTi ≡ PT ,
PBi ≡ PB and PHik ≡ PH . The approximation assump-
tion regarding the handoff traffic is imposed only at the
boundaries of the isolated group. Thus, for a ring network,
the boundaries consist of two cells, the rightmost cell and
the leftmost cell of the group. We assume that the handoff
traffic into each of these cells from cells that are not in the
group is characterized by an independent Poisson process
with mean λh/2 where λh is determined in the following
way. The average rate at which new calls are carried in
each cell is λ(1 − PB). The probability that an accepted
call will attempt one handoff is Pr = γ/(µ+γ) . The prob-
ability that an accepted call will attempt a second handoff
is P 2

r (1 − PH ). The probability that an accepted call will
attempt a kth handoff is P kr (1− PH )k−1. Thus,

λh = λ(1− PB)
∞∑
k=1

P kr (1− PH )k−1

=
Pr(1− PB)

1− Pr(1− PH )
λ. (59)

We give, next, the set of nolinear equations which, together
with eq. (59), allow us to give an approximation for PH
and PB .

The group of neighboring cells that we consider consists
of K cells. Cell 1 and cell K are respectively the leftmost
cell and the rightmost cell of the group. The external hand-
off traffic flows to these two cells. We define the vector ~n:

~n
4
= (n1,n2, . . . ,nK).

We define the set R: R
4
= {1,K}. Let E(~n) represent the

state where there are n1 active users in cell 1, n2 active

λ µλ µλ µ

h

h

γ/2 γ/2 γ/2
γ/2γ/2γ/2

λ /2

λ /2

Figure 4. An “isolated” group of 3 cells.

users in cell 2, . . ., nK active users in cell K. For all i,
we have 0 6 ni 6 N since there are N channels in each
cell. The transitions between the states E(~n) correspond
to transitions of a continuous-time Markov chain. This
is because arrivals of new calls in each cell and arrival
of handoff traffic in the cells situated at the boundary of
the group are distributed according to independent Poisson
processes, the length of a call is distributed according to a
negative exponential distribution and the time that a user
stays in a cell is also distributed according to a negative ex-
ponential distribution. We denote by π(~n) the steady-state
probability to find the system in state E(~n). For any ~n,
the continuous-time Markov chain satisfies the following
equilibrium equation:

K∑
i=1

λβ(i)π(~n) +
∑
i∈R

λh

2
β(i)π(~n) +

K∑
i=1

ni(µ+ γ)π(~n)

=
K∑
i=1

λδ(i)π
(
~n(i)
−1

)
+
∑
i∈R

λh

2
δ(i)π

(
~n(i)
−1

)
+

K∑
i=1

δ(i)
K∑
k=1

(nk + 1)pkiγβ(k)π
(
~n(i,k)
−1,+1

)
+

K∑
i=1

(
1− β(i)

) K∑
k=1

(nk + 1)pkiγβ(k)π
(
~n(k)

+1

)
+

K∑
i=1

(ni + 1)µβ(i)π
(
~n(i)

+1

)
+
∑
i∈R

(ni + 1)
γ

2
(1− β(i))π

(
~n(i)

+1

)
, (60)

where

pki =

{
1/2, for |i− k| = 1,
0, otherwise.

The steady-state probabilities π(~n) must also satisfy the
normalization condition∑

n1,n2,...,nK

π(~n) = 1 . (61)

Eq. (60) is very similar to eq. (1). The left-side of (60) rep-
resents the rate of departures from the state E(~n). Depar-
tures may occur either when a new call is admitted into the
system, or when a call leaves a cell (because of handoff or
because a call has been completed), or when an handoff call
is admitted in one of the two extreme cells. The right-side
of (60) represents the rate of arrivals into state E(~n). Tran-
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sitions to state E(~n) may occur from state E(~n(i)
−1) (ni 6= 0)

when a new call arrives at cell i, or from state

E
(
~n(i)
−1

)
(i ∈ R, ni 6= 0)

when a handoff call arrives, or from state

E
(
~n(i−1,i)
−1,+1

)
(i > 2, ni−1 6= 0, ni 6= N )

(resp. E(~n(i−1,i)
+1,−1 ) (i > 2, ni−1 6= N , ni 6= 0)) when a

successful handoff from cell i (resp. i − 1) to cell i − 1
(resp. i) happens, or from state

E
(
~n(i)

+1

)
(i > 2, ni−1 = N , ni 6= N )

(resp. E(~n(i−1)
+1 ) (i > 2, ni−1 6= N , ni = N )) when an

unsuccessful handoff from cell i (resp. i− 1) to cell i− 1
(resp. i) happens, or from state E(~n(i)

+1) (ni 6= N ) when

a call has been completed in cell i, or from state E(~n(i)
+1)

(i ∈ R, ni 6= N ) when a call makes a handoff from an
extreme cell of the group to the exterior of the group.

The new call blocking probability experimented by users
in the cell located at the middle of the group, i.e., cell dK2 e,
serves to approximate PB . Thus,

PB =
∑

n1,n2,...,n
dK2 e−1

,n
dK2 e+1

,...,nK

× π(n1,n2, . . . ,ndK2 e−1,N ,ndK2 e+1, . . . ,nK) . (62)

The handoff blocking probability experimented by users
moving from cell dK2 e to cell dK2 e+1 serves to approximate
PH . Thus,

PH =

( ∑
n1,n2,...,n

dK2 e
,n
dK2 e+2

,...,nK

ndK2 e

× π(n1,n2, . . . ,ndK2 e,N ,ndK2 e+2, . . . ,nK)

)
×

( ∑
n1,n2,...,nK

ndK2 e
π(n1,n2, . . . ,nK)

)−1

. (63)

Eqs. (59)–(63) form a set of simultaneous nonlinear equa-
tions which can be solved for system variables when para-
meters are given. For example given λ, µ, γ and N , the
quantities PB , PH and π(~n) can be considered unknown.
Beginning with an initial guess for PB , PH and π(~n), the
equations may be solved numerically using the method of
successive substitution. The forced termination probabil-
ity PT is approximated in the following way. The prob-
ability that an accepted call will fail at its first handoff
is PrPH . The probability that an accepted call will fail
at its second handoff is PrPHPr(1 − PH ) (to attempt a
second handoff, a call should have succeeded in its first
handoff). The probability that an accepted call will at-
tempt a kth handoff and then fail is PrPHP k−1

r (1−PH)k−1.
Thus,

PT = PrPH

∞∑
k=0

P kr (1− PH )k

=
PrPH

1− Pr(1− PH )
. (64)

Therefore, once PH is determined, the forced termination
probability PT is calculated using (64). To estimate the
blocking probabilities, we have chosen to focus on cells
located at the middle of the group since their statistical
behaviors are expected to be the closest to the statistical
behavior of the cells in the exact model.

3.2. Numerical results

Size of the group of isolated cells
It is clear that the new approximation may be of inter-

est only if the number of isolated cells is small. Figure 5
shows that no more than one cell is needed to be isolated
in order to obtain an approximation to the new call block-
ing probability. However, concerning the handoff blocking
probability and the forced termination probability a group
of two cells is needed (see figures 6 and 7). In these cases,
there is a difference of about 10% between the results ob-
tained by isolating a single cell and the results obtained by
isolating a group of K = 2 cells. Figures 5, 6 and 7 all
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Figure 5. PB vs load: Comparison between different numbers of isolated
cells.
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Figure 6. PH vs load: Comparison between different numbers of isolated
cells.
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Figure 7. PT vs load: Comparison between different numbers of isolated
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Figure 8. PB vs load: Comparison between the approximated and the
simulated results.

show that there is almost no difference between a group of
two cells and a group of three cells. We come to the con-
clusion that choosing a value of K = 2 or K = 3 allows
fast solution of the above equations. This also enables to
distinguish between the new call blocking and the handoff
blocking probabilities.

Validation of the approximation
The approximation needs to be validated by comparing

approximated results with exact results. In figures 8 and 9
we consider a ring of M = 7 cells with N = 7 channels
in each cell. The rate of handover is γ = 5. Figure 8
shows the new call blocking probability PB versus the load
in each cell for our approximation (3 cells isolated), for
the approximation of [9] (1 cell isolated) and for results
obtained by simulation. We see that both approximations
are very accurate. However, as one can see from figure 9,
our approximation to PT is better than the approximation
of [9]. We considered also the case of a small network of
4 cells with 4 channels. The new calls arrival rate λ is 0.5
and the rate of call completion is µ = 1. The load ρ = λ/µ
is thus 0.5 Erlang. The exact results were calculated from
eqs. (1)–(4).
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Figure 9. PT vs load: Comparison between the approximated and the
simulated results.
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Figure 10. PB and PH vs γ: Comparison between the approximated and
the exact results.

Figure 10 shows the blocking probabilities PB and PH
versus γ for the two approximation approaches and for the
exact results. The new approximation which distinguishes
between the two kinds of blocking leads to a better accuracy
than the approximation of [9], especially for the quantity
PH . One can see that our approximation is very good up
to moderately high values of γ. From eq. (7), one obtains
that the blocking probabilities in the very slow mobility
regime are 0.00158. From figure 10, we see that as long
as γ/(µ + γ) � 1 (i.e., γ < 0.1), the blocking probabil-
ities can be approximated by this value. We observe that
as γ increases towards high values, both approximations
become less accurate. However, our approximation is al-
ways closer to the accurate model than that of [9]. When
γ tends to very high values, PT tends to 1 and PB tends
to 0 for both approximations, while in the accurate model
PT tends to 9.5× 10−2 and PB tends to 3.7× 10−4. Our
approximation is therefore validated except in the case of
very small networks with very fast moving users.

4. Discussion and open problems

This paper has demonstrated that the usual assumptions
made in the literature which do not differentiate between
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the new call blocking probability and the handoff blocking
probability may be incorrect. As we have seen, the dif-
ference between the two kinds of blocking is particularly
significant when the users move fast (or when the cells are
very small), namely, γ � µ and γ � λ. Our numerical re-
sults show that if γ is larger than µ by at least three orders
of magnitude, the blocking probabilities can be approxi-
mated by the expressions derived for the very fast mobility
regime.

From eqs. (23) and (39), it may easily be shown that
for fast users as the number of cells increases, the value
of PB decreases to very low values and the value of PT
is approaching 1. For example, if we consider a ring of
20 cells with 4 channels in each cell and a load of 0.5
Erlang in each cell, the value of PT tends to 0.64 and
the value of PB tends to 4.04 × 10−6, when γ tends to
infinity. If we make the reasonable conjecture that the
difference between PB and PH is an increasing monotic
function of γ, the difference between them is bounded to
4.04 × 10−6. Therefore, as was noted also in [15], the
models considering handoff traffic as a Poisson process are
reasonable when dealing with homogeneous traffic between
a large number of cells. The new approximation approach
that we have introduced in the previous section will always
yield a better accuracy. Nevertheless, when considering
networks with a small number of cells or networks with
non-homogeneous traffic, it is preferable to use an exact
model based on a multi-dimensional CTMC (as shown in
section 2). An open problem is to find a sufficiently fine
approximation approach which could also simplify this kind
of multi-dimensional Markov chain.

In [10] where the case of 2 cells with one channel each
was analyzed, it has been shown that for any γ > 0, PB >
PH . We have shown in this paper that for any number
of cells and for any number of channels PB > PH when
γ →∞. Another open problem is to prove that PB > PH
for any γ > 0, for any number of cells and for any number
of channels
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Appendix A

Proof, by induction, of eq. (49).

1. For k = 1 we obtain from eq. (49) that PD1 = PD1 .
Thus, eq. (49) is obviously fulfilled for k = 1. We
determine now PD2 . From eq. (45),

PD2 =

(
Λ+ µ

Λ

)
PD1 , (65)

which also fulfills eq. (49) for k = 2.

2. Suppose that

PDk =
PD1

Λk−1

k−1∑
i=0

(k − 1)!
(k − 1− i)!

Λk−1−iµi;

PDk+1 =
PD1

Λk

k∑
i=0

k!
(k − i)!

Λk−iµi. (66)

We wish to show that

PDk+2 =
PD1

Λk+1

k+1∑
i=0

(k + 1)!
(k − i+ 1)!

Λk−i+1µi.

From eq. (46) we have

PDk+2 =
PDk+1 (Λ+ (k + 1)µ)− kµPDk

Λ
. (67)

Inserting eq. (66) in eq. (67) we obtain

PDK+2 =
PD1

Λk+1

(
(Λ+ (k + 1)µ)

k∑
i=0

k!
(k − i)!

Λk−iµi

− kµΛ
k−1∑
i=0

(k − 1)!
(k − 1− i)!

Λk−1−iµi

)

=
PD1

Λk+1

(
k∑
i=0

k!
(k − i)!

Λk−i+1µi

+
k∑
i=0

(k + 1)!
(k − i)!

Λk−iµi+1

−
k−1∑
i=0

k!
(k − 1− i)!

Λk−iµi+1

)

=
PD1

Λk+1

(
Λk+1 +

k∑
i=1

k!
(k − i)!

Λk−i+1µi

−
k−1∑
i=0

k!
(k − 1− i)!

Λk−iµi+1

+
k∑
i=0

(k + 1)!
(k − i)!

Λk−iµi+1

)

=
PD1

Λk+1

k+1∑
i=0

(k + 1)!
(k − i+ 1)!

Λk−i+1µi.
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