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Abstract—Polling models have been extensively studied in the last two
decades. As a result, a large body of knowledge has been built in this
area and they became a powerful tool for the performance analysis of a
wide variety of important applications.

The goal of this paper is to expose the application oriented reader to
the modeling and analysis capabilities of polling systems. We review the
state-of-the-art in this field, focusing on applications and their represen-
tation by polling models, and on their analysis and optimization issues.
Examples include token rings, ARQ and time-sharing schemes,
random-access protocols, robotics, and manufacturing systems, ete, The
emphasis is not on the analytical derivations but rather on the descrip-
tion of the capabilities and limitations of the different polling models.

I. INTRODUCTION

OLLING systems were first introduced in the early 1970’s when

the cyclic polling system was used to model time-sharing
computer systems. This triggered extensive research efforts which
continued over the last two decades. During this period numerous
researchers from various areas, mainly engineering, discovered that
polling systems are powerful tools in modeling a wide variety of
applications. As a result of the flourishing research, a rich source of
knowledge and understanding emerged in this area, computational
techniques have been improved and new analytical approaches have
been developed, increasing the attractiveness and the usefulness of
the model. In addition, the original models have been extended, and
their modeling power has been increased.

Today, the field of polling systems offers both practitioners and
researchers a large set of tools suitable for modeling and analyzing a
wide variety of interesting and important applications. The common
denominator of all polling systems is that they consist of a single
resource of service shared by multiple queues. The range of
applications in which polling models can be used is very broad.
They include computer communications, robotics, traffic and trans-
portation, manufacturing, production, mail distribution, etc.

The goal of this paper is to survey the field of polling systems,
putting the emphasis on - applications and keeping in mind the
application oriented user. The objective is to draw the attention of
the reader to the capabilities as well as to the limitations of polling
models in representing various applications. Our approach is to
review the different applications and to examine how they can be
represented and analyzed via known models and techniques in the
area of polling systems.

Among polling models the most common one is the cyclic polling
model that was first used in the analysis of time-sharing computer
systems. This model regained much attention in the early 1980’s in
the performance analysis of token passing systems such as token
ring and token bus and other demand-based channel-access schemes
in local area networks. This model, which we call the basic model,
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and some of its applications are described in Section II. In recent
years the basic model has been extended and enhanced in various
directions allowing the analysis of relatively complex and new
applications. One enhancement allows the routing of customers
between the queues within the system. Customer routing allows to
represent a variety of features which cannot be represented by the
basic model. Examples include the modeling of acknowledgments
and distributed algorithms in token ring networks and complicated
robotics and manufacturing systems. This extension and its applica-
tions are described in Section IIl. The replacement of a fixed
polling order of visits by a random polling order allows to model
distributed control systems in which stochastic algorithms are used
to determine which station will be served next. Packet-ratio net-
works serve as a good example for an application of random polling
and this is described in Section IV. Another set of extensions
eliminates several independence assumptions used in the basic model.
Examples of applications in which such extensions are required are
token ring networks with token-acquisition overhead, disc systems
with spread data, etc. These extensions and their applications are
described in Section V.

In addition to the modeling aspects of polling systems we are
interested in the aspects of performance improvement and system
optimization issues. Traditionally, these are the ultimate goals of
any modeling and analysis effort. The basic polling system leaves
little room for effective performance improvement or system opti-
mization. In recent years several approaches which enhance the
optimization capabilities of polling systems have been introduced.
Such approaches include polling according to a prespecified order,
servicing according to the Bernoulli or the binomial service disci-
plines and semidynamic polling orders, and they are described in
Section VI. ‘‘Pseudo’’ conservation laws for polling systems, which
have recently been introduced, play an important role in both
analysis and optimization, and they are described in Section VI as
well.

The performance measure that is of great importance in most
systems is the response time of the system. In computer and
communication systems where the units that get service are mes-
sages, this corresponds to the message delay time—the time elapsed
from the instant the message enters the system until it is delivered to
its destination. In particular, we will be interested in the mean
delay observed in the various queues of the system. Another
performance measure that is of interest is the amount of work in
the system—the amount of time the server (or servers) will have to
invest in order to clear the system. A performance measure often
used in the analysis of polling systems is the cycle time—the time
between two successive visits of the same queue. In the sequel, we
will mainly focus on these performance measures, in particular on
their mean values.

Last, a word about related literature. Several tutorial works on
polling (Watson [73], Takagi [66] and Takagi [68]) have been
published in recent years. The goal of this paper is not to provide an
alternative to those works, but rather a complement. The emphasis
in those works is on detailed and comprehensive description of the
analysis methodology and on providing a thorough literature review,
and thus they appeal mainly to researchers. In contrast, as stated
above, our emphasis is on discussing all aspects related to applica-
tions, namely modeling, optimization issues and practical considera-
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tions. For completeness, we summarize very briefly the analytic
methodologies used in polling systems in Sections II-C and -D. For
a detailed description of these methodologies the reader should refer
to Takagi [66] and for a thorough reference list to Takagi [68].

1I. THE ‘‘TrADITIONAL’’ CyCLIC POLLING MODEL

A, The Time Sharing System: A Single Computer and N
Terminals

Time-sharing computer systems triggered the research in the area
of polling systems at the early 1970’s. A time-sharing computer
system consists of N terminals connected by multidrop lines to a
central computer. The data transfer from the terminals to the
computer (and back) is controlled via a ““polling scheme”’ in which
the computer ‘‘polls’’! the terminals, requesting their data, one
terminal at a time. The order in which the computer polls the
terminals is usually cyclic. This system and many others have been
modeled and analyzed by the ‘‘traditional’’ polling system, which
has been extensively studied in the last two decades. This model is
described below.

B. The “‘Traditional’’ Cyclic Polling System

The “‘traditional’’ polling system, to be called in the sequel the
basic model, consists of N infinite size? queues and a single server
which serves them one at a time. The model has been treated both in
a continuous-time framework and in a discrete-time framework
which are equivalent in most aspects; our discussion below focuses
mainly on the continuous time framework. The arrival process to
queue i is assumed to be an independent Poisson stream with rate
N;- The customers arriving to queue i are called type-i customers,
and are assumed to have service time B; which is a random variable
whose Laplace-Stieltjes transform (LST), first moment and second
moment are given by B¥(s), b;, and b{?, respectively. The actual
service time of a specific customer is assumed to be independent of
the other system variables. After being served at queue i, a type-i
customer is assumed to leave the system.

The server visits (or, polls) the queues in a cyclic order
(namely, in the order 1,2,--+, N, 1,2, - - - ) and for convenience of
notation all references to visit index are done modulo N. After
completing a visit to queue i, the server incurs a switch-over period
(walking time) whose duration is S; (a random variable) with LST,
mean and second moment S¥(s), s;, and s, respectively; we let
s = XN |5;. The period during which the server continuously serves
queue |/ is called a service period of queue i and the succeeding
period is called a switchover period of queue i. In the text we
sometimes distinguish between systems with zero switch-over peri-
ods and systems with nonzero switchover periods; in the former all
switchover periods are deterministically of zero length, while in the
latter they are not. A system in which all switchover periods are
deterministically of zero length is called a system with zero switch
over periods. The model is schematically depicted in Fig. 1.

This system models the time-sharing computer system as follows.
The server represents the central computer, the queues represent the
terminals and the customers represent the messages (or data units)
transferred between the terminals and the computer.

Several service policies have been examined and studied in the
context of polling systems. Among them the most common ones are
the exhaustive, gated, and limited-1 policies. In the exhaustive
policy the server serves queue / until the queue becomes completely
empty. In the gated policy the server serves in a given service
period all the customers which were present at the queue when the
queue was polled (polling instant). In a limited-1 policy at most one
customer is served in each visit to the queue.

“This is probably the source for the term polling systems.

An alternative model is one in which the queue size is limited; a special
case is a model with a single buffer in each queue. The latter is used to
represent applications called clearing systems in which the queue may
contain a large number of buffers but the service time of a queue does not
depend on the number of customers in the queue (see Takine, Takahashi, and
Hasegawa [70], [71]).
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Fig. 1. A cyclic polling system.
C. Analysis

From the analysis aspect, polling systems with limited-1 service
are inherently different from those with exhaustive or gated service.
We, therefore, divide our discussion into two parts. The first is
devoted to exhaustive and gated polling systems and the second to
limited-1 polling systems. Note that some of the analysis of polling
systems has used results from the analysis of single server queueing
models with vacations. We do not elaborate on this subject and the
reader is referred to the survey in Doshi [23].

1) Exhaustive and Gated Polling Systems: Cyclic polling sys-
tems with either the exhaustive or gated service policies are stable as
longas p £ T ,p; 2 Zﬁl)\ibi < 1. Note that this condition does
not depend on the switchover periods. The reason is that once the
server arrives to a queue it is dedicated to serve all the work
accumulated in the queue without any interruption. Thus, when the
system becomes heavily loaded, the wasted time during switchover
periods is negligible compared to the time the server is busy in
service.

Several methods have been developed for computing the mean
delay in the various queues in exhaustive and gated polling systems.
All these methods require the solution of sets of linear equations.
The first method is the buffer occupancy method which was used
by many researchers (Cooper and Murray [22] and Cooper [21] for
systems with zero switch-over periods, Eisenberg [25], Hashida
[31], Konheim and Meister {41], and Rubin and DeMoraes [56] for
systems with nonzero switchover periods). In this method the mean
waiting times are computed using the set of variables { X7}, (1 <
i, j = N), in which X/ represents the number of customers present
at queue j when queue / is polled. We call these variables the
buffer occupancy variables. Closed-form expressions are known
for the first moments of the buffer occupancy variables (E[ X ,/]).
The cross correlations of these variables, E[ X/X¥], are obtained
by solving a set of N> linear equations with N 5 unknowns® (see a
summary of these equations in the Appendix). It is recommended to
solve this set of equations iteratively, and it is known (Levy [47])
that this procedure converges and it requires O(N3 log o €) compu-
tation steps (where p is the system utilization and e is the accuracy
required). Once the values of E[ X7 X, ,-k ] are known, a closed-form
expression for the mean delay in each queue is readily available (see
the Appendix). The buffer occupancy method was the most com-
monly used method until more sophisticated techniques have been
developed. The mean delay analysis of most variations of polling
systems is available via this technique.

Another method that has been developed a few years later is the
station-time method presented in Humblet [33] and Ferguson and

3Note that for systems with zero switchover periods the sets can be
reduced (Cooper and Murray [22] and Cooper [21]) to contain only N2
variables.
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Aminetzah [27] (a different variation of the method is given in
Carsten, Newhall, and Posner [18]). In this method the mean delay
values are computed using the station-time variables. The station
time variable, U; (1 < j = N), is the sum of two variables: V;—the
duration of a visit to queue j, and S; ~the duration of the
preceding switchover period. Similarly to the case of the buffer
occupancy method, closed-form expressions are known for E{U;].
The cross correlations of these variables, E[U;U]} (where U; and U
are the station times of stations j and i, respectively, and station j
is visited after station /), are obtained by solving a set of N7 linear
equations with N2 unknowns (see a summary of these equations in
the Appendix). Once the values of E[U,Uj] are known, a closed-
form expression for the mean delay in each queue is again readily
available. The structure of these equations is simpler than that of the
buffer occupancy equations and thus the iterative solution version of
the corresponding set of equations seems to be slightly more effi-
cient. The method has been applied to many variations of polling
systems.

The third method is a very efficient iterative variation of the
buffer occupancy method. The method has been developed by
Swartz [64] and requires O(N log , €) computations to solve for the
mean delay of a single station. Unfortunately, the method has been
derived only for the discrete-time exhaustive polling system.

The fourth method has recently been developed by Sarkar and
Zangwill [57] and it is an efficient variation of the station-time
approach, which applies to many variations of polling systems. The
method requires the solution of only N linear equations to derive
the mean delays in all N stations. Nevertheless, it seems that since
this set of equations is very dense, the equations cannot benefit from
the use of iterative approaches for their solution and thus the method
requires O(N 3 computations.

From a practical point of view, the above methods allow the exact
computation of the mean delays for most reasonable size systems.
With the slower methods one can easily handle systems consisting of
30-40 stations on a minicomputer. With the faster methods, even
systems consisting of 500 stations can be easily handled. For a more
detailed discussion of these methods and their merits see Levy [47]
and Levy [48].

2) Limited-1 Polling Systems: Similarly to the exhaustive and
gated systems, cyclic polling systems with limited-1 service require
that p < 1 for their stability. However, this condition is not suffi-
cient. Since in each cycle at most one customer is served in each of
the queues, it is also required that the expected number of customers
arriving at queue / during a cycle is smaller than one (this guaran-
tees that each queue will be stable). This condition is translated to
Nis/(L— p) < 1, since 5/(1 — p) is the expected length of a cycle
when the system is stable (see Kuehn [43], Servi [58], [59]).

In contrast to the exhaustive and gated polling systems the
limited-1 polling systems do not lend themselves to a simple delay
analysis. These systems seem to be inherently difficult to analyze
and thus exact solutions are not available for general cases. Exact
solutions do exist for the following two types of special configura-
tions: 1) systems consisting of two queues with general parameters;
2) fully symmetric systems with N queues (in which the parameters
of all staions are identical). The analysis of the first type involves
translation of the problem into a two-dimensional boundary value
problem of mathematics and physics, like a Riemann-Hilbert prob-
lem. The analysis can be found in Eisenberg [24], Cohen and
Boxma {19], Boxma [7], and others. The analysis of the second type
of systems leads to a closed form expression for the mean waiting
time which is given in the Appendix (for details refer to Nomura
and Tsukamoto [55], Fuhrmann [28], and Takagi [65]). Solutions
that are based on numerical calculations and can achieve high
accuracy require massive computations (exponential in the number
of queues), and thus are limited to systems with a small number of
queues, about 5-10. Such solutions are available in Blanc [6] and
Leung [45].

Unfortunately, the problem of computing exact mean delays in
general limited-1 systems seems to be unsolvable. As a result, the
tools available to the researcher or the application user are either to

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 38, NO. 10, OCTOBER 1990

use simulations or to develop approximations for general configura-
tions. Several such approximations have been suggested in the last
decade, most of them sharing the following properties.

1) They consist of a few equations and mathematical expressions.
Thus, their evaluation does not require heavy computations (in
contrast to the exhaustive and gated systems).

2) The expressions provided are exact for some special cases
(e.g., fully symmetric systems).

3) Their accuracy is quite good either when the total system
utilization is relatively low (p > 0.5) or when the system is rela-
tively symmetric (i.e., the parameters of the different stations are
relatively close to each other). By good accuracy we mean that the
relative error in predicting the mean delay of the specific stations is
up to 5-10%.

4) For heavily loaded (p > 0.8) and relatively unbalanced sys-
tems (e.g., p, = Py = =p,p=0.03 and p;; =05 in an
eleven station system) the approximations may be very inaccurate
and can reach relative errors of 50% and up compared to simula-
tions.

The approximate solutions available today are given in Kuehn
[43], Boxma and Meister [12], Fuhrmann and Wang [30], Groe-
nendijk [74], Srinivasan [63] and Ibe and Cheng [34]. Recent
approximate solution methods are based on the ‘“pseudo’” conserva-
tion law derived by Boxma and Groenendijk [9] (see description in
Section VI). It is hard to come up with definite statements regarding
the relative quality of the different methods since it depends on the
specific parameters of the system. For detailed numerical compar-
isons of the various approximations the reader is referred to the
references mentioned above.

D. Comparison of the Service Disciplines

The various service disciplines differ in their characteristics.
From a global point of view (namely, considering the system as a
whole) the exhaustive policy is considered more ‘“efficient’’ than the
gated policy, which is more “‘efficient’’ than the limited-1 policy. In
fact, if the criterion of efficiency is the weighted sum of the mean
waiting times (where the weights are the variables {p;}), then the
policies are ranked according to this order (this is a direct result of
the conservation law, described in Section VI). This also implies
that in fully symmetric systems this ranking holds for the mean
waiting time as well. Moreover, if the efficiency criterion is the
amount of unfinished work in the system, it can be shown that the
exhaustive system stochastically dominates the gated system which
stochastically dominates the limited-1 system (see Levy, Sidi, and
Boxma {52]). On the other hand, if the performance criterion is
““‘fairness,”’ it is commonly believed that the policies should be
ranked in reverse order. Note however that *“fairness’’ has not been
well defined (and therefore not analyzed), so this belief should be
considered accordingly. The reasons for this belief are twofold. 1)
In the exhaustive policy (and somewhat in the gated policy) the
heavier stations receive better attention by the server and thus their
customers suffer less delay than those of the light stations. 2) The
exhaustive policy (and the gated policy) tends to serve many of the
customers in what amounts to a Last Come-First Served order.

E. Applications

The basic polling model has been used in numerous applications.
In the following we review a few of these applications.

1) Token Ring Networks: A ring network can be characterized
as a sequence of point-to-point links between stations, closed on
itself. All messages travel over a fixed route from station to station
around the loop. In token ring networks the access to the ring for
transmissions is controlled by a token, which is a dedicated bit
structure that can be in one of two possible states: occupied or free.
When the ring is first activated, a free token circulates around the
ring from station to station. A station with data to transmit reads the
free token and changes it to the occupied state before retransmitting
it. The occupied token is then incorporated as part of the header of

~ data transmitted on the ring by the station. Thus, other stations on
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the ring can read the header, note the occupied token and refrain
from transmitting. In most applications, the station that changed the
token to occupied will change the token to free when it decides to
transfer the right for transmission to another station (see Bux [15]).

The modeling of a token ring network by the basic polling system
is very natural. The stations of the ring are the stations of the
polling model. The server is the channel on which data arc transmit-
ted, and the polling mechanism is achieved by the token that
cyclically transfers the use of the channel. The switchover time in
the polling system corresponds to the time interval that begins at the
instant a station finishes its transmission of data and releases a free
token, and concludes when the next station receives the free token.

2) Robotics Systems: Consider a robotics system in which a
single robot accepts as input N types of parts arriving in N
different streams. Bach type requires different processing, which is
conducted by a different tool. When switching from the processing
of one part to another, the robot incurs a switchover period required
for changing the tools.

The modeling of -this system by the basic polling system is as
follows. The tobot is modeled by the server, the N types of parts
are modeled by the N types of customers, being queued in the N
queues, and the time for changing tools is modeled by the switchover
periods.

3) Various Nongeneric Computer and Communication Sys-
tems: In many nongeneric computer and communication systems
(see Kruskal [42]), one often encounters the situation in which a
single processor serves N different types of jobs. A common
practice is to accumulate the jobs of each type separately, and to
process the jobs, one type at a time. It is also common to use a fixed
order of service (between the different types), in particular, the
cyclic order. Obviously, a cyclic polling model will fit such systems
in which jobs are represented by the customers and the processor is
represented by the server.

III. ENHANCING POLLING SYSTEMS BY CUSTOMER ROUTING
A. Motivation

While the basic polling model described in Section II is suitable
for modeling a large variety of systems, it may fail to capture
several important features of certain applications. A major limitation
of the basic model is that the customers of each queue are assumed
to leave the system upon service completion. Consequently, simple
system features such as the generation of a job at one queue upon
the completion of a job in another queue cannot be modeled. In
many applications, which we describe in Section III-C, these fea-
tures are very important. Examples include the modeling of ac-
knowledgments and distributed algorithms in token ring networks
and the modeling of robotics systems with production stages.

B. Routing in Polling Systems

The basic polling model can be extended in a framework similar
to that used in the analysis of queueing networks. The generalization
is done by extending the assumptions about the fate of the customers
upon service completion. Rather than assuming that a type-i cus-
tomer leaves the system when its service is completed, one can
assume that upon service completion the customer is routed to queue
J (1 =j=N) with probability r; ;; with probability r; , the
customer leaves the system. Once routed to queue j, the customer
now behaves as a type-j customer, and waits for its service at queue
Jj. We call this system a polling system with probabilistic routing .

As in the case of the basic polling system, an exact analysis of
this system exists for the exhaustive and the gated service policies
(see Sidi and Levy [60]). The stability condition of this system is
derived by considering the equivalent service time of a type-i
customer; this is the total amount of service to be given to a type-i
customer from its entrance to queue i until its departure from the
system. Denoting by b; the mean value of the equivalent service
time of a type-i customer, the stability condition is

N ~
> ONb < 1.
i=1

li>

p
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Note that l~7,- can be derived from the system parameters by solving
the simple set of N linear equations:

N
b,=b+ Y r ;b 1si=<N.
Jj=1

The mean delay analysis follows the approach described in Section
11, and requires the use of the buffer occupancy method (rather than
that of the station-time method). The basic variables used in this
analysis are the set { X/}(1 < i, j < N) which is the number of
customers present at queue j when queue i is polled (at equilib-
rium). As in the basic system, the key for the mean delay analysis is
the derivation of E[.X/] and E[X{X,."] (1=<i,j,k=<N). These
values can be calculated by solving a linear equation set consisting
of N3 variables whose solution (in an iterative approach) requires
O(N? log 5 €) steps where p is the utilization defined above and ¢ is
the required accuracy. From these values the mean delay observed
by the customers of queue i (1 < i < N) is readily available.

Unlike in common queueing networks (like Jackson-type net-
works) the delay of a customer at queue i is not independent of the
customer source (namely, of the place from which the customer
arrived to queue 7). Using additional computation which requires
O(N?®) computational steps, one can compute the mean values of
specific waiting times, E{W; ;], which is the mean delay suffered
at queue j by customers who arrived (to queue j) from queue i.
Another important measure, whose computation is more complex, is
the mean time in system (system sojourn time) of a customer
which follows a specific path. The detailed analysis of this system is
found in Sidi and Levy [60].

C. Customer Branching

A generalization of the model described above is a system with
customer branching. In this model, the departure of a customer
from queue / may trigger many concurrent arrivals to the sys-
tem. Formally, we say that the number of customers arriving to the
system at such an epoch is given by a vector L; =
(L; L, L; ) in which L, ; is a random variable indicat-
ing the number of customers arriving to queue j as a result of a
departure from quewe i. If L, ;=0 for 1 =j=< N, then no
branching occurs and the customer that completed its service at
queue | leaves the system. The system with routing is obviously a
special case of this system in which L, takes the value ¢; (e; is a
vector whose jth component equals 1 and whose other components
equal 0) with probability r; ; (1 < i, j < N).

The analysis of systems with customer branching is not provided
in the literature, but can be carried out along the same lines as the
analysis of the system with routing.

D. Modeling Via Customer Routing and Branching

Below we describe several applications which cannot be repre-
sented by the basic polling model, and demonstrate how the feature
of customer routing can be used to model them.

1) Modeling Selective-Repeat ARQ in a Token Ring

The token ring network allows the transmission of packets from
one station to another in a conflict-free manner, since at any instant
only a single station (the one that holds the token) is transmitting.
Yet, transmissions of packets may still fail due to errors and
distortions on the ring itself. Typically, such errors are rare and a
selective-repeat ARQ (SR-ARQ) scheme would be used to recover
these errors. In an SR-ARQ scheme, a station that receives an
efroneous message transmits a negative acknowledgment to the
transmitting station to indicate that the message has to be retransmit-
ted.

A token ring network is depicted in Fig. 2(a). To study the
performance of a network employing an SR-ARQ we model the
network by a polling system [Fig. 2(b)] in which each station is
represented by two queues, one for messages which need to be sent
out and one for negative acknowledgments to be sent back when
erroneous messages are received. We name the queue of data
messages at station i by msg (/) [message queue], and the queue for
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(b)
(a) A token ring. (b) The queueing model.

Fig. 2.

negative acknowledgments at queue i by ack (i) [acknowledgment
queue].

The parameters of the polling model are derived from the token
ring parameters. The arrival rates of new messages into the corre-
sponding queues are Ay, =N and ANy, =0 for i=1,
2,--+, N. The reason for i’dck(i) = 0 is obvious; no negative ac-
knowledgments arrive at a station from outside the network. Nega-
tive acknowledgments are generated as a response of receiving an
erroneous message. The service times of messages are B, ) = B;
for data messages and B, ;, = B for negative acknowledgments
messages. Here it is assumed that the transmission time of all
acknowledgment messages is the same. Consider a station, say i,
that transmits its data messages to station j (and is the only station
transmitting to /) and assume that the probability that a transmitted
message will arrive at j in error is p; ;. In the polling model this
corresponds to the routing variables o . ack(y = Pi.; (in prac-
tice, this parameter will be identical for all / and ;) and
Fack(.msg(ny = 1+ This message routing is depicted in Fig. 2(b). The
reason is that whenever a data message is transmitted by station i to
station j, with probability p; ; a negative acknowledgment message
will be generated at ack (), and when this message is transmitted
from station j to station / then a message is generated at station i,
representing the message that has to be transmitted to station j.
Thus, using the feature of customer routing, it is possible to study
the performance of an SR-ARQ in token ring networks. Note that if
more than one station is transmitting to station j, say, we need
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different ack queues at j, each corresponds to a different transmit-
ting station.

2) Distributed Algorithms on Token Ring Networks: The
token-ring is a distributed control system. As such, it requires the
use of certain distributed algorithms to control its operation. Exam-
ples include algorithms for the selection of one active station as a
designated station (leader election) having responsibility for token
regeneration (when the token gets lost), algorithms for the allocation
of shared resources (e.g., shared printer) and others.

Important features of such algorithms are that the events of packet
creation are strongly correlated to each other. In fact, the common
property of distributed algorithms is that when a packet is received
by its destination, it triggers the destination to generate a response
packet; moreover, in many instances packet reception will trigger
the generation of several packets to be sent to various destinations.

The modeling of a distributed algorithm depends on the algorithm
itself and may require the feature of branching. For example, if a
message from station i is to be received by all other stations and
requires them to respond, then L; in this case is equal to the vector
1,---, 1) — e,

3) Robotics Systems with Stages: Consider a robotics produc-
tion system as described in Section II-E2). Now, relax the assump-
tion that all work requests arrive from outside of the system.
Rather, some of the requests are produced by the system itself. For
example, parts processed in one stage will be connected to other
parts in a later stage. Therefore, this is a system in which work done
in some of the stages can produce work requirements for other
stages. An important performance question, related to this system,
is how to order the different stages and robot route, so as to improve
its performance.

As a simplistic example consider a robotics system that accepts as
input two streams of parts (denoted A and B) and needs to drill in
each of them three holes. The holes to be drilled in Part A are of
the types 1, 3, and 4 (according to this order) and the holes to be
drilled in Part B are of the types 2, 3, and 4 (according to this
order). Whenever a new type of hole needs to be drilled, the drill
needs to be adjusted appropriately; This operation requires some
set-up time. The system is organized in 4 stations indexed 1, 2, 3,
and 4, and hole type i is drilled at station i. The flow of parts is
depicted in Fig. 3. The robot visits the station according to a
predetermined order and processes the parts there according to
either the exhaustive policy or the gated policy. When switching
from one station to another the robot incurs a switchover period due
to the need to readjust the drill. We assume that type A parts and
type B parts arrive according to a Poisson process at station 1 and
station 2, respectively; both arrival rates are 0.1. The times required
for drilling a hole are deterministic and are 3.0, 0.5, 1.0, and 1.0,
for the types 1, 2, 3, and 4, respectively. The time for readjusting
the drill is deterministic and requires one unit of time.

We model this system using a polling system with routing,
consisting of 4 queues, representing the four stations and having the
same index. The system parameters are therefore as follows: N, =
x%=0.1,>\3:>\4=0, by =3,b,=05b,=0b,=1,b"=09,
b =025 b =bP =1, 5;=sP =1 (for every 7). The
nonzero entries in the transition matrix are r, ; = 1, r, ; = 1, and
ry 4 = 1. Note that when station 4 is eliminated, the resulting
system is the one considered by Katayama [35].

We now evaluate the system performance for the gated service
policy, as a function of the cycle order used by the server. We
consider three orders: (i) 1,2, 3, 4, (ii) 2, 1, 3, 4, and (iii) 4, 3, 1, 2.
In Table I we present the mean sojourn time in each of the queues
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TABLE I
So1ourN TiMEs As A FuncTioN ofF THE CyCLE ORDER
Order || Station 1 Station 2 Suation 3 Station 4 Network
Soj. Time | Soj. Time | Soj. Time | Soj. Time || Soj. Time
12,34 18.69 12,70 774 698 3041
2,134 18.17 12,77 10.47 6.72 32.66
43,12 17.35 11.73 13.02 16.96 44.52

and the mean sojourn time in the system (averaged over all cus-
tomers) as a function of the service order. From the table we may
learn that the performance of a system with routing is quite sensitive
to the visit order. In particular, the performance of the third order is
very poor; this results from visiting the stations in a direction
opposite to the flow of customers. There are also differences be-
tween the first two cases (though not as significant) which result
from the different characteristics of stations 1 and 2.

IV. RANDOM POLLING
A. Motivation and Modeling

In most models of polling systems the order in which the server
visits the stations is fixed and periodic. As we shall see, in some
applications this order is random and is determined by a chance
mechanism. The polling model that corresponds to such systems is
called random polling and its basic feature is that the station polled
after station i is determined according to a rule that involves some
randomization. In general, the probability that station j will be
visited after station / may depend on both i and j and also on part
of (or all) the history of previous visits at the stations since the
system started to operate.

The main applications of random polling models are in dis-
tributed control systems. In such systems there is no central
controller that can poll the stations in a fixed order. Rather, the
decision on the next station to be visited is achieved in a distributed
manner, by cooperation among the stations. An example of such a
system is a shared communication channel, such as a shared bus or
a shared radio link, in which the decision on who will transmit next
is based on a random-access algorithm.

The model of a random-polling system is the same as that of the
basic polling system except for the order in which the server visits
the queues. A simple model for the visit mechanism is that the next
station polled is determined according to an irreducible positive
recurrent discrete-time Markov chain with homogeneous one-step
transition probabilities. According to this model the probability that
station j will be visited after station i is P; ; with Zf’:lP,-‘ ;=1
An even simpler model is that the next station to be visited does not
depend on the previously visited station, i.e., P; ; = P; for all i.
The analysis that can be carried out for both models is similar to
that of the basic systems. This means that the exact analysis of
arbitrary systems with either the exhaustive or the gated policies can
be done by numerical computations, while the analysis of the
limited-1 policy is restricted to fully symmetric systems (exact) or to
approximations (general systems). For instance, the analysis of the
simpler model via the buffer occupancy method appears in Klein-
rock and Levy [38] and a conservation law for these systems
appears in Boxma and Weststrate [13]. It is noteworthy mentioning
that the buffer occupancy equation set of this system (which needs to
be solved for deriving the mean delay figures) is smaller than that of
the basic system (only N? equations versus N> equations) but its
solution requires more computation.

B. Applications: Random-Access Schemes in Shared Channel
Networks

Random-access techniques are designed for coordinating the ac-
cess of spatially distributed stations to a shared channel. The
ALOHA network (Abramson [1]) is a well-known packet radio
network which consists of stations that share a radio channel. The
pure ALOHA access scheme is very simple. As soon as a packet
arrives at a station, it is transmitted. In the case that the transmission
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fails (since other packets were transmitted on the channel at the
same time, causing a collision), the packet is scheduled for retrans-
mission after a random period of time. The slotted ALOHA access
scheme is similar, except that the time axis is divided into slots (that
correspond to the time required for transmitting a packet) and a
station can start transmission of a packet only at slot boundaries. In
both the pure and the slotted ALOHA schemes the stations contend
for the shared resource (the channel) for each transmitted packet.

An alternative for the above schemes is the reservation ALOHA
access scheme (Lam [44]). In this scheme, a station whose packet is
successfully transmitted at slot 7, may add a bit into its successfully
transmitted packet to indicate that it has a packet ready to be
transmitted in slot ¢ + 1. In this case, the station is granted the
exclusive right to transmit in slot ¢ + 1, and this transmission will
not be interfered by any other station. By this mechanism, reserva-
tion ALOHA overcomes the main deficiency of the slotted ALOHA
scheme—the continuous contention among the stations for every
transmitted packet. The reservation scheme can be either exhaustive
or gated. Exhaustive reservation means that a station that is cur-
rently transmitting will continue to reserve the channel until its
buffer empties. Gated reservation means that a station that is cur-
rently transmitting will continue to reserve the channel only until it
transmits all packets that it had when it seized the channel.

When a transmitting station no longer reserves the channel for the
next slot, part or all stations of the system start contending in order
to seize the channel. The contention may follow various algorithms
such as the ALOHA scheme, a collision resolution scheme (Cape-
tanakis [17]), etc. The length of the contention period is random and
the next station that will seize the channel is also random.

The reservation ALOHA scheme can be modeled by random
polling as follows. The server represents the channel, the service of
a customer represents the transmission of a packet, the switchover
period represents the contention period, and the station to be visited
next is determined according.to the contention protocol. When all
stations attempt to seize the channel during the contention period
and use the same contention algorithm in each period, the system
behaves exactly as the simple random-polling model. For instance,
if station j attempts to seize the channel with probability g in each
slot of the contention period, then

g; 11 (1~ gq;)
P = i*j

JT N
> qll (1-4q)
I=1 i+l

1<j=<N.

The length of the switchover period (the contention period) depends
on which station seizes the channel at the end of that period.
Specifically, the probability that the switchover period will last /
slots and station j seizes the channel at the end of the period is
A=, (1 - gN'xN g1, (1 - g,). Accordingly,
the duration of the switchover period when switching into queue J,
is shifted geometric with parameter 3"\, ¢,IT; . (1 — g;).

The case in which only stations having packets to transmit are
contending to seize the channel is more interesting but, unfortu-
nately, does not fall in the framework described above. The reason
is that in this case the duration of a switchover period depends on
the state of the system (which of the stations have packets to
transmit and which do not) at the beginning of the period. Such
models do not lend themselves to exact analysis and one must resort
to either simulations or approximations. In certain cases the approx-
imation can be carried out via the random polling system (see Levy
[46]).

V. Giving Up INDEPENDENCE
A. Motivation

Most models of polling systems assume complete independence
among the various processes within the systems, such as the arrival
processes, the service times, the switchover times, etc. Some of the
independence assumptions are essential to allow the exact analysis
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of the system performance. Other assumptions are used just to
simplify the analysis, but similar analysis can be carried out even
when these assumptions are relaxed. From a modeling point of
view, giving up independence is extremely important and useful
since many of the underlying processes in real applications are
naturally dependent. Examples include systems with simultaneous
arrivals, systems with correlated switchover times, etc. Some of the
models that allow dependence to some extent are discussed in this
section along with their applications.

B. Simultaneous Arrivals

The arrival processes to the different queues of a queueing system
are not necessarily independent. For instance, let us examine a
communication system that can be modeled as a cyclic polling
system. Consider a switching node with 7 input queues, N output
channels and a single switch that connects queue i to channel i
according to some polling policy. In such a system, when a message
that originates at the node has to be broadcast through a subset of
the channels, its generation corresponds to an arrival of a copy of
that message to each of the corresponding queues at the same time.
Therefore, the arrivals to the different queues are not independent of
each other in this system.

We model simultaneous arrivals as follows. Along the time axis
there are arrival epochs. The distribution of the arrival epochs is
Poisson with parameter A, namely, the time between two successive
arrival points is exponentially distributed with mean 1/N\ and is
independent of any other event in the system. In each arrival epoch,
bulks of customers arrive to the different queues according to some
probability distribution. Specifically, let K = (K, Kypo s Kn)
be a random vector in which component K; represents the number
of customers arriving to queue i at an arrival epoch. The vector K
is assumed to have the same joint distribution at each arrival epoch
and this distribution is independent of previous or future arrival
epochs. The joint probability distribution of the vector K,
(Prob[K, =i}, , Ky = iyl, i;j= 0, 1 <j=<N), is arbitrary
(with the constraints K, = 0 for every i, and K is not the zero
vector). Thus, we have a rather general structure of correlation
between the arrivals to different queues. The special case of inde-
pendent bulk arrivals is represented by a distribution in which the
only nonzero probabilities are of the form Prob[K, =0,-"*, K, =
i,**+, Ky = 0] for some ! (i;= 1). The case of single indepen-
dent arrivals is represented by a distribution in which the only
nonzero probabilities are of the form Prob[K, =0,--", K, =
1, -+, Ky = 0] for some l.

As in the case of the basic polling system, an exact analysis of
this system exists for the exhaustive and the gated service policies.
The analysis uses the buffer occupancy method and the details
appear in Levy and Sidi [51].

C. Switchover Times

In most applications the switchover times in polling systems
correspond to the overheads incurred when service is switched from
one station to another. It is usually assumed that these switchover
times are independent of each other and also independent of the
system state. Yet, in many applications the switchover times may
depend either on the state of the station just visited or on the state of
the station to be visited.

For instance, consider a system in which switchover periods may
be of two types, short and long, and the type of the switchover
period depends in some manner on the type of the previous
switchover period. In such a system, the switchover times are
correlated. Such systems are typical in manufacturing where the
server may move very quickly from one station to another for some
period when it is properly functioning, or it may move very slowly
once it starts malfunctioning.

Correlated switchover times can be modeled in various ways. The
most natural model that also lends itself to exact analysis is to
assume that the lengths of the switchover times are modulated by a
finite-state Markov chain. The evolution of the Markov chain is
independent of the system state and the probability distribution from
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which the length of the switchover time is sampled depends on the
state of the Markov chain (and may also depend on the index of the
station just visited or on the index of the station to be visited). The
analysis of such a system via the station-time method is straightfor-
ward.

A example in which the switch-over time depends on the state of
the station to be visited has been described by Ferguson [26]. This
example corresponds to token ring systems where an additional time
may be required in order to seize the token when a station has a
message to send, compared to the time required when the token is
just passed over to the next station (there are no messages to be
sent). In modeling such a system it is assumed that the passing of
the token from station i to station i + 1 requires a duration of time
which is independent of anything in the system. If there is a message
at the visited station when the server arrives, an additional foken-
acquisition overhead is incurred. An exact analysis of such systems
has not been provided. The main difficulty is that when the station-
time method is employed, a boundary condition involving the
probability of no-message at the station when the token arrives has
to be computed, but it is not known how to compute it. As a result,
bounds and approximations for the expected delays in such a system
have been pursued in Ferguson [26].

VI. OPTIMIZATION AND CONSERVATION LAWS

A major goal of any modeling and analysis effort is to develop
sufficient understanding of the operation of the systems so that a
skilled designer will be able to improve their performance. In many
applications in which polling models are used the designer can use
several design parameters as to prioritize the queues® and improve
(optimize) the system performance (e.g., mean customer delay,
mean cycle time). Such parameters include the visit order to be used
in the system, the duration of visit in each queue, the order of
(customer) service within each queue and others.

Naturally, the issues of optimal design and control are more
complex than those of analysis. For this reason, these issues are still
in a formative and fragmentary stage of research. In this section, we
discuss the different approaches which can be used to affect and
optimize the performance of polling systems. In addition, we dis-
cuss pseudoconservation laws which have recently been devel-
oped for polling systems. These laws provide closed-form expres-
sions for the weighted sum of the mean waiting times and are useful
in the analysis of polling systems as well as in their optimization.

A. Controlling the Service Order

An important parameter affecting the system performance is the
order by which the server visits the stations. The visit order can be
determined either prior to operation (static order) or during opera-
tion (dynamic order).

1) Static Policies: A generalization of the cyclic order (used in
the basic model) is obtained by allowing the server to visit the
stations according to a fixed—but not necessarily cyclic—periodic
pattern. The pattern repeats itself every M visits, so in general the
polling order is I(1), I(2),* -, I(M), I(), I(2), -~ where I(7) is
the identity of the station polled at the ith visit of the pattern
(1 < I(/) = N). Like the cyclic order, the polling according to a
periodic order (or, as called in the literature, polling according to a
polling table) is a static policy, namely, the order is determined
prior to the system operation and is fixed during its operation. A
specific example of a system that operates with a polling table is the
1A ESS Bell System Switch (see Kruskal [42]).

The analysis of systems with polling tables is similar to that of
systems with cyclic polling. This means that the analysis of systems
with exhaustive and gated service can be carried out exactly, using
either the buffer occupancy approach (leading to the solution of

“Another issue of prioritization arises in polling systems in which at every
queue there may be several classes of customers and the server’s attention to
these classes during the visit of the queue is given according to their relative
priority. We do not elaborate on this subject and the interested reader may
refer to the literature (e.g., Takagi [67]).
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MN? linear equations) or the station time approach (leading to the
solution of M(M — 1) linear equations). The general analysis of
these systems is provided in Eisenberg [25], Alford and Muntz [2]
and Baker and Rubin [3]. Other studies in which specific orders are
considered and some of the queues are served in the limited-1
policy, appear in Manfield [53] and Takagi and Murata [69].

Polling systems with a general service order arise naturally in
many applications. For instance, in the system consisting of a single
computer and N multidrop terminals described in Section II, the
computer can serve its internal work after every service of a
terminal. Modeling this system can be done via a polling model with
N + 1 queues (where queue 1 represents the computer and queues
2,-++, N+ 1 represent the terminals) in which the visit pattern is
1,2,1,3,---,1, N+ 1. Another example is the scanning of disks
in computer systems, in which it is natural to poll the sectors of the
disk in a scanning order. Thus, if the N sectors are represented by
N queues, then the visit pattern is 1,2,-<-, N — 1, N, N —
1,-+,2.

General service orders can be used as an effective means for the
optimization of polling systems. They give one the opportunity to
assign certain stations high priority by visiting them more frequently
than once per cycle. It can be shown that such priority assignments
can reduce mean waiting times in high-priority stations, and for
systems where the high-priority stations are responsible for a sub-
stantial fraction of the traffic, the overall mean waiting time can be
reduced as well (see Baker and Rubin [3]). The importance of the
general periodic service order is, therefore, twofold: First, it can be
used to effectively affect the system performance, and second, the
prediction of the system performance under alternative orders is
readily available. Thus, one can seek the optimal service order by
examining various orders and analyzing them. Nonetheless, the
characterization of the optimal service order is still an open and
challenging research problem.

As an example which demonstrates the usefulness of polling
tables for affecting the system performance we consider a system
consisting of 12 small stations (the arrival rate of each of them is
relatively low) indexed 1, 2,- - -, 12 and one large station (with high
arrival rate). For simplicity we assume that the service times and
switchover times in all stations are deterministic with means b, =
and s; = 1 and that the gated service policy is used in all stations.
Let us assume that the performance measure of interest is the mean
wa1t1ng time of arbitrary customers in the system, namely E[W] =
Y NEIW]/N (where X = Y| \). In the example we examine
the effect of the frequency of visit at the large station on E{W]. We
consider six visit patterns, in which the server visits the large station
1, 2, 3, 4, 6, and 12 times per cycle; in all patterns each of the
small stations is visited once in a cycle and the visits of the large
station are evenly spaced over the pattern (e.g., in the case of four
visits the pattern is 1, 2, 3, large, 4, 5, 6, large, 7, 8, 9, large, 10,
11, 12, large). We consider five cases in which the arrival rate of
the large station takes on the values 0.02, 0.08, 0.18, 0.32, and
0.72; In all five cases the arrival rates of each of the small queues is

0.02. Thus, the ratio y £ | / Prarge/ Psman takes on the values 1, 2,
3, 4, and 6 in these five cases, respectively.

In Table II we depict the mean customer waiting time in each of
these cases for several visit frequencies (number of visits per cycle)
of the large station. In addition we consider a case (last row in the
table) in which the large station is visited four times during a cycle
but its visits are unevenly spaced over the pattern (the pattern is
1, large,2,3,4,5,6, large, 7, large, 8,9, 10, 11, 12, large). Table
IT demonstrates that the system performance is significantly affected
by the visit pattern employed. We may observe that a rule which
selects the visit frequency of a station in proportion to the square
root of its utilization (p;) works very well in minimizing the mean
customer waiting time of this system. The analysis of this optimiza-
tion issue and the derivation of the square root rule can be found in
Boxma, Levy, and Weststrate [11]. We may further learn from the
table that unevenly spaced visit patterns (last row) usually perform
worse than evenly spaced patterns.

2) Dynamic Policies: As an alternative to using a polling table,
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TABLE II

MEeaN CusToMER WAITING TIME

Visit frequency Utilization of large station
of large station 0.02 0.08 0.18 032 0.72
1 (even) 9.11 10.13 | 12.54 | 18.23 | 263.05
2 (even) 942 | 9.50 1045 | 13.59 | 169.50
3 (even) 9.96 965 | 10.07 | 12.37 | 14043
4 (even) 10.54 | 10.03 | 10.14 | 12.02 | 127.50
6 (even) 11.77 | 1097 | 1071 | 1214 | 117.75
12 (even) 15.54 | 1412 | 1381 | 1426 | 120.75
4 (uneven) 10.61 | 10.18 | 1040 | 12.30 | 128.25

which dictates a static visit order, one may use a dynamic order
in which the service order is changing dynamically and is deter-
mined according to the system state during its operation. For
example, a possible policy is to observe the contents of the different
queues and to decide to serve next the queue which is mostly
loaded. The advantage of dynamic orders is that they are very
sensitive to the actual system state and thus can be used to improve
its performance. The disadvantages of such orders is that they
require information gathering during operation and that they are
hard to analyze. As a result, very little is known today about
systems with dynamic orders.

For systems without switchover periods, in which there is fuil
information about the buffer contents and one is allowed to choose
the next queue to be served after every service completion, the
optimal operation rule is simple. It has been shown that the we1ghted
sum of the mean waiting times, Z,_l : NELW;1/N (where the ¢;’s
are constants and A = Z,A;l A;), can be minimized by using a
simple rule, named the pc rule. With this rule, the queues are
ranked according to the ratio ¢;/b; (in the literature 1/b; is usually
denoted by u;, from which the pc rule gets its name) and ordered
according to this ratio (highest ratio—highest priority), and the
server always serves acustomer from the highest ranked queue
which is nonempty. This rule applies both for systems in which the
service times are generally distributed and no preemption is allowed
(Meilijson and Yechiali [54]) and for systems in which the service
times possess the memoryless property and preemption is allowed
(Baras, Dorsey, and Makowski [4], Baras, Ma, and Makowski [5],
and Buyukkoc, Varaiya, and Walrand [16]). The optimal operation
rule (within the class of all nonpreemptive policies) has also been
provided for a more general system which allows customer routing
and general service times. The optimal rule in this framework is
expressed in an algorithmic way (rather than a closed-form expres-
sion) and was provided by Klimov {39}, [40]. Once a fixed priority
order is determined, the delay analysis of the priority system can be
carried out as well (see, e.g., Kleinrock [37] for systems with no
customer routing and Simon [62] and Sidi and Segall [61] for
systems with customer routing).

When switchover times are not identically zero, the problem of
the optimal control of a polling system is much more difficult and is
still open. Preliminary results in this area are available in Hofri and
Ross [32] that considered the case of two stations. Based on some
conjectures, it is shown that the solution to this problem is of a
threshold type, i.e., there exist thresholds that determine when the
server switches from one queue to the other.

Another result regarding the optimal operation of systems with
nonzero switchover periods deals with semidynamic policies for
selecting the visit order (Browne and Yechiali [14]). Browne and
Yechiali [14] consider policies which commit to visit every queue
exactly once in each cycle and which determine the visit order (of
the next cycle) at the beginning of the cycle. The analysis of these
policies does not provide derivation of any measure of the customer
delay. Rather, what is provided is a simple and optimal rule for
selecting the visit order when the goal is to minimize the mean
duration of the next cycle. It was found that without switching
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times, it is optimal to rank the stations by an increasing order of
N,/\; (where N; is the number of customers present at queue i at
the beginning of the cycle) for both gated and exhaustive service.
Note that this rule is independent of the service time b;. When
switchover times are included, a more general index type rule
applies.

B. Control of Service Duration

The service policy within a station determines the service dura-
tion in that station. A very effective way to control the service
duration is via the limited policies. By assigning proper limits on the
maximal number of customers that can be served in a station during
one visit of the server, it should be possible to optimize the
performance of the system. ’

Limited policies can be either deterministic or probabilistic. In a
deterministic limited policy, a limit L; is fixed for station i and no
more than L; customers are served per one visit of the station.
There are gated and exhaustive versions of limited policies. In a
gated-limited policy, the number of customers served during a visit
is the minimum between L; and the number of customers present in
the station when it was polled. An exhaustive-limited policy is
essentially an exhaustive policy, except that the server switches
from station / if he already served L; customers.

In probabilistic limited policies, the limit is not fixed but deter-
mined randomly. One method to choose such a random limit is
known as a Bernoulli policy (Keilson and Servi [36] and Servi
[59]). According to this method when the service of a type-i
customer is completed, a type-i coin is tossed to determine whether
the limit has been achieved (and therefore to switch to the next
station) or not. Again, there are gated and exhaustive versions of
Bernoulli policies. In a Bernoulli-gated policy the server will deter-
ministically switch to the next station once all the customers which
were present at the served queue at the polling instant are served. In
a Bernoulli-exhaustive policy such deterministic switching occurs
only when the served queue becomes empty.

The advantage of both the deterministic limited policies and the
Bernoulli policies -is that they form effective means for affecting the
system performance. Their disadvantage, however, is that they are
too complicated to be analyzed exactly for general systems. As a
result they do not lend themselves for efficient system optimization.

An alternative to these policies is the family of fractional service
policies (Levy [49], [50]). In a fractional service policy, each queue
is assigned a parameter p; and the philosophy behind the policy is to
serve at each visit to queue 7 a ‘‘fraction’” p; of the work present at
that queue. The policies available in the literature concentrate on
serving a fraction p; of the customers present at the queue. More
precisely, the number of customer served is a random variable
whose mean is p; times the number of customers present at the
queue. Here too, there are gated variations (binomial-gated policy,
in which the number of customers served is a function of the
number of customers present at the polling instant) and exhaustive
variations (fractional-exhaustive, in which the number of cus-
tomers served depends also on the number of customers arriving to
the queue during its service). The advantage of these methods is that
they can affect the system performance and that they lend them-
selves to exact analysis. However, it seems that they affect the
system performance less than the limited policies do.

Finally, the server can limit the time it spends in a queue in order
to reduce the starvation of other nonempty queues. Such a policy
introduces fairness into the system but is very difficult to analyze.
Only the case of two queues with exponential service times and no
switchover times have been analyzed so far (see Coffman, Fayolle,
and Mitrani [20]).

C. Pseudoconservation Laws

It is well known that work conservation in a system gives rise to a
conservation law for mean waiting times (Kleinrock [37)), i.e., a
linear relation between the mean waiting times that does not depend
on the order of service of customers (as long as they are not
preempted). Polling systems are not work conserving systems since
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the server remains idle during switchover periods, although work
might be present in the system. Nevertheless, pseudoconservation
laws for many polling systems have been discovered in recent years
(Watson [73] and Ferguson and Aminetzah {27]). Recent derivations
of these laws are based on a decomposition theorem of Boxma and
Groenendijk [9] (which is motivated by previous decomposition
results of Fuhrmann [28] and Fuhrmann and Cooper [29]) that
proves that the total amount of work in the system is composed of
two independent components; one is the amount of work in the
corresponding system without switchover times; the other is the
amount of work at an arbitrary epoch during a switchover period.

Conservation laws for mean waiting times serve several useful
purposes. In many complex sysems (limited-1 polling, for instance)
they are the only meaningful exact relations that can be obtained.
Thus, they provide important qualitative insight into the behavior of
such systems. They can also serve as a test for the quality of
suggested approximations, and be useful in constructing approxima-
tions for individual mean delays in the various stations for complex
systems. Even when exact results for the individual mean delays are
available, conservation laws are excellent tools for checking the
correctness of the (usually complex) numerical computations.

The basic form of a conservation law (when applied to the basic
system) is

N
N Zl)‘ib?) s@
E[W)] =pit—— +p—
'gl pl [ I] p2(1 _ p) p 2S

N

+ 2.2

s 2w 2
+e——| ot = X4
2(1“9)[ 2" i=1

i=1

where W, is the waiting time at station i/ and Z; are quantities that
depend on the service discipline that is in use. For instance, Z; = 0
and Z; = sp?/(1 — p) for stations in which the exhaustive discipline
and the gated discipline are employed, respectively.

Conservation laws are available for most polling models dis-
cussed in this paper. For the basic model with cyclic service time
such laws are available in Ferguson and Aminetzah [27], Watson
[73], Boxma and Groenendijk [9]. For the Bernoulli service disci-
pline in Tedijanto [72], for binomial-gated and binomial-exhaustive
in Levy [49] and [50], for systems with polling tables in Boxma,
Groenendijk, and Weststrate [10], for random polling in Boxma and
Weststrate [13], for polling systems with probabilistic routing in
Sidi and Levy [60] and for polling systems with simultaneous
arrivals to the queues in Levy and Sidi [51]. For a survey of the
conservation law results see Boxma {8].

VII. SuMMARY AND FUTURE WORK

We reviewed in this paper the state of the art in the area of
polling system. We focused the discussion on the capabilities and
limitations of polling system models and on their use in modeling
various applications.

Two subjects seem to be of great importance for future work. The
first is the analysis of systems with limited service; the analysis of
these systems is available today via approximation methods which
are not very accurate. Improved techniques are required for better
performance evaluation of many existing systems. The second area,
in which research has just started, is that of optimization. The
development of effective optimization techniques will contribute to
improve the performance of polling systems and many of their
applications.

APPENDIX
A. The Buffer-Occupancy Method

The solution of the mean sojourn time in the cyclic system with
exhaustive service, using the buffer occupancy approach, is done as
follows. We define f,(j, k) & E[ X/X}], for j # k and E[(X/)?
— X/] for j = k. Then the variables {f;(J, k)} form a set of N?
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linear equations:

Jisa(Jo k) = NNes® + 50 £,(J7) + sihfi(k)
2b;s; N b® i
1- Pi (1 - P,)

+ fi(DNN

b,
+ 1 _’p'[fi(uj))‘k +f,~(i,k))\j] + £i(j, k)

i

2
) i#j,i+k (A1)

. Sili)N;b;
Sinili J) = )‘i)‘jSI(Z) + Si)‘i[fi(j) + _—“1( L } N
—p;

+ fi(i, i)>‘j>\k( 1

i

(A.2)
Jira(i, i) = Ns. (A.3)
Using the values of f,(i,i) and f;(i) [defined to be E[X,.i] =
s\;/(1 — p)] the mean sojourn time at queue 7 is computed
b filis §)
2(1-p;)  2NA()
B. The Station-Time Method

The solution of the mean sojourn time in the cyclic system with
exhaustive service, using the station-time approach, is done as
follows. Let g;; be defined as the covariance of U, and U; when
station / is visited prior to station j, namely,

E[(U; - E[U]) (Y, - E[U])]
E[(Usn - E[Un]) (U, - E[U])]

Then, the variables g,; form a set of N 2 equations

pi N Jj—1 i-1
gijz Z gjm+ Z gjm+ ngj j<l
1 m=1 m=j

E[T] = b+ (A4)

j=<i
g,.: . .
Y j>i

L=p; \msis
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0 J-1 N i-1
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TP\ m=i+1 m=j m=1
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N
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L TR =i

J#i
From the variables g, j (1 =j = N) and the system parameters,

E[T;] can directly be computed (see, e. g., Ferguson and Aminetzah
[27]).

C. Limited-1 System
The closed-form expression for the mean sojourn time in the fully
symmetric cyclic system with limited-1 service is given by

P - s

E[Tz] =b; + 25

NNDP + s,(N + p) + NN (2 - s7)
2(1 —p — N\s;) .
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