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An Acknowledgment-Based Access Scheme in a
Two-Node Packet-Radio Network

MOSHE SIDI AND ADRIAN SEGALL

Abstract—A two-node packet-radio network with infinite buffers at the
nodes is considered. The two nodes transmit data packets to a common
station through a shared radio channel. One of the two nodes is granted
full access rights to the channel, while the other node bases its decisions
whether to transmit or not on the acknowledgments it receives about its
transmissions. For this acknowledgment-based access scheme and for
general arrival processes, we derive the joint generating function of the
queue contents in steady state, as well as the condition for steady state.
From the generating function, any moment can be derived, as well as
average time delays. Numerical results are presented for independent
Bernoulli arrival processes.

I. INTRODUCTION

In packet-radio networks, many contending devices share
a common radio channel in a given locality. It has been ob-
served [1], [5]-[7] that within such an environment, the
outcome of the transmission of a packet by a node depends on
both the states and actions of neighboring nodes. This de-
pendence inhibits any attempt to obtain explicit analytic
results for general networks and access schemes.

As an initial attempt to understand the behavior of packet-
radio networks, there is a need to first accurately analyze
simple yet typical configurations. In this paper, we consider
the two-node packet radio network depicted in Fig. 1. In this
network, the two nodes having infinite buffers send data
packets arriving from outside sources to a common station
over a shared radio channel. The channel is assumed to be
divided into slots whose durations correspond to the transmis-
sion time of a packet, and a node may start transmission of a
packet only at the beginning of a slot.

In [1], we analyzed the behavior of this network for a
certain random access scheme. We assumed in [1] that one of
the nodes (node 2) is granted full access rights to the channel,
i.e., it transmits whenever its queue is nonempty. The access
rights of the other node (node 1) are randomized as follows.
At the beginning of each slot for which its own buffer is non-
empty, node 1 tosses a coin with probability of success p,
independently of any other event in the system, and in case
of success, it attempts to transmit the packet at the head of
its queue.

In the present paper, we analyze a different access scheme
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Fig. 1. A two-node packet-radio network.

applied to the same network. We still assume that node 2
transmits whenever its queue is nonempty. However, we as-
sume that the decision at node 1 whether or not to transmit in
a given slot depends on what has happened in the previous
slot. Specifically, if a collision occurred in the previous slot,
the nodes know for sure that they both have packets ready
for transmission. Since node 2 is always allowed to transmit,
it makes sense that node 1 should refrain from transmitting in
the current slot in order to ensure successful transmission from
node 2. In the following section, we shall present the access
scheme at node 1 in detail.

For this acknowledgment-based access scheme, we obtain
the condition for steady state and the generating function of
the steady-state joint probability distribution of the queue
lengths at the two nodes. From this generating function, any
moment can be derived, as well as average time delays. We also
give some numerical results for independent Bernoulli arrival
processes, and we compare the acknowledgment-based access
scheme to the random access scheme of {1].

II. THE MODEL

Packets arrive randomly at the two nodes (Fig, 1) from the
outside of the system, and in general, the arrival processes may
be correlated. Let 4;(t) and A,(¢) be the number of packets
entering nodes 1 and 2 from their corresponding sources in the
time interval (r, ¢+ + 1]. The input process [A4,(7), 4,(¢)] is
assumed to be a sequence of independent and identically
distributed random vectors with integer-valued elements. Let

F(x,y) = E[x21DyA2()] H

We assume that F(x, ¥) depends on both x and y, namely,
that packets arrive at the two nodes with nonzero probability
and that the two nodes have infinite buffers. The packets at
the nodes are transmitted to the main station over a common
radio channel,

It is assumed that both nodes receive instantaneous ac-
knowledgment at the end of each slot, whether or not their
transmission was successful. Unsuccessful transmissions are
due only to collisions. Collided packets remain at the head
of the queue (at each node), and the nodes try to transmit
them again according to the schemes that we now describe.

As mentioned earlier, node 2 attempts transmission when-
ever its queue is nonempty. The action of node 1 in a given
slot depends on the channel activity during the previous slot.
If a collision (simultaneous transmissions) has occurred in the
previous slot, node 1 remains silent. This is because it knows
that node 2 will attempt to transmit its packet again and it can
gain no advantage by trying to transmit. If there was no colli-
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sion in the previous slot, node 1 tosses a coin with probability where

of success p. In case of success, it attempts to transmit the
packet at the head of its queue; otherwise, it remains silent.

I1I. STEADY-STATE DISTRIBUTION

In this section, we shall analyze the steady-state behavior
of the acknowledgment-based access scheme described above.
We say that the network is in state S = 1, in a given slot, if
there was no collision in the previous slot, and in state S = 2
otherwise. Let Pi(m, n), k=1, 2, m 2 0, n 2 0 be the equil-
ibrium joint probability that the system is in state k¥ and the
queue lengths at nodes 1 and 2 are m and n, respectively. Let

o0

Gl 7)= 2y O Prlm, mx™yn, k=

m=0n=0

1,2 (2)

be the queue length joint generating function when the system
is in state k (k = 1, 2). Then, using a standard technique, it
can be shown that (here p = 1 — p)

Gy (x, ») = F(x, ){G1(0, 0) + [G1(0,¥) ~ G1(0, )]y~
+1[G1(x,0)= G1(0,0)](px~1 + p)

+ Go(x, Yy L+ G (x, ) G1(x,0)

—G1(0,7)+ G (0, 0)]py~1} (3a)
Go(x,¥) = F(x, yI[G(x,¥)— G1(x, 0)
-Gl(O,y)+G1(O, 0)] (3b)

In (3), we encounter the common phenomenon in coupled
queues, that the generating functions Grlx, ), k=1,2,are ex-
pressed in terms of the boundary functions G(0, ¥), G (x,
0) and the constant G;(0, 0). In order to determine Gp(x, »),
k =1, 2, uniquely, we still have to determine these boundary
functions and this constant.

Determination of G(0, y)

To determine G;(0, ¥), let x = 0 in (3a). Noticing from
(3b) that G,(0, y) = 0, we obtain

G1(0,0)(1 =y~ 1) +pP1(1,0).
1—F,y)y !

Applying Rouche’s theorem [31, it is easy to see that the
equation F(0, y) = » has a unique solution in the unit circle
|7 ] < 1. Let this solution be denoted by a. Then, since G (0,
») is analytic for |y | < 1, we obtain from (4) that pP((1,0) =
G4(0, 0)(o— ! — 1). Lherefore,

(Gil —_y_l)Gl(O¢ 0)
1—F(0,y)y !

Gl(o?y):F(O:y) (5)

and G, (0, y) is determined up to the constant G4(0,0).

Determination of G (x, 0)

From (3), we obtain
Gl(x:y):F(xay)

. b(x,y)Gl(x, 0)+ C(x>y)Gl(an)+ d(xyy)Gl(O:O)
xe(x, y)

(6a)

b(x,y)=y(p +px)— x[p + pF(x, )], (6D)
c(x,y) = xp[1 —F(x, »)]; (6¢)
d(x, y) = pxy — x — py +x[p + pF(x, »)]; (6d)
e(x,y)=y—= F(x,»)lp +pF(x, »)]. (6e)

Now again applying Rouche’s theorem, it can be shown
that for given x, | x| < 1, the equation (in y) e(x, ¥} = 0 has
a unique solution in the unit circle |y | < 1. Let this solu-
tion be denoted by f{x). Since G (x, ¥) is analytic in the poly-
disk | x| <1, ]y | <1, we immediately obtain from (6a) that

elx, ()G 1 (0, f(x)) + d(x, f(x))G1(0, 0)
b(x, f(x))

Substituting (5) in (7) determines G;(x, 0) up to the constant
G (0, 0). )
Finally, G,(0, 0) is determined via the normalization condi-

tion G;(1, 1) + G,(1, 1) = 1. After tedious calculation, we
obtain

Gi(x,0)= (D

L=r+p)—n/p
0= F(0, 1)

G1(0,0)= (8)

p =
o[1— F(0, 1)]
where r; and 7, are the arrival rates into nodes 1 and 2, respec-
tively, and are given by
0F(x, )

> 12
Ox x=y=1

_0F(x, )
oy

& 9)

x=y=1

The condition for steady state is G{(0, 0) > 0.

Thus, we have completely determined the generating func-
tions Gg(x, ¥), k = 1, 2, and in principle, any moment of the
queue lengths at the nodes as well as average time delays (using
Little’s law {4]) can be derived.

IV. INDEPENDENT BERNOULLI ARRIVAL PROCESSES

Although our results in the previous section were derived
for general arrival processes, some of the expressions are sim-
plified when we consider independent Bernoulli arrival proc-
esses into the nodes, i.e., F(x, y) = (xr; + ry)}(yry +7,) where
Fy, r, are the arrival rates into nodes 1 and 2, respectively, and
7_'[: l—rifori: 1, 2.

From (8), we immediately obtain that, in this case,

Pl 1= ry(1 +p)—ry/p]

G1(0,0)= 10
1—=ry(1+p) (o)
and the condition for steady state is that 1 — r,(1 + p) —
ry/p > 0.

The explicit expressions for the average queue lengths at
the nodes, and therefore for the average delays, are too com-
plicated to be given here. However, we shall present several
graphs that exhibit the behavior of the latter quantities. In
Figs. 2 and 3, the average time delays T and T, at nodes 1
and 2 respectively, are plotted versus p, the transmission
probability at node 1, and in Fig. 4, the total average delay in
the network-T is plotted versus p for r; = 0.1, and r, ranges
from 0.01 to 0.5. From Fig. 4, we see that for given r;, when
ry is small, the optimal p (that minimizes the total average
delay) is 1, i.e., node 1 has to transmit a packet whenever it
has any, except that after a collision, it should remain silent
for one slot. On the other hand, when r, increases, the optimal
p decreases since for large values of p, the probability of a
collision is large. It is also interesting to mention that when
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Fig. 2.

Average delay at node 1 versus the transmission probability at node 1.
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Fig.3. Average delay at node 2 versus the transmission probability at node 1.
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Fig. 4. Total average delay versus the transmission probability at node 1.
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Fig. 5. Minimal total average delay versus the total throughput for the
acknowledgment-based access schenie and for the random-access scheme

analyzed in {1].
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ry = rp, we have found that the optimal p that minimizes the
total average delay is always 1. From the steady-state condi-
tion, it is easy to see that when r; = r, = 7, the total arrival
rate 7y (y = 2r) should be less than 2/3 for steady state. In Fig.
5, the minimal total average delay (i.e., p = 1) is plotted versus
¥ when 7, = r, for the access scheme of this paper (the
acknowledgment-based access scheme), as well as for the
random access scheme analyzed in [1]. As expected and as is
shown in Fig. 5, the network performs much better with the
dccess scheme analyzed in this paper. This latter result is
actually correct for all values of arrival rates.
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