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The expected uncertainty of range-free localization
protocols in sensor networks
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Abstract

We consider three range-free localization protocols for sensor networks and analyze their accuracy
in terms of the expected area of uncertainty of position per sensor. Assuming a small set of anchor
nodes that know their position and broadcast it, we consider at first the simple Intersection protocol.
In this protocol a sensor assumes its position is within the part of the plane that is covered by all the
broadcasts it can receive. We then extend this protocol by assuming every sensor is preloaded with
the entire arrangement of anchors before being deployed. We show that in this case the same expected
uncertainty can be achieved with 1/2 the anchor nodes. Finally, we propose an approximation for the
arrangement-based protocol which does not require any preliminary steps and prove that its expected
accuracy converges to that of the arrangement protocol as the number of anchors increases.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Sensor networks provide wireless connectivity for stationary sensors that are usually
embedded in some random fashion within a physical domain. The sensors’ purpose is to
monitor and report locally sensed events so it is common to assume that a sensor can position
itself within some global coordinate system. Since the standard Global Positioning System
is considered too costly for deployment within every sensor, other localization mechanisms
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specific for sensor networks are typically used. Such mechanisms can be divided intorange-
basedsystems andrange-freesystems.

In range-based systems every sensor is augmented with hardware that is specifically
necessary for localization. For example, augmented sensors may be able to deduce their
distance from each other. This information is extremely helpful for the localization process
and such systems can generally achieve fine grained localization. However, augmenting the
hardware of every sensor in this way may be very costly. Range-free systems, on the other
hand, attempt to reduce the number of augmented sensors to a minimum. A small subset of
the sensors is augmented, typically with full GPS positioning systems. These sensors (called
anchors) broadcast their position and the other sensors use this information to localize
themselves. The most important success measure for such systems is the localization error,
given a small, fixed number of anchors.

Although many range-free localization systems were suggested in the past[7,6,2,9,4], not
a lot has been done in terms of analytically evaluating their expected error. In this paper we
consider three range-free localization protocols starting with the basic intersection protocol
described in [10], and analyze their expected accuracy in terms of the area of uncertainty
of position per sensor. As we show, simple enhancements to the basic protocol produce
significant reductions in the expected area of uncertainty.

Assume thatN sensors are randomly placed in the unit disk and that only a subset
of size K < N of these sensors (theanchors) know their exact position in terms of
some global coordinate system. Have these anchors broadcast their position and let that
broadcast be received by and only by sensors that are within thecommunication range,
�, which defines a disk of radius� centered at the broadcasting anchor; see Fig. 1(a).
Denoting asneighborssensors that can directly communicate with each other we de-
scribe three localization protocols. In theIntersectionprotocol, a sensor assumes its po-
sition is within the intersection of the communication ranges of its neighbor anchors;
see Fig. 1(b). In theArrangementprotocol, a sensor assumes its position is at the
intersection of its neighbor anchors that is outside the range of any other anchor; see
Fig. 1(c). Finally, in theApproximate Arrangementprotocol, a sensor assumes its position is
anywhere within range of its neighbor anchors that is out of range of its neighbor-neighbors
anchors, see Fig. 1(d).

We define theuncertaintyof position for a sensor to be the area size of the possible loca-
tions for it and present analytic expressions for the expected uncertainty in the Intersection
and Arrangement protocols. Furthermore, we show that the Arrangement protocol reaches
the same expected uncertainty as the Intersection protocol with at most 1/2 of the anchors.
We then consider the approximation protocol, showing both analytically and by simulations
that its expectation converges to that of the Arrangement protocol.

1.1. Related work

Numerous range-free localization mechanisms have been proposed. The first solutions
were typically central. For example, the connectivity matrix of the sensors is used in [3] to
constrain the possible locations of the sensors in the network, achieving a position estima-
tion by centrally solving a convex optimization problem. Many distributed solutions were
also suggested. In the Centroid strategy, sensors locate themselves at the center of mass
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Fig. 1. Four anchors (numbered crosses) and several other sensors (bullets) are scattered in the unit diskD. Anchor
xi broadcasts its coordinates in the disk,D(xi ,�), that is centered atxi and has radius� (a). Sensorscan use the
Intersection protocol (b) to position itself at the intersection of the disks related to anchors within range (1 and
2). It can use the Arrangement protocol (c) to position itself at the intersection of these disks that is not within
range of any of the other anchors, 3 and 4. Or it can use the approximation (d) to locate itself in a slightly bigger
region, defined in this case by the intersection of the ranges of anchors 1 and 2 that is not in the range of anchor 4
(anchor 3 is ignored because it is not a neighbor of the neighbors ofs).

(the centroid) of the locations of anchors they can detect[2,1]. Other approaches [7,6] as-
sumed node to node communication can be used to flood the location of all the anchors to
all the sensors. Using the hop-count as an estimate of the Euclidian distance (by computing
the average distance between sensors [7] or by analytically deriving it [6]), a sensor can
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estimate its position via triangulation. The accuracy of all of these solutions, however, was
evaluated experimentally, rather than analytically.

The research of range-based systems has been more extensive, supplying bounds on the
achievable positioning accuracy when assuming specific calibration data, noise patterns
and location distribution. In particular, lower bounds for the localization uncertainty using
the Cramér–Rao bound were presented in[11,8]. Still, the behavior of the specific algo-
rithms is almost always investigated by simulation, either by the authors or in subsequent
works [5].

1.2. Paper organization

Section 2 describes the model we use. In Section 3 we analyze the expected uncer-
tainty of the Intersection protocol. In Section 4 we analyze the expected uncertainty of the
Arrangement protocol, comparing it with the results of Section 3. In Section 5 we describe
the approximation protocol and show that its expected accuracy converges to that of the
Arrangement protocol. We conclude the paper with Section 6.

2. Model

For any pointp in the unit diskD and for any constant,�, denote byD(p, �) the disk
centered atp and of radius� (if p is the origin we simply writeD(�)). To emphasize that a
particular disk contains only the points inD that are at least� away from the boundary�D

we writeD� := D(1 − �).
Generally we assume thatN sensors,S1, . . . , SN , are placed by choosing the location of

each independently from the uniform distribution over the unit diskD in the plane. Any two
sensorspi, pj , can communicate with each other only if the Euclidean distance between
them is less than or equal to thecommunication range, � < 1/3, ‖pi − pj‖��. In this
case we say that the two sensors arewithin rangeof each other and consider them to be
neighbors.

Of the N sensors, onlyK know their coordinates. We name such sensorsanchorsand
denote the set of anchors bySA. We will often abuse notation and considerSA to be the set
of the point locations of the sensors.

To avoid boundary effects we assume that while the anchors are randomly placed in all
of D, the otherN − K sensors are randomly placed in the smaller regionD�. It is easy
to see that without this assumption sensors close to the boundary ofD would have lower
probability of having anchor neighbors. Moreover, for simplicity it is necessary to restrict
the expectation analysis to the sensors that are inD3�. For consider the case where a sensor
Shas exactly one neighbor anchor that is positioned less than� away from the boundary of
D�. Obviously, in this case the set of possible locations forSdepends on the exact distance
of its neighbor from the boundary.

3. Localization by intersection

The simplest localization approach for a sensor is to collect the positions of all its neighbor
anchors and place itself somewhere at the intersection of the communication ranges of all
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these anchors, see Fig.1(b). This is probably the most direct localization mechanism and
it has been studied in [10]. Their analysis, however, is wrong since it neglected to take
into account all the possible scenarios (for example, the caseSN = ∅). In this section
we introduce a new and simpler approach for the analysis of the expected size of this
intersection, achieving correct results as opposed to [10]. Furthermore, we use the standard
R2 space withL2 norm, rather than the discreteL∞ model used in [10].

Let Sbe a randomly picked sensor and denote bySN the set of its anchor neighbors.

SN = {s ∈ SA : ‖s − S‖��}. (1)

Denote byIS the area of possible locations forS

IS =




⋂
s∈SN

D(s, �) if SN �= ∅,

D� otherwise.

That is, IS is the area of the intersection of the communication ranges of the neighbors of
S if there are any, or the entire set of possible places,D�, otherwise.

LetX = |IS | be the area size ofIS . ThenX is a random variable, 0�X��(1 − �)2 and
its expectation, E(X), can be analyzed:

E(X) =
∫

DK
�−K

(∫
D�

1IS (u)du

)
dp1 dp2 · · · dpK,

where 1IS (u) is the indicator function,

1IS (u) =
{

1 u ∈ IS,

0 otherwise.

Rewriting the integration,

E(X)=
∫

D�

(∫
DK

�−K1IS (u)dp1 dp2 · · · dpK

)
du

=
∫

D�

Pr[u ∈ IS] du.

For any sensorS ∈ D3� denote byE1 the event whereu /∈ D(S,2�) and byE2 the event
whereu ∈ D(S,2�). Avoiding boundary affects by restricting the analysis toD3� we have

E(X|S ∈ D3�) =
∫

D�\D(S,2�)
Pr[u ∈ IS |E1] du +

∫
D(S,2�)

Pr[u ∈ IS |E2] du.
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Fig. 2. For the Intersection protocol pointu,0�‖u‖�2� is in IS if none of theK anchors fall in the shaded area
in (a). For the Arrangement protocol pointu,0�‖u‖�2� is in AS if none of theK anchors fall in the shaded
area in (b).

If u is outsideD(S,2�) then it is inIS only if SN = ∅ (Shas no neighbor anchors). Thus,

Pr[u ∈ IS |E1] = Pr[u ∈ IS |u /∈ D(S,2�) ∧ S ∈ D3�] =
(
1 − �2

)K
and therefore

E(X|S ∈ D3�) =
(
1 − �2

)K (
�(1 − �)2 − 4��2

)
+
∫
D(S,2�)

Pr[u ∈ IS |E2] du.

On the other hand, pointu ∈ D(S,2�) is in IS only if every anchor in the range ofSis also
in the range ofu. Hence,u is in IS only if all theK anchors fall outsideD(S, �) \D(u, �);
see Fig.2(a).

Notice that the two disks intersect in a lens-shaped region,l, whose size|l| depends only
on‖u − S‖. By moving the origin toSand changing to polar coordinates we have,

E(X|S ∈ D3�)=
(
1 − �2

)K (
�(1 − �)2 − 4��2

)
+2�

∫ 2�

r=0

(
1 − �2 + �−1|l(r)|

)K
r dr.

LetA,C be the two points located at the cusps of the lensl(r), see Fig. 3. Denote byB the
intersection point of the chordAC with the segmentSuthat connects the two disk origins
and mark by� the angle� ASB. Then the area ofl(r) is |l(r)| = 2�2� − �r sin�, where
r = 2� cos�, so

|l(r)| = 2�2 arccos( r
2� ) − �r

√
1 − ( r

2� )
2. (2)

Finally, we have

E(X|S ∈ D3�)=
(
1 − �2

)K (
�(1 − �)2 − 4��2

)
+2�

∫ 2�

r=0

(
1−�2+ 2

��2 arccos( r
2� )−�

� r
√

1−( r
2� )

2
)K

r dr. (3)
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Fig. 3. The size of the lens (shaded area) created by the intersection of the two disksD(S,�) andD(u,�) is
|l(r)| = 2�2� − �r sin�.

4. Localization by arrangement

It is possible to improve the basic Intersection protocol if we assume that every sensor
knows the position of all theK anchors (rather than just its neighbors). This information
can be gathered by flooding it over the network or by placing the sensors in several phases.
With this knowledge a sensor can position itself at the intersection of the communication
range of its anchor neighbors that is not within range of any other anchor; see Fig.1(c). In
this section we analyze the expected uncertainty of the Arrangement protocol and show that
it achieves the same expected uncertainty as the Intersection protocol using at most half the
anchors.

As before, letSbe a randomly picked sensor,SN be the set of its anchor neighbors and
denote bySc

N all the other anchors,Sc
N = SA \ SN . Let AS be the set of all the possible

places forS,

AS =




⋂
s∈SN

D(s, �) \ ⋃
s∈Sc

N

D(s, �) if SN �= ∅,
D� \ ⋃

s∈Sc
N

D(s, �) otherwise.
(4)

That is, ifShas neighbors thenAS consists of all the points inD� that are in range of the
neighbor anchors ofSand out of range of all the other anchors. IfShas no neighbor anchors
thenAS consists of all the points inD� that are outside the range of all the anchors.1

Following the proof strategy and notation of Section 3, we defineE1 to be the event
thatu /∈ D(S,2�), E2 to be the event thatu ∈ D(S,2�) and consider only cases where

1 It should be noted thatAS does not have to be convex, or even connected (consider e.g. configurations where
SN = ∅).
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S ∈ D3�. DenotingX = |AS | the area ofAS we have

E(X|S ∈ D3�) =
∫

D�\D(S,2�)
Pr[u ∈ AS |E1] du +

∫
D(S,2�)

Pr[u ∈ AS |E2] du.

Now pointu /∈ D(S,2�) can be inAS only if bothSandu have no anchor neighbors,

Pr[u ∈ AS |E1] = Pr[u ∈ AS |u /∈ D(S,2�) ∧ S ∈ D3�] =
(
1 − 2�2

)K
.

Pointu ∈ D(S,2�) is in AS only if all the K anchors fall outside(D(S, �) ∪ D(u, �)) \
(D(S, �)∩D(u, �); see Fig.2(b). Thus, denoting byr the distance ofu fromS, r = ‖u−S‖,
we have

Pr[u ∈ AS |E2] = Pr[u ∈ AS |u ∈ D(S,2�) ∧ S ∈ D3�]
=
(
1 − 2�2 + 2�−1|l(r)|

)K
,

where|l(r)| is the area of the intersection of the two disks given in (2). AssumingS is at
the origin and changing to polar coordinates we finally have

E(X|S ∈ D3�)=
(
1 − 2�2

)K (
�(1 − �)2 − 4��2

)
+2�

∫ 2�

r=0

(
1 − 2�2 + 22

��2 arccos( r
2� )

−2�
� r
√

1 − ( r
2� )

2
)K

r dr, (5)

where the emphasized factors of 2 are the only difference in the expression from the expec-
tation of the Intersection protocol.

4.1. Arrangement vs. intersection

It is not too difficult2 to see that asymptotically both (3) and (5) behave like O(1/K2).
The asymptotic behavior, however, is not particularly helpful since we are interested in the
cases whereK is small.

Denote byEK
I (EK

A ) the expectation of the area of uncertainty of the Intersection protocol
(Arrangement protocol) usingK anchors and a constant�.

Let c > 1 be some constant s.t.EK
A �E

(cK)
I . Denoting

xr = �2 − �−1|l(r)|, 0�r�2�,

we requirec to be such that for allr, (1−2xr)K �(1−xr)
cK . Noticing that 0�xr ��2 < 0.5,

it is not difficult to see that

(1 − 2x)K �(1 − x)2K 0 < x < 0.5,

so thatc = 2 will do. As can be seen in Fig.4, the constant is almost precisely two for any
reasonable choice of�.

2 The first term of (3), (5) diminishes exponentially withK for any constant�. The second term is bounded by∫ 1
r=0 c1r(c2 − c3r)

K dr = O(1/K2), for the appropriate constants.
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Fig. 4. A linear-log graph of the expected area size for the Intersection and Arrangement protocols (� = .1). The
horizontal bars are aligned with the graph corresponding to the Intersection protocol and mark the middle point in
terms ofK. As can be seen, the Arrangement protocol achieves the same expected accuracy with almost precisely
1
2K anchors.

5. Approximating the arrangement

To consider a practical approximation for the arrangement protocol we assume that an-
chors can listen to the broadcasts of other anchors. Although at first anchors can only
broadcast their own position, after an initial step every anchor can learn the positions of
its neighbor anchors and broadcast the information along its own position. A sensor can
thus create two disjoint lists: a list of its neighbors and a list of its neighbor-neighbors that
are not also its own neighbors. A sensor can now position itself at the intersection of its
neighbors that is not within range of any of its neighbor-neighbors, see Fig.1(d). As we
show, the accuracy of this protocol converges to the accuracy of the arrangement protocol
when the number of anchors increases.

Let Sbe a randomly picked sensor. Denote as usual bySN the set of its anchor neighbors
and bySNN the set of anchors which are not neighbors ofSby themselves, but which have
neighbors out ofSN .

SNN = {s ∈ Sc
N : ∃s′ ∈ SN s.t.‖s − s′‖��}.

Denote byAaprx
S the set of possible places forS. Then

A
aprx
S =

{ ⋂
s∈SN

D(s, �) \ ⋃
s∈SNN

D(s, �) if SN �= ∅,
D� otherwise.

(6)

That is, ifShas neighbors thenAaprx
S consists of the places that are within the range of the

neighbors ofSand outside the range of its neighbor-neighbors. IfShas no neighbors then
A

aprx
S consists of all ofD�.
When evaluating E(|Aaprx

S |), one can use the same type of arguments as in Section3
for positions that are outsideD(S,2�) (such positions are inAaprx

S only if SN = ∅).
However, for any pointu ∈ D(S,2�), the expectation is conditioned on the number and
position of anchors inD(u, �) ∩ D(S, �); see Fig. 5. It is not trivial to analytically ex-
press the expectation for this case. Instead, we show that for a large enoughK the area of
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Fig. 5. Conditioned on the position of the two anchors inD(S,�) ∩ D(u,�) (marked by crosses), pointu is in
A

aprx
S

if the otherK − 2 anchors fall outside the shaded area.

uncertainty returned by the Approximation protocol is equal with high probability to the
area of uncertainty returned by the original Arrangement protocol.

5.1. Convergence in probability

For any sensorS and any specific configuration of locations of anchors, denote byAS

the set returned by the Arrangement protocol as defined in (4) and byAaprx
S the set returned

by the Approximation protocol as defined in (6). Taking the definition ofSN andIS from
Section 3 and the definition ofSNN from Section 5 we defineSO to be the set of anchors
that are not inSN and yet are within range of some point inIS ,

SO = {s ∈ Sc
N : ∃u ∈ IS s.t.‖u − s‖��}.

Thus,SO consists of all the anchors that help reduce the size ofAS from the size ofIS .
As usual, we abuse notation and treatSO also as a set of point locations.

Denote byBW,BE,BN,BS the four disjoint disks fully contained inD(S, �) and of

radiusc� for the constantc =
√

2−1
3
√

2
< 1/4 which are placed inD(S, �) at the leftmost,

rightmost, topmost and bottommost possible positions, respectively; see Fig.6(a). Thus,
assuming as usual thatS is at the origin we haveBW = D(((c − 1)�,0), c�), BE =
D((1− c)�,0), c�), BN = D((0, (1− c)�), c�), BS = ((0, (c − 1)�), c�). The following
geometric lemmas assert that if there is at least one anchor in each ofBW,BE,BN,BS then
SO ⊂ SNN .

Denote byB the event that there is at least one anchor in each ofBW,BE,BN,BS . The
following lemma asserts that conditioned on this event, the area of intersectionIS must be
contained in the disk of radius 2

√
2c� aroundS.

Lemma 5.1. Conditioned onB, IS ⊂ D(S,2
√

2c�).
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Fig. 6. If there are anchors in each ofBW ,BE,BN ,BS then the area of intersection of the neighbors ofS, IS , is fully
contained in the square centered atSand of side 4c� which is inscribed by the diskD(S,2

√
2c�) (a). Furthermore,

the range of every anchor inD(S, (1 + 2
√

2c)�) must fully contain at least one of the disksBW ,BE,BN ,BS

where at the critical angles, easily shown to be�t = �
4k, k ∈ N, it must fully contain two out of them (b).

Proof. Let u be a point inIS . By the definition ofIS there must be pointsvW ∈ BW, vE ∈
BE, vN ∈ BN andvS ∈ BS such that‖u − vW‖, ‖u − vE‖, ‖u − vN‖, ‖u − vS‖��. By
the convexity ofBW , u must belong to the half planex�2c�. Likewise, by the convexity of
BE,BN,BS u must belong to the half planesx� − 2c�, y� − 2c�, y�2c�, respectively;
see Fig.6(a). Thus, any pointu ∈ IN must belong to the square inscribed by the boundary
of D(S,2

√
2c�) and the lemma holds.�

The following trivial corollary asserts that the anchors inSO cannot be too far fromS.

Corollary 5.2. Conditioned onB, SO ⊂ D(S, (1 + 2
√

2c)�).

In the last geometric lemma we show that anchors inSO must have at least one of
BW,BE,BN,BS fully within range, soSO ⊂ SNN .

Lemma 5.3. Conditioned onB, SO ⊂ SNN .

Proof. By Corollary5.2 every point inSO must be in the annulusD(S, (1 + 2
√

2c)�) \
D(S, �). Consider at first the points on the boundary(�, (1 + 2

√
2c)�), 0���2�, and in

particular, start withu = (0, (1 + 2
√

2c)�). It is not hard to see that in this caseBE ⊂
D(u, �). Now gradually increase� until BE is also tangent to�D(u, �) and denote this
critical angle by�t . Mark by t the tangent point and byE the center ofBE and consider
the triangle�SuE. By the choice ofu, ‖S − u‖ = (1 + 2

√
2c)�. By the construction of

BE , ‖S − E‖ = (1 − c)� and sincet is a tangent point,‖u − E‖ = ‖u − t‖ − ‖t − E‖ =
(1− c)�. Therefore,�t is easily derived to be�t = �/4. Thus, the lemma holds all pointsu
at the boundary with 0����/4. The same type of argument can be used to show that the
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lemma holds also for�/2����/4 and so on for all�. Notice that at the critical angles,
�c = �

4k, k ∈ N, diskD(u, �) fully contains 2 disks out ofBW,BE,BN,BS . Thus, the
lemma holds for all the boundary.

Now consider a pointu = (�, �) ∈ D(S, (1 + 2
√

2c)�) which is not on the boundary.
Denote byu′ its projection on the boundaryu′ = (�, (1 + 2

√
2c)�), and byB ′ a disk out

of BW,BE,BS, BW that is fully contained inD(u′, �). SinceB ′ is also fully contained
in D(S, �) and sinceD(S, (1 + 2

√
2c)�) is convex, it follows thatB ′ must also be fully

contained inD(u, �) and the lemma holds.�

Lemma 5.4. Conditioned onB, Aaprx
S = AS .

Proof. SinceShas neighbor anchorsAS = IS \⋃s∈SO
D(s, �) andAaprx

S = IS \⋃s∈SNN

D(s, �) (see (4), (6)). By Lemma 5.3SO ⊂ SNN , and by definition ofSO any anchor in
SNN which affects the size ofAS is also inSO so the lemma follows. �

It is not hard to show that the probability that there is at least one anchor in each of
BW,BE,BN,BS is asymptotically 1. Thus, the size of the area of uncertainty computed by
the approximation protocol converges in probability to that of the Arrangement protocol.

Theorem 5.5. |Aaprx
S | P→ |AS |.

Proof. For any� > 0, � > 0 defineK0(�) = �−2 ln(4/�). Given anyK�K0(�) the
probability for any specific disk out ofBW,BE,BS, BN to remain empty is(1 − �2)K .
Denoting byX the number of such empty disks, it follows that E(X) = 4(1 − �2)K so,
using the Markov inequality,

Pr[B] = 1 − Pr[X�1]�1 − E(X) = 1 − 4(1 − �2)K �1 − 4e−�2K �1 − �.

Thus, by Lemma5.4, for allK�K0

Pr[|Aaprx
S | − |AS | > �]�1 − Pr[B]��

and the theorem holds.�

Since |Aaprx
S |� |IS | and E(|IS |) < ∞ the next corollary follows from the Lebesgue

Dominated Convergence Theorem.

Corollary 5.6. E(|Aaprx
S |) → E(|AS |).

In practice E(|Aaprx
S |) converges more rapidly. Fig.7 presents simulation results for the

expected uncertainty of the Approximation protocol plotted against the expectations of the
Intersection and Arrangement protocols. As can been seen, the simulated expectation does
converge to that of the Arrangement protocol. It should be noted that whenK is small, all
three expectations are dominated by the event whereShas no neighbor anchors (SN = ∅).
In this case the size of the area of uncertainty is the unit disk, which is typically very
large compared to the other cases. As more anchors are placed, the probability of this event
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Fig. 7. Simulation results for the expected uncertainty of the Approximation algorithm are plotted together with
the calculated expectations of the Intersection and Arrangement protocols (� = .1). The simulated expectation
converges to that of the Arrangement protocol.

quickly diminishes to the point where it has negligible effect.This behavior, however, creates
an anomaly in the shape of a phase transition in a straightforward simulation. Therefore,
the data presented in Fig.7 is the simulation results conditioned onS having neighbors
analytically adjusted to take into account the case whereSN = ∅.

6. Conclusions

We consider three range-free localization protocols for sensor networks and analyze their
expected positioning accuracy under random sensor distribution. Assuming a small set of
anchor nodes that know their position and broadcast it, we investigate at first the case
where sensors position themselves at the intersection of the broadcast range of the anchors
they detect (their neighbors). We then consider the positioning uncertainty when sensors
avoid positioning themselves in places that are in the range of non-neighbor anchors, and
an approximation to the second case where the proximity of only some local subset (the
neighbor neighbors) of all the non-neighbor anchors is avoided.
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