Available online at www.sciencedirect.com

SCIENCE@DIRE°T® Theoretical
Computer Science

Theoretical Computer Science 344 (2005) 86—-99

www.elsevier.com/locate/tcs

The expected uncertainty of range-free localization
protocols in sensor networks

Gideon Stupp, Moshe Sidi

EE Dept., Technion, Haifa 32000, Israel

Abstract

We consider three range-free localization protocols for sensor networks and analyze their accuracy
in terms of the expected area of uncertainty of position per sensor. Assuming a small set of anchor
nodes that know their position and broadcast it, we consider at first the simple Intersection protocol.
In this protocol a sensor assumes its position is within the part of the plane that is covered by all the
broadcasts it can receive. We then extend this protocol by assuming every sensor is preloaded with
the entire arrangement of anchors before being deployed. We show that in this case the same expected
uncertainty can be achieved witli2lthe anchor nodes. Finally, we propose an approximation for the
arrangement-based protocol which does not require any preliminary steps and prove that its expected
accuracy converges to that of the arrangement protocol as the number of anchors increases.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Sensor networks provide wireless connectivity for stationary sensors that are usually
embedded in some random fashion within a physical domain. The sensors’ purpose is to
monitor and report locally sensed events soitis common to assume that a sensor can position
itself within some global coordinate system. Since the standard Global Positioning System
is considered too costly for deployment within every sensor, other localization mechanisms
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specific for sensor networks are typically used. Such mechanisms can be divideagae
basedsystems andange-freesystems.

In range-based systems every sensor is augmented with hardware that is specifically
necessary for localization. For example, augmented sensors may be able to deduce their
distance from each other. This information is extremely helpful for the localization process
and such systems can generally achieve fine grained localization. However, augmenting the
hardware of every sensor in this way may be very costly. Range-free systems, on the other
hand, attempt to reduce the number of augmented sensors to a minimum. A small subset of
the sensors is augmented, typically with full GPS positioning systems. These sensors (called
anchorg broadcast their position and the other sensors use this information to localize
themselves. The most important success measure for such systems is the localization error,
given a small, fixed number of anchors.

Although many range-free localization systems were suggested in tH& j653219,4], not
a lot has been done in terms of analytically evaluating their expected error. In this paper we
consider three range-free localization protocols starting with the basic intersection protocol
described in [10], and analyze their expected accuracy in terms of the area of uncertainty
of position per sensor. As we show, simple enhancements to the basic protocol produce
significant reductions in the expected area of uncertainty.

Assume thatN sensors are randomly placed in the unit disk and that only a subset
of size K < N of these sensors (th@nchorg know their exact position in terms of
some global coordinate system. Have these anchors broadcast their position and let that
broadcast be received by and only by sensors that are withindimenunication range
p, which defines a disk of radius centered at the broadcasting anchor; see Fig. 1(a).
Denoting asneighborssensors that can directly communicate with each other we de-
scribe three localization protocols. In th&ersectionprotocol, a sensor assumes its po-
sition is within the intersection of the communication ranges of its neighbor anchors;
see Fig. 1(b). In theArrangementprotocol, a sensor assumes its position is at the
intersection of its neighbor anchors that is outside the range of any other anchor; see
Fig. 1(c). Finally, in theApproximate Arrangemeptotocol, a sensor assumes its position is
anywhere within range of its neighbor anchors that is out of range of its neighbor-neighbors
anchors, see Fig. 1(d).

We define theincertaintyof position for a sensor to be the area size of the possible loca-
tions for it and present analytic expressions for the expected uncertainty in the Intersection
and Arrangement protocols. Furthermore, we show that the Arrangement protocol reaches
the same expected uncertainty as the Intersection protocol with at ifibef the anchors.

We then consider the approximation protocol, showing both analytically and by simulations
that its expectation converges to that of the Arrangement protocol.

1.1. Related work

Numerous range-free localization mechanisms have been proposed. The first solutions
were typically central. For example, the connectivity matrix of the sensors is used in [3] to
constrain the possible locations of the sensors in the network, achieving a position estima-
tion by centrally solving a convex optimization problem. Many distributed solutions were
also suggested. In the Centroid strategy, sensors locate themselves at the center of mass
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(a) Model (b) Intersection

(c) Arrangement (d) Apprx.Arng.

Fig. 1. Four anchors (numbered crosses) and several other sensors (bullets) are scattered in thBuAicliek

x; broadcasts its coordinates in the digk(x;, p), that is centered at; and has radiup (a). Sensos can use the
Intersection protocol (b) to position itself at the intersection of the disks related to anchors within range (1 and
2). It can use the Arrangement protocol (c) to position itself at the intersection of these disks that is not within
range of any of the other anchors, 3 and 4. Or it can use the approximation (d) to locate itself in a slightly bigger
region, defined in this case by the intersection of the ranges of anchors 1 and 2 that is not in the range of anchor 4
(anchor 3 is ignored because it is not a neighbor of the neighba)s of

(the centroid) of the locations of anchors they can dd&d{. Other approaches [7,6] as-

sumed node to node communication can be used to flood the location of all the anchors to
all the sensors. Using the hop-count as an estimate of the Euclidian distance (by computing
the average distance between sensors [7] or by analytically deriving it [6]), a sensor can
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estimate its position via triangulation. The accuracy of all of these solutions, however, was
evaluated experimentally, rather than analytically.

The research of range-based systems has been more extensive, supplying bounds on the
achievable positioning accuracy when assuming specific calibration data, noise patterns
and location distribution. In particular, lower bounds for the localization uncertainty using
the Cramér—Rao bound were presentefilih8]. Still, the behavior of the specific algo-
rithms is almost always investigated by simulation, either by the authors or in subsequent
works [5].

1.2. Paper organization

Section 2 describes the model we use. In Section 3 we analyze the expected uncer-
tainty of the Intersection protocol. In Section 4 we analyze the expected uncertainty of the
Arrangement protocol, comparing it with the results of Section 3. In Section 5 we describe
the approximation protocol and show that its expected accuracy converges to that of the
Arrangement protocol. We conclude the paper with Section 6.

2. Model

For any pointp in the unit diskD and for any constanp, denote byD(p, p) the disk
centered ap and of radiug (if p is the origin we simply writeD(p)). To emphasize that a
particular disk contains only the pointsiinthat are at least away from the boundar§D
we write D, := D(1— p).

Generally we assume thidtsensorsSy, ..., Sy, are placed by choosing the location of
each independently from the uniform distribution over the unit disk the plane. Any two
sensory;, p;, can communicate with each other only if the Euclidean distance between
them is less than or equal to teemmunication rangep < 1/3, ||p; — pjl<p. In this
case we say that the two sensors @ithin rangeof each other and consider them to be
neighbors

Of the N sensors, onl\K know their coordinates. We name such sensorshorsand
denote the set of anchors By . We will often abuse notation and considey to be the set
of the point locations of the sensors.

To avoid boundary effects we assume that while the anchors are randomly placed in all
of D, the otherN — K sensors are randomly placed in the smaller redipn It is easy
to see that without this assumption sensors close to the bound&rywaiuld have lower
probability of having anchor neighbors. Moreover, for simplicity it is necessary to restrict
the expectation analysis to the sensors that alsjn For consider the case where a sensor
Shas exactly one neighbor anchor that is positioned lesstlaaay from the boundary of
D,. Obviously, in this case the set of possible locationsSidepends on the exact distance
of its neighbor from the boundary.

3. Localization by intersection

The simplest localization approach for a sensor is to collect the positions of all its neighbor
anchors and place itself somewhere at the intersection of the communication ranges of all
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these anchors, see Fitfb). This is probably the most direct localization mechanism and
it has been studied in [10]. Their analysis, however, is wrong since it neglected to take
into account all the possible scenarios (for example, the Sase= ). In this section
we introduce a new and simpler approach for the analysis of the expected size of this
intersection, achieving correct results as opposed to [10]. Furthermore, we use the standard
R? space withL, norm, rather than the discreie,, model used in [10].

Let Sbe a randomly picked sensor and denoteSiythe set of its anchor neighbors.

Sy ={s €Sa:lls—Sl<pl 1)
Denote bylg the area of possible locations 8r

M D(s,p) if Sy #4,
IS — SESN

D, otherwise

That s, Is is the area of the intersection of the communication ranges of the neighbors of
Sif there are any, or the entire set of possible plaégs,otherwise.

Let X = |Is| be the area size df. ThenX is a random variable, 9 X <7(1 — p)2 and
its expectation, EX), can be analyzed:

E(X) =/ oK (/ 113(M)du) dp1dpz---dpk,
Dk D,

where J; () is the indicator function,

1 ueIS,

Lig(u) = { 0 otherwise

Rewriting the integration,

E(X) = / (/ nKlls(u)dpldpz-~-de)du
D, \JD¥

:/ Priu € Is]du.
Dy

For any sensof € D3, denote byE; the event whera ¢ D(S, 2p) and byE; the event
whereu € D(S, 2p). Avoiding boundary affects by restricting the analysigltg, we have

E(X|S € D3,) =/

Priu e Is|E1] du +/ Prlu € I5|E2] du.
D,\D(S,2p)

D(S,2p)
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Fig. 2. For the Intersection protocol pointO< ||u|| < 2p isin I if none of theK anchors fall in the shaded area

in (a). For the Arrangement protocol poimtO< ||«|| <2p is in Ag if none of theK anchors fall in the shaded
areain (b).

If uis outsideD(S, 2p) thenitis inlg only if Sy = ¥ (Shas no neighbor anchors). Thus,
2 K
Priu € Is|E1] = Priu € Islu ¢ D(S.2p) A S € Dg,] = (1— 0 )
and therefore

K
E(X|S € D3,) = (1 - p2) (n(l 2= 4an) +/ PHu € Is|E5] du.
D(S.20)

On the other hand, poimte D(S, 2p) isin Is only if every anchor in the range &fis also
in the range oli. Henceu is in I only if all the K anchors fall outsid® (S, p) \ D(u, p);
see Fig2(a).

Notice that the two disks intersect in a lens-shaped regjiohose sizé/| depends only
on |l — S||. By moving the origin td&Sand changing to polar coordinates we have,

E(X|S € D3,) = (1 - p2>K (n(l — % 47'cp2)

2p K
+2n/ (1 2y n—1|1(r)|) rdr.
r=0

Let A, C be the two points located at the cusps of the Igng see Fig. 3. Denote by the
intersection point of the chor8lC with the segmenSuthat connects the two disk origins
and mark byx the angle/ASB. Then the area df(r) is |I(r)| = 2p%x — pr sina, where

r = 2p COSx, SO

1(r)| = 2p? arccos ;) — pr \/Tz)z 2

Finally, we have

E(X|S € D3,) = (1 - pZ)K (n(l )2 - 47Ip2)

2p K
2,22 r / r
+2TE /'r:o (1—p +%p arCCO$Z)—§V 1—(Z)2) rdr. (3)
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Fig. 3. The size of the lens (shaded area) created by the intersection of the twaddigks) and D(u, p) is
()] = 2p20 — pr sina.

4. Localization by arrangement

It is possible to improve the basic Intersection protocol if we assume that every sensor
knows the position of all th& anchors (rather than just its neighbors). This information
can be gathered by flooding it over the network or by placing the sensors in several phases.
With this knowledge a sensor can position itself at the intersection of the communication
range of its anchor neighbors that is not within range of any other anchor; segdjign
this section we analyze the expected uncertainty of the Arrangement protocol and show that
it achieves the same expected uncertainty as the Intersection protocol using at most half the
anchors.

As before, letSbe a randomly picked sensdiy be the set of its anchor neighbors and
denote bySy, all the other anchors§y, = Sa \ Sy. Let Ag be the set of all the possible
places forS

N D(s.p)\ U D(s.p) if Sy #¥,
seSy seS¢
As = D,\ U D(s,p)N otherwise (4)

C
seSy,

That is, if Shas neighbors theAs consists of all the points ifid, that are in range of the
neighbor anchors @and out of range of all the other anchorsSHas no neighbor anchors
then A consists of all the points i, that are outside the range of all the anchbrs.
Following the proof strategy and notation of Section 3, we defipdo be the event
thatu ¢ D(S, 2p), E2 to be the event that € D(S, 2p) and consider only cases where

11t should be noted that ¢ does not have to be convex, or even connected (consider e.g. configurations where
Sy =19).
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S € D3,. DenotingX = |Ag| the area ofd g we have

E(X|S € D3p) =/

Priu € Ag|E1]du +/ Priu € Ag|Eo] du.
D,\D(S,2p)

D(S.2p)

Now pointu ¢ D(S, 2p) can be inAg only if both Sandu have no anchor neighbors,
K
Priu € As|E1] = Priu € Aslu ¢ D(S.2p) A S € D3,] = (1 - 2,02) .

Pointu € D(S, 2p) is in Ag only if all the K anchors fall outsidéD(S, p) U D(u, p)) \
(D(S, p)ND(u, p); see Fig2(b). Thus, denoting biythe distance afifrom S r = |lu— S|,
we have

Priu € As|E2] =Piiu € Aslu € D(S,2p) A S € D3]
2 1 K
=(1-202+2e7 1)

wherell(r)| is the area of the intersection of the two disks given in (2). AssurSiigyat
the origin and changing to polar coordinates we finally have

E(X|S € D3,) = (1 ~ 2p2>K (n(l 2 47'cp2)

2p
+2n/ (1 —2p% + 222 arccosy;)
r=0

K
—2§r /11— (zr—p)z’ r dr, (5)

where the emphasized factors of 2 are the only difference in the expression from the expec-
tation of the Intersection protocol.

4.1. Arrangement vs. intersection

It is not too difficult? to see that asymptotically both (3) and (5) behave liké/®&2).
The asymptotic behavior, however, is not particularly helpful since we are interested in the
cases wher is small.

Denote byE f (E ff ) the expectation of the area of uncertainty of the Intersection protocol
(Arrangement protocol) using anchors and a constamt

Letc > 1 be some constant SEX < E}"K). Denoting

X, = p2 — n_1|l(r)|, 0<r<2p,

we requirecto be such that for atl, (1—2x,) X < (1—x,)°X. Noticing that 0< x, < p? < 0.5,
it is not difficult to see that

1-208<@1-x%* 0<x <05,

so thatc = 2 will do. As can be seen in Fid, the constant is almost precisely two for any
reasonable choice of

2The first term of 8), (5) diminishes exponentially witK for any constanp. The second term is bounded by
frlzo c1r(co — e3r)K dr = O(l/Kz), for the appropriate constants.
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Fig. 4. A linear-log graph of the expected area size for the Intersection and Arrangement prgiceals)(The
horizontal bars are aligned with the graph corresponding to the Intersection protocol and mark the middle point in
terms ofK. As can be seen, the Arrangement protocol achieves the same expected accuracy with almost precisely
1

5K anchors.

2

5. Approximating the arrangement

To consider a practical approximation for the arrangement protocol we assume that an-
chors can listen to the broadcasts of other anchors. Although at first anchors can only
broadcast their own position, after an initial step every anchor can learn the positions of
its neighbor anchors and broadcast the information along its own position. A sensor can
thus create two disjoint lists: a list of its neighbors and a list of its neighbor-neighbors that
are not also its own neighbors. A sensor can now position itself at the intersection of its
neighbors that is not within range of any of its neighbor-neighbors, seel{y.As we
show, the accuracy of this protocol converges to the accuracy of the arrangement protocol
when the number of anchors increases.

Let Sbe a randomly picked sensor. Denote as usudjpyhe set of its anchor neighbors
and bySy y the set of anchors which are not neighbor$bf themselves, but which have
neighbors out oSy .

Svy ={s €8y :3s e Sys.t.fs — s <p}

aprx

Denote byA§™" the set of possible places f&rThen

aprx N DG,p)\ U DG, p) if Sy #9,
AS = { seSy SESNN (6)
D, otherwise.
That is, ifShas neighbors thea$™™ consists of the places that are within the range of the
neighbors ofSand outside the range of its neighbor-neighbor&Has no neighbors then
AS™ consists of all ofD,.

When evaluating BAS™™)), one can use the same type of arguments as in Segtion
for positions that are outsid®(S, 2p) (such positions are i only if Sy = #).
However, for any poin: € D(S, 2p), the expectation is conditioned on the number and
position of anchors iD(u, p) N D(S, p); see Fig. 5. It is not trivial to analytically ex-
press the expectation for this case. Instead, we show that for a large elahbglarea of
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Fig. 5. Conditioned on the position of the two anchorgitsS, p) N D(u, p) (marked by crosses), pointis in
A?prx if the otherk — 2 anchors fall outside the shaded area.

uncertainty returned by the Approximation protocol is equal with high probability to the
area of uncertainty returned by the original Arrangement protocol.

5.1. Convergence in probability

For any senso§ and any specific configuration of locations of anchors, denota py
the set returned by the Arrangement protocol as defined)iar(d byA§™ the set returned
by the Approximation protocol as defined in (6). Taking the definitiosgfand 7g from
Section 3 and the definition &y from Section 5 we definéo to be the set of anchors

that are not inSy and yet are within range of some pointiig
So={seSy:uelsst|u—s|<p}

Thus,Sp consists of all the anchors that help reduce the siza& ofrom the size ofig.
As usual, we abuse notation and tré&gt also as a set of point locations.

Denote byByw, Bg, By, Bs the four disjoint disks fully contained i (S, p) and of
radiuscp for the constant = {2—*21 < 1/4 which are placed iD(S, p) at the leftmost
rightmost, topmost and bottommost possible positions, respectively; seé(&)gThus,
assuming as usual th&is at the origin we haveBy = D(((c — 1)p,0),cp), B =
D((1—¢)p,0), cp), By = D((0, (1 —¢)p), cp), Bs = ((0, (c — 1)p), cp). The following
geometric lemmas assert that if there is at least one anchor in e&gh &fg, By, Bs then
SO C SNN-

Denote byB the event that there is at least one anchor in eaddvwafBg, By, Bs. The
following lemma asserts that conditioned on this event, the area of interségtinuast be
contained in the disk of radius\2cp aroundS.

Lemma 5.1. Conditioned orB, Is C D(S, 2+/2¢cp).
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Fig. 6. Ifthere are anchorsin each®y,, Bg, By, Bs thenthe area of intersection of the neighborS df, is fully
contained in the square centereand of side 4p which is inscribed by the disk (S, 2+/2¢p) (a). Furthermore,
the range of every anchor iR(S, (1 + 2+/2¢)p) must fully contain at least one of the disksy, Bg, By, Bs
where at the critical angles, easily shown tothe= 7k, k € N, it must fully contain two out of them (b).

Proof. Letube a pointin/s. By the definition oflg there must be pointsy € By, vg €

Bg, vy € By andvs € Bs such thatlu — vwll, llu — vell, llu — vn|l. lu — vsll<p. By

the convexity ofBy, u must belong to the half plane< 2cp. Likewise, by the convexity of
Bg, By, Bs umust belong to the half planes> — 2cp, y> — 2¢p, y <2cp, respectively;
see Figb(a). Thus, any poini € Iy must belong to the square inscribed by the boundary
of D(S, 2+/2¢p) and the lemma holds.

The following trivial corollary asserts that the anchorsSig cannot be too far frons.
Corollary 5.2. Conditioned orB, Sp € D(S, (1+ 2v/2¢)p).

In the last geometric lemma we show that anchorssinmust have at least one of
Bw, Bg, By, Bs fully within range, saSp C Synw.

Lemma 5.3. Conditioned orB, Sp C Syn.

Proof. By Corollary5.2 every point inSp must be in the annuluB (S, (1 + 2+/2¢)p) \

D(S, p). Consider at first the points on the boundéiy(1 + 2v/2¢)p), 0<0< 2z, and in
particular, start witht = (0, (1 + 2+/2¢)p). It is not hard to see that in this cage C

D(u, p). Now gradually increasé until Bg is also tangent t@D(u, p) and denote this
critical angle byf,. Mark byt the tangent point and bl the center ofBg and consider

the triangleASu E. By the choice ofy, ||S — u|| = (1 + 2+/2¢)p. By the construction of

Bg, IS — E|| = (1 — ¢)p and since is a tangent poinflu — E|| = |u —t|| — |1t — E|| =
(1—¢)p. Thereforef); is easily derived to b8, = n/4. Thus, the lemma holds all poinis

at the boundary with & 6 < /4. The same type of argument can be used to show that the
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lemma holds also forr/2>6>n/4 and so on for alb. Notice that at the critical angles,
0. = Zk.k € N, disk D(u, p) fully contains 2 disks out 0By, B, By, Bs. Thus, the
lemma holds for all the boundary.

Now consider a poink = (0, p) € D(S, (1 + 2+/2¢)p) which is not on the boundary.
Denote byu’ its projection on the boundany = (0, (1 + 2v/2¢)p), and byB’ a disk out
of Bw, Bg, Bs, By that is fully contained inD(u’, p). Since B is also fully contained
in D(S, p) and sinceD(S, (1 + 2+/2¢)p) is convex, it follows that3’ must also be fully
contained inD(u, p) and the lemma holds.

Lemma 5.4. Conditioned orB, A5 = Aj.

Proof. SinceShas neighbor anchorss = I\ s, D(s ) a_n_dA?"rX =I5\ UsesNN_
D(s, p) (see @), (6)). By Lemma 5.35¢9 C Swyy, and by definition ofSp any anchor in
Syn Which affects the size ol g is also inSp so the lemma follows. O

It is not hard to show that the probability that there is at least one anchor in each of
Bw, Bg, By, Bs is asymptotically 1. Thus, the size of the area of uncertainty computed by
the approximation protocol converges in probability to that of the Arrangement protocol.

Theorem 5.5. |A5"™ £ Aql.

Proof. For anye > 0,6 > 0 defineKq(d) = p—2In(4/5). Given anyK > Ko(9) the
probability for any specific disk out aBy, Bx, Bs, By to remain empty ig1 — p?)K.
Denoting byX the number of such empty disks, it follows thatd = 4(1 — p?)X so,
using the Markov inequality,

PHBl=1—PHX>1]<1—E(X)=1— 41— p?)K <1 —4e P K <1 5.

Thus, by Lemmd.4, for allK > Ko

aprx,

PIAG — [As| > ¢]<1— Pr[B]<o
and the theorem holds.(J
Since|A$™™ <|Is| and E|Is|) < oo the next corollary follows from the Lebesgue
Dominated Convergence Theorem.

Corollary 5.6. E(JAS™™)) — E(As]).

In practice E|AS™™)) converges more rapidly. Fig. presents simulation results for the
expected uncertainty of the Approximation protocol plotted against the expectations of the
Intersection and Arrangement protocols. As can been seen, the simulated expectation does
converge to that of the Arrangement protocol. It should be noted that Whesmall, all
three expectations are dominated by the event wBéges no neighbor anchor§ = 9).

In this case the size of the area of uncertainty is the unit disk, which is typically very
large compared to the other cases. As more anchors are placed, the probability of this event
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Fig. 7. Simulation results for the expected uncertainty of the Approximation algorithm are plotted together with
the calculated expectations of the Intersection and Arrangement protpcels.1). The simulated expectation
converges to that of the Arrangement protocol.

quickly diminishes to the pointwhere ithas negligible effect. This behavior, however, creates
an anomaly in the shape of a phase transition in a straightforward simulation. Therefore,
the data presented in Fig.is the simulation results conditioned &having neighbors
analytically adjusted to take into account the case wiigre= .

6. Conclusions

We consider three range-free localization protocols for sensor networks and analyze their
expected positioning accuracy under random sensor distribution. Assuming a small set of
anchor nodes that know their position and broadcast it, we investigate at first the case
where sensors position themselves at the intersection of the broadcast range of the anchors
they detect (their neighbors). We then consider the positioning uncertainty when sensors
avoid positioning themselves in places that are in the range of non-neighbor anchors, and
an approximation to the second case where the proximity of only some local subset (the
neighbor neighbors) of all the non-neighbor anchors is avoided.
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