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1. Introduction

We consider a system consisting of several input channels and a single output

channel. Variable length messages, with a maximum length of L bits, arrive

over each input channel and are stored in the buffer associated with that

channel. The buffers are emptied into the output channel by a single server

whose speed is at least as great as the aggregate speed of the input channels.

The system is to be work-conserving subject to the constraint that service can

only be provided to complete messages. Accordingly, the server:

(a) may not begin serving a buffer until it contains at least one complete
message;

(b) cannot be idle if at least one buffer contains a complete message;
(c) serves complete messages without interruption.

Service is provided by the server according to a rule which, given the contents
of each buffer at the beginning of a service period, determines the buffer to be
served next. Simple examples of such a service policy include Exhaustive
Round Robin and First Come First Served.

The system described above can be found in various devices, for example,
packet switches in communication networks. Here the server is the switch
itself, and the service policy provides the rule that determines which buffer the
switch will serve. In such systems, it is important, for economic reasons, to
minimize the amount of storage required in each buffer [Krishna 1990]. Yet
the buffers must be large enough to limit overflow (the loss of messages that
arrive to a full buffer). Ideally, the buffers would be designed to eliminate
overflow. Our interest is in a nonoverflowing policy that minimizes the size of
the largest buffer required under any message arrival pattern. In many applica-
tions, it is also desirable that the buffer storage required for each channel be
independent of the number of channels and their relative speeds. This will
enable the reuse of the input channels when the system is reconfigured to
allow higher speed channels or a larger number of channels.

This design problem was studied in Cidon et al. [1988], where the Exhaustive
Round Robin (ERR) service policy was analyzed. Under this policy, the buffers
are served in cyclic order, and once the service of a buffer starts it continues
until all complete messages in that buffer are exhausted. It was shown there
that when the speeds of the input channels are equal, a buffer at every input
channel of capacity 3.35L is sufficient to prevent overflow. However, when the
speeds are not equal, the required buffer sizes depend on the relative speeds
and grow linearly with the number of input channels. Recently [Sasaki 1989],
the upper bound for equal speed channels and ERR was improved to 3.307L,
and a lower bound of 3.0.51 L was also provided. In the same paper, Gated

Round Robin (GRR) was investigated for equal speeds, and an upper bound of

3L was found. Other policies that have been studied include First Come First

Served (FCFS) and Longest Queue First (LQF). In Birman et al. [1989], the

FCFS policy was shown to require buffers of capacity 2 L to prevent overflow in
the case of equal speed channels, but in the unequal speed case the buffer sizes
exhibit the same linear behavior in the number of channels as ERR. A similar
phenomenon has been established for LQF in Gail et al. [1993]. The required
buffer storage to guarantee no overflow is again 2 L for the equal speed case,
but it depends on the number and relative speeds of the input channels in the
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unequal speed case and increases logarithmically in the number of channels.
Finally, we mention a recent paper [Greenberg and Madras 1992] in which a
study of a discipline called fair queueing was presented. Translating that work
into the context of the above system model, it was shown that an upper bound
of 2 L guarantees no overflow in the equal speed case under the fair queueing
service policy.

In this paper, we introduce and analyze a class of buffer service policies,
called Least Time to Reach Bound (LTRB), that satisfies (a)–(c), guarantees
no overflow, and for which the buffer storage required at each input channel is
2L in all cases. The storage required under LTRB is not only independent of
the number of channels and their relative speeds, but it is also optimal in the
sense that any such nonoverflowing policy requires at least as much storage.
The LTRB policy operates as follows: When the service of a message is
completed, the next message to be served is chosen from a buffer that would
overflow first if all input channels were to remain continuously busy and none
were served.

The model of arrivals is the standard gradual input or noninstantaneous
input model often used to study switches and communication networks. This
model has appeared extensively in the literature in the analysis of these
systems (see, for example, Anick et al. [1982], Cohen [1974], Cruz [1991], Kaspi
and Rubinovitch [1975], and Rubinovitch [1973]) and has also been used in the
analysis of dams [Cohen 1969; Gaver and Miller 1962]. The noninstantaneous
input model describes more accurately than instantaneous input models real
systems for which the interarrival times between messages are limited by the
speeds of the input channels. An input channel may be either “on” (bits are
arriving) or “off” (no bits are arriving). Messages are loaded gradually into the
buffer as they arrive, as opposed to arriving instantaneously. We emphasize
that the results proved here hold for every instance of systems satisfying the
assumptions, regardless of the distribution of arrivals, service times and on/off
statistics of the input channels.

The remainder of the paper is organized as follows. In Section 2, the
noninstantaneous input model is described and the LTRB class of service
policies is introduced. In Section 3, a proposition involving the properties of a
certain set of difference equations is proved. In Section 4, this proposition is
used to establish that LTRB does not overflow with a buffer storage of only
twice the maximum message length. In Section 5, a brief discussion of the
results is presented.

2. L TM Policies

Consider a system with N input channels, each with an input buffer. Let
S,> O,i=l ,..., N, be the rate (in bits/s) of channel i. As discussed in the
introduction, we assume the gradual input or noninstantaneous input model of
arrivals. Bits arriving through channel i are stored in its corresponding input
buffer, and if that buffer is full the bits are lost. An input channel may be
either in an on state, during which S, bits/s are arriving, or in an off state,
during which no bits are arriving at that channel. The arriving bits form
messages. Each message consists of not more than L bits. We do not impose
any statistical assumptions about the on and off periods of the input channels
or on the message lengths.
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A single server, whose service rate is S (bits/s), serves the messages residing
at the input buffers. Without loss of generality we normalize the server speed
to S = 1. The rate S, then represents the speed of channel i relative to the

service rate. The aggregate rate of the input channels is at most the service

rate, that is, ZK ~S, s 1. The server is restricted to serve only complete

messages. Thus, if a buffer contains only part of a message, that message
cannot be served until the complete message is present in the buffer. In
addition, messages are served without interruption, so that message fragments
cannot be served. Finally, the server is work-conserving, that is, it is not idle if
there is a complete message at some buffer.

Since only complete messages are served, the epochs at which the server
decides upon the next message to handle are times when at least one buffer
contains a complete message. Since messages are served without interruption
and the server is work-conserving, these decision epochs are either instants of
service completion or, if the server is idle, instants when at least one complete
message is formed at some buffer.

We assume that when the system starts to operate no buffer contains more
than L bits, so that the total number of bits in the system initially is not
greater than NL bits. Since the service rate is at least as large as the aggregate
arrival rate when the server is busy, and since no buffer can contain L or more
bits when the server is idle, the total number of bits in the system cannot
exceed NL bits at any time.

To define the class of LTRB policies we need the following notation. Let
Q,(t), i = 1,. ... N, t >0 be the number of buffered bits at channel i at time t.

As noted above, the Q,([) satisfy XL ~Q,(t) s NL for all t.Define the quantity
O,(t)as

2L – Q(t)
o,(t) =

s, “
(1)

We note that if Q(t) < 2L, then /3,(t) is simply the time it will take for the
queue size at channel i to reach a buffer size of 2 L, assuming a continuous
stream of bits arrive over the channel. Policies from the LTRB class operate by
attempting to serve any buffer with the minimal “time to reach bound. ”
However, since only complete messages can be served, a slight variation to this
scheme is necessary.

The Least Time to Reach Bound Class of Policies

At a decision epoch ~, the server chooses to serve a buffer i, from among

those buffers with a complete message, for which /3,(~) s O,(T) for all buffers
j with at least L bits.

One member (policy A) from this class of policies is the following:

At a decision epoch ~, the server chooses to serve a buffer with the minimal
6,(7 ) among those buffers with a complete message.

Another variant (policy B) from the LTRB class is the following:

At a decision epoch ~, the server chooses to serve a buffer with the minimal
O,(7) among those buffers with at least L bits. If no buffer has L or more

bits. then any buffer with a complete message is chosen.
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We now proceed to give a mathematical description of the LTRB class of
policies. At each decision epoch ~, the channel chosen to be served is required
to have a complete message to transmit. Note that Q,(7) z L is equivalent to
f3,(T) < L/S,. Therefore, any channel satisfying O,(7) s L/S, must have a
complete message, and it is thus eligible to be chosen for service. Define

.$?(~) = {i: channel i has at least L bits at I-} (2)

and

%(~) = {i: channel i has a complete message at ~}. (3)

Since L is the maximum message length, we have &?(T) c %?’(I-). Note that
f?(~) # @, although we may have ~(~) = @. If channel F(T) is chosen to be
served, then I’(I-) G %7(T). An LTRB policy is one for which ~~(,)(~) < tl,(~ )
for i =S(7-).

Let 9(T) be the set of channels from which the service policy chooses
according to the minimal (3,(T), that is,

It should now be cllear that the relation

S(7) Gs(’i-) c %(7-), (5)

for all decision epochs ~, yields the class of LTRB policies. Setting fi~) = =(~)
we obtain the first example (policy A) that was discussed above. The choice of
channel to serve is the one with minimal time to reach bound over all channels
with a complete message. Setting Y$Z7) = ~(~) for those decision epochs ~ for
which l%(~) # 0 gives the other extreme (policy B). The choice of channel to
serve is the one among those with at least L bits with minimal time to reach
bound. If all channels have less than L bits, then any channel with a complete

message may be chosen.

Our main goal is to prove that any member of the LTRB class of policies

requires buffer storage of only 2 L bits at each input channel to prevent
overflow, for any number of channels N and any set of channel speeds {S,}.
That is, we will prove the following:

THEOREM 2.1. Consider a system of N channels with channel speeds S,,
i=l ,..., N, and serLer speed S > z~ ~S, operating under any member of the

class of L TRB policies. Then

Q,(t)<2L for i=l,..., N, t>o. (6)

In Cidon et al. [1988], it was shown that a buffer size of 2L is a lower bound
for any policy satisfying properties (a)–(c) of Section 1. Thus, we obtain the
following result immediately from Theorem 2.1.

THEOREM 2.2. The LT~ class is optimal in terms of buffer storage for policies

that are work-conseming and for which only complete messages are serljed.

3. Analysis

3.1. PRELIMINARIES. In order to determine whether or not overflow occurs

under a given policy, only the buffer sizes at decision epochs need to be

examined. The reason is that overflow occurs if and only if it occurs at a
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decision epoch (necessarily during a busy period). This can be seen as follows.
Consider an arbitrary busy period, and let T., n = O, 1,..., represent the
beginning of the nth service. Note that these instants of time constitute the
decision epochs within that busy period. We claim that it is enough to show
that overflow does not occur at these decision epochs. For suppose that
overflow occurs at some time t that is not a decision epoch, and let channel i

be the one that overflows. We have T. < t < Tn+ ~ for some n, since channel i
will still have at least one complete message at the end of the present service.
If channel i has already overflowed at the decision epoch T., then the claim
holds. If channel i has not overflowed at 7,,, then clearly it is not being served
at t, for otherwise its queue size would not increase between ~,1 and t.

Therefore, at the next decision epoch ~~, ~ (the end of the current service),
overflow will still occur at channel i. In fact, Q(t) s QL(Tn) if channel i is

being served at time t,while Q,(t)s QL(T,l+,) if channel i is not being served
at time t.Thus, overflow occurs during a busy period if and only if it occurs at a
decision epoch within that busy period, and we need only concentrate on these
points in time.

Note that the queue size at each channel at the start of the busy period is at
most L. That is, the initial value 0, satisfies 6, z L/S,, i = 1, ..., N. Let u(n)
be the length of the nth message to be served during the busy period. Then, it
also represents the zzth service time, since the server speed is normalized to 1.
Let 2i,(n), i = 1,...,N, be the time during this service when channel i actually
receives input (thus, O s 8,(zz) s ~(n) s L). Let F’(n) be the channel that is
chosen to be served at the nth decision epoch. Then, when service is completed
the value of (31for any channel i # I’(n) that has not been served will decrease
by 8,(n), while that for channel F(n) will increase by ( o(zz)\S~~,,~) – ~~(.j(n ).
That is, at the completion of semice we have (3Z(tZ + 1) = 131(n) – ~,(n) for
i + F(n), and O,(n + 1) = O,(n) – 8,(zz) + 0(72)\S, for i = F(n). Note that
these equations hold for any service policy F under our modeling assumptions.
We will study difference equations of this type under a general framework that
includes equations obtained when F belongs to the class of LTRB policies,

3.2. GENERALIZED FRAMEWORK. The above discussion suggests the study of
the following mathematical model in a general setting. We are given L z O

and S = (Sl, . . ., S~) satisfying O < S, < 1 and ~fl, S1 < 1. A state is an
N-vector 6= (0,,..., 9~ ). We are also given an initial state (3 satisfying
61> L/Sl, i= l,..., N. Our interest is in certain sequences T = (T(Yz)),

72=0,1,..., which are called triples and are defined as follows: T( tz) =

(a(nl a(n), F(n)) where 8(~z) = (81(n),..., ~~(n)), O < 8,(H) s m(n) < L and
F(n) c{l,..., N} = J< A triple T determines a state trajectory (9 =
( O(O), 0(1),... ) as follows: 0(0) = 0 and o(n + 1) satisfies

(3,(/? + 1) = 6,(?Z) – a,(n), for i # F(n),

(7)

As mentioned above, the evolution of the states of the channels within a
busy period as defined by (1) follows (7) for an arbitra~ service policy F.

However, there are additional constraints on the equations generated from the
behavior of the queueing system that models the switch. As an example,
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messages of length L cannot be consecutively chosen for service from the same
channel at the beginning of a busy period, since sufficient time would not have
elapsed for the second message to arrive. As another example, the amount of
bits in any buffer cannot become negative (the value of 6, cannot become
larger than 2L). We will prove a proposition on difference equations of type

(7) without taking into account such constraints. All equations that model the
behavior of the queueing system described above will be included, but they will
constitute a small set of the cases covered by our result. Although the
proposition is quite general from a mathematical point of view, the significance
of the framework developed above is that it allows certain inductive arguments
to be carried through which yield the queue size upper bound of Theorem 2.1.
Otherwise, such additional constraints would always have to be taken into
account, complicating the arguments.

We next describe the triples that we wish to consider. Let T be a triple with
corresponding state trajectory (9, and define

‘T(n)=(i:g(n)<i} (8)

A triple T is admissible at step n if (i)~(~~n) s d,(n) for all i GL?~(n). T is
admissible if it is admissible at n = O, 1,, , , . In terms of the queueing model,
note that policies from the LTRB class yield triples that are admissible.

One example of an admissible triple is obtained if the index F(n) corre-

sponds to the minimal value of O,(n) at each step n. A triple T is strict at step
n if ~~t.)(n) < O,(n) for i = 1,.,.,N. T is strict if it is strict at n = 0,1, . . . . In
the queueing model, if at each decision epoch the channel with the minimal 0,
as defined in (1) has a complete message, choosing these channels to serve
yields a strict triple. Furthermore, the choices F(n) constitute a policy that is
necessarily a member of the LTRB class.

To prove Theorem 2.1, we will show that the trajectory @ is always positive,
namely, (l,(n) > 0 for i = 1, . . . . N, n = O, 1, . . . . We carry out the proof in
three steps. First, we show that if T is a strict triple, then O,(n) > L for
i=l,..., N,n=O,l, . . . . We then handle admissible triples T that have
nonstrict steps and show that ~ is positive if 81(n) = t31(n) for n = O, 1,...,

i,j G W. This case corresponds in the queuing model to all channels remaining
on for the same percentage of time during each service. Finally, we prove that
6) is always positive for any admissible T. Note that this last result yields
Theorem 2.1, since for O, as defined in (l), 6, positive at the decision epochs of
a busy period implies that no overflow occurs at channel i given a buffer of size
2L.

Before continuing, we introduce some notation. For a set ~ c {1,..., N} =W
and two N-vectors a = (al, . . . . aN), b = (bl, . . . . bN), define (a . b)> =
z , ~Ya, bl. We also use the notation ay = (a . l)X. When ~ = {1, . . . . N}, we
simply write a “ b.

3.3. STRICT TRIPLES. We now prove the following proposition about strict

triples.

PROPOSITION 3.3.1. Let T be a triple with corresponding state trajectory 6. If T

is stn”ct, then

61(n)>L for i=l,..., N,n=O,l, . . . . (9)
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PROOF. We will first prove by induction on n that (S . /3(n))x > l~lS7L for
ygfl, n=o,l, . . . .

By hypothesis, (S” O(0))Y >171 L > 1%1SYL for 7 C.Y, so that the claim
holds for n = O. Now assume it holds for n = m. Pick ~ LX If F(m) EY,
then we have

(s” O(rn + l))%= (s” O(nz))y– (s” a(m))y+ u(m)

> (s ‘ o(m))y 2 lLm#

by the induction hypothesis and the fact that (S ~8(m))X < m(m). If F(m) Gy,
then

(S “ 19(ZIZ+ 1)):= (S “ O(WZ))Y– (S “ ~(wz))/Fz (S “ 19(~fz))~– sfL.

We claim that (S . O(m))x > ( Iyl + l)SYL, which will complete the proof.
Suppose not, so that

(S ~O(rn))#< (171 + l)SYL. (10)

Since T is strict (at step m in particular), then 13~(~)(m) s 19Z(m) for i =
1,. ... N. Multiplying the ith equation by S, and summing over i. =~, we obtain
the inequality SYO~Ln~nz) s (S . O(m))%. Thus, from (10), it follows that

fl~(n)(nz) < (1~1 + l)L. (11)

Defining %=7 u {F(m)}, we have from (10) and (11)

(S - 6(wz))x< IXIS3L,

which contradicts the induction hypothesis. This completes the proof of the
claim.

Specializing to the case ~ = {i} shows that d,(n) > L for z’= 1,..., N,
?2=0,1,..., which proves the proposition. ❑

It is interesting to note that, for certain queueing models, the channel with

the minimal /3, as defined in (1) is guaranteed to have a complete message, and

thus a strict policy can always be implemented. For example, consider the case

when S, = 1/N, i = 1, ..., N, all channels remain continuously on, and all

buffers initially contain L bits. For equal speed channels, the channel with the
smallest value of /3, has the largest queue size, as is apparent from (1). Further,
since all channels initially start with L bits, ZE ~S, = 1, and there are no off
periods, the total number of bits in the system always remains at NL. Thus, the
maximal queue size is at least L bits at any time, and so the channel with the
smallest (?, has a complete message.

3.4. UNIFORM TRIPLES. We can now prove the main result for uniform

triples, that is, admissible triples satisfying the additional assumption that

i3t(iz) = 8J(n) for n = O, l,..., z, j G W. For the queueing model, this case
corresponds to all channels remaining on for the same percentage of time

while messages are being served. One example of this behavior occurs when
Fi,(n) = m( n), i = 1, . . . . N, which is the case of continuous input at all chan-
nels during the service time of the nth message. The other extreme, when
i51(n)= Ofori= l,..., N, corresponds to the case of no input at any of the
channels.
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When 8,(n) = 8,(n), i, j ●x, eq. (7) shows that the positions of Ol(n + 1)
compared to those of t),(n) do not change, except for index F(n). That is, we
have /3i(n + 1) – ~,(n + 1) = d,(n) – d,(n) for i # F(n), j + F(n). This prop-
erty is used extensively in the proof of the following proposition:

PROPOSITION 3.4.1. Let T be a triple with corresponding state trajectoy @.

Assume that S,(n) = ~,(n) for n = O, 1,..., i, j Efl. If T is admissible, then

8,(I’Z) >0 for i=l,..., fV, n= 0,1, . . . . (12)

PROOF. Consider any step n >0, If T is not strict at n, then the theorem
clearly holds, since the minimal 6, must satisfy 13,(n) > L/Sl by (8), Thus, we
may restrict attention to uniform triples that are strict at n. Such triples may be
classified by the number K = K(T) of nonstrict steps in {O,..,, n – 1}, We will
prove the theorem by induction on K. The case K = O, which corresponds to
triples that are strict at the first n steps, holds by Proposition 3.3.1. Assume the
theorem is true for all uniform triples with K = K nonstrict steps, and we will
show it is true for K = K + 1. Suppose T is a uniform triple with K + 1

nonstrict steps in {O, ..., n – 1}. Let m be the last nonstrict step before n, so
that T is strict at steps m + 1,.. ., n. Define

3Z = {i: f31(m) < i9~(n)(m)}. (13)

Note that J%?# 0 by assumption. Since T is an admissible triple, we have

~ gfl \9’Jm), that is,

f3,(m) > ~ for i GSZ?. (14)
[

The index F(m + 1) must correspond to the minimal 0, at step m, since T is

not strict at m but is strict at m + 1, and ~,(m) = 8j(m) for i, j = M. There-
fore, F(m + 1) = &Z’,and we have

L
~(n+l)(m + 1) = d~(~+lj(m) – d~(n+l)(m) > so –L>O.

F(m+l)

Thus, the theorem holds if m + 1 = n, and so we may assume that m + 1<
n–l.

The proof of the induction step splits into two cases, depending on whether
or not only members of ~ are chosen between steps m + 1 and n.

Case 1. First, suppose that

{F(WI + 1),..., F(n)} CSZ’. (15)

We claim that (15) implies (12). It is sufficient to prove that O~(n)(n) >0,

because T is strict at n. Set %~f {F(m + 1),...,F’(n)}. Since% includes all of
the indices chosen during steps m + 1,...,n – 1 and F(m) G%, we may write

(S” O(n))x= (S. O(m))x - (S” d(m))x
n—1 n—1

- x (s” a(p))%+ ~ a(p)
p=m+l p=m+l

> (S . f3(m))S– (S “ i3(m))2.
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Since % ~~ and (S ~L3(nz))%s L, we have using (14)

(s “ o(n))%’> (L% – l)L. (16)

Note that this proves the claim if F(m + 1) = “”. = F(n), that is, if 1%1= 1.
If 1%1>2, there is i G%, i #F(n). Let 1 ~ {m + 1,..., n – 1} be the last

step prior to n such that i = F(l). This implies

n—1 0(1)
l%(l)(n) = OF([)(l) – ~ tiF(Jp) + ~ .

~=[ F(1)

Since T is strict at 1, ~~(1)(1) s tl~(,l)(l), so that

where we have used the fact that 8~(l)(p) = i3~(flJ(p) for p = 1, . . . . n – 1.
Therefore, since u(1) s L, we have shown that

S, O,(n) < S,6F(,&z) + L (17)

for i ~ Z, i # F(rz). Summing eq. (17) over such i, we obtain

(S “ 19(n))E< SYO~(.,(n) + (137 - l)L. (18)

From eqs. (16), (18), and SE >0, we find that O~(.)(n) >0. This completes the
proof of the induction step when (15) holds.

Case 2. We now suppose that

{F(?7Z + 1),..., F(z)})} gzz. (19)

Let k* + 1 be the first step in {m + 1,..., n} such that ~(k” + 1) z=. We

claim that

@F(m)(k* + 1) – -< 6F(/p+l)(k* + 1)
s F(m)

(20)

This obviously holds if F(k” + 1) = F(m), so we may assume that F(k* + 1)
# F(m). Since F’(k* + 1) was not chosen between steps m and k*, we have

( ) – E ~F(k* +,)(p).‘F(k*+I)(~* + 1) = 6F(~*+1) 7?’2
p=m

Similarly, F(m) was only chosen at step m, and so

Us@ &(n)(p) = ~~(~. + ~)(p) for p = m,..., k*, these inequalities yield
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( ) s o~(~~+~)(m) since F(k* + 1) @~, and so (20) holds,However, 0~(~) m

Let k + 1 be the first step in {m + 1,..., n} satisfying (20). Note that for
i=@? #O,

> t?,(m) – ~,(m)

= f3,(m + 1),

~(~)(m) = 8,(m). As T is strict at m + 1, thissince t9F(~)(m) > O,(m) and 8
implies

u(m)

~~(m)(m + 1) – — > %n + 1)
s

(m + 1),
F(m)

andsok+l~{m +2,..., n}. We wish to “delay” choosing F(m) until step k
to obtain a triple with only K nonstrict steps.

Consider the triple U = (v(l), -y(l), G(l)) defined by

u(l) = 7-(/) for 1=0 ,.. .,l–l

U(l) = T(l + 1) for l=m, ooo, k–l
(21)

U(k) = T(m)

U(l) = T(l) for l=k+l, k+ 2,,,,

and let @ = (4(O), 0(1) ,... ), where 4(O) = 9, be the corresponding state
trajecto~. Clearly, ~(l) = 0(1), for 1 = O,..., m. For m s 1 s k, we have

4,(1) = 0,(1+ 1) + ~l(m), for i # F(m)

~(m)
@~(m)(l) = %(m)(~ + 0 + ~~(m)(m) – ~, (22)

F(m)

which follows from (21).

We want to show that U is strict at steps m,..., n and that ~(n) = O(n).
Then the induction hypothesis will give the proposition. For 1 + 1 = {m + 1,
. . . ,k}, we have f3F(~)(l + 1) – m(m)/SF[~) > 13F(l+~)(1 + 1), so that G(l) =

F(1 + 1) # F(m). Also recall that 81(m) = 8,(m), i, j ● M. Therefore, for i #

F(m),

since T is strict at i + 1. Also, for F(m),
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is strict for 1 = {m, . . . . k – 1]. At step i%, we have

o(m)
%(~)(k) = @F(m) (~) = 19F(m)(~ -I- 1) + 8F(m)frn) – ~

F(m)

s q(k+l)(k + 1) + a~(~+,)(m)>

from (20). Thus, for i # llnz),

%(k)(~) = ~t(~ + 1) + ~l(m) = @,(~)

since T is strict at k + 1. This shows that U is also strict at k.

We now claim that +(k + 1) = tl(k + 1). To see this, note that, for i # F(m),
we have

@,(k + 1) = o,(k) - y,(k) = @[(k) - ~,(m) = 19,(k + 1),

and for F(m) we have

v(k)
~F(~l(k + 1) = &(m)(k) – yF(m)~k) + ~

F(m)

m(m)
= @F(m)(~) – ~,(m)(m) + ~ = OF(,,)(k + 1).

F(m)

Thus, ~(l) =O(l)for l=k+l, k+ 2,.... As a consequence of this result,
the triple U is strict for 1 = k + 1,. ... n since U and T (strict) agree there,

Thus U has K nonstrict steps in {O,..., n – 1}, and so O,(n) = ~,(n) >0,
j=l ,..., N, by the induction hypothesis. This completes the proof of Proposi-
tion 3.4,1. ❑

Relating the above proof to the queueing model, in case 1, only channels
with less than L bits at the mth decision epoch are chosen for service between
m + 1 and n. These channels, which correspond to the minimal 0, for epochs
m+ l,..., n, have a small queue size at m, and a direct calculation shows that
no overflow occurs by only serving them. In case 2, a policy with less nonstrict
choices is constructed by delaying the service of the channel chosen originally
at epoch m until later in the busy period.

3.5. ADMISSIBLE TRIPLES. We now extend the above result to admissible
triples with arbitrary ~(n). For a triple T = (u(n), c$(n), F(n)), let i3~.X(n) =
max, =l, ,,, ~~l(n), n = O, 1, ..., and define the set

Y(T) = {(i, n): d,(n) # 6~8X(n)} = {(i, n): ~,(n) < 8~,X(n)}.

Further, define 1 = I(T) to be the cardinality of XT).

We can now prove the main proposition on admissible triples.

PROPOSITION3.5.1. Let T be a triple with corresponding state trajectory 0. If T

is admissible, then

O,(n) >0 for i=l,..., fV, n= 0,1, . . . . (23)
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PROOF. It is clear that, for each n, there is an admissible triple U. that
agrees with T for 1 = O, ..., n – 1 and satisfies l(Ljz) < ~. Thus, we need only
prove the proposition for admissible triples T with 1(T) < m. The proof is by
induction on 1(T).

When 1(T) = O, we have 81(n) = 8~.X(n) = 8j(n) for n = 0,1,..., i, j, =x.

Therefore, the result holds in this case by Proposition 3.4.1. Now assume the
proposition holds for admissible triples with I = K, and we show it holds when
1 = K + 1. Let T be admissible with I(T) = K + 1, and choose step n and
j =ti such that til(n) < 8~,X(n).

The proof of the proposition splits into two cases, depending on whether or
not the index j is ever chosen after step n. In each case, we will identify an
admissible triple U related to T with I(U) = K, and then use the induction
hypothesis.

Case 1. First, suppose that

0,(0 – amax(n) + d,(n) 2 o~(~)(l) for l=n+l, n+ 2,.... (24)

In this case 6,(1) > t)~(l)(l), so that j # F(l) for 1 = n + 1, n + 2, . . . . That is,
the index j is not chosen after step n. Define the triple U as follows:

u(1) = T(l) for 1=0 ,.. .,l–l

v(n) = a(n)

Y,(n) = l(n) for i#j

y](n) = 8~,X(n)

G(n) = F(n)

u(l) = T(l) for l=n+l, n+ 2,...

Note that I(U) = K. Let @ = (4(O), 4(1),... ) be the state trajectory corre-
sponding to U. Clearly, +(1) = (1(i) for 1 = O,.. ., n. For 1 = n + 1, n + 2,. ...
we have

(25)

+,(0 = f3,(l), for i#j

d,(~) = @j(i) – 8~,X(n) + ti~(n).
(26)

Since j # F(l) for such 1, we have using (24)

@G(l~(l) = @F@J(l) = %(1~(1) ~ $j(~) – %mx(~) + ~J(n) = @J(~). (27)

It now follows that U is admissible, because T is. Also, 6,(1) > 0,(1)

1 =0,1 ,. ... i= l,... , N, and so 6,(1) >0 by the induction hypothesis.

Case 2. Next suppose that

tll(l) – 8max(n) + al(n) < e~(~)(l)

for

28)
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for some 1 G {M + 1, n + 2,. ..}. Let k be the first such step (k > H). Define
the triple U = ( v(i), y(i), G(l)) as follows:

u(l) = T(l)

v(n) = u(n)

y,(n) = 81(72)

-y](n) = dmax(rt)

G(n) ==F(~z)

u(l) = T(l)

v(k) = SJ(amay(d

‘y(k) =(o,..., o)

G(k) =j

u(l) = T(l – 1)

for /=0 ,.. .,l–l

for i#j

(29)
for l=n+l,...,l-l

SJ(?l))

for l=k+l, k+ 2,....

It is easy to verify that U is a triple. For example,

shows that O s v(k) s L. Further, we have 1(U) = K. Let @ = (4(O), 0(1),... )
be the state trajectory corresponding to U.

Clearly, ~(l) = 0(1) for 1 = O,..., n. For n + 1 s 1 s k, the state ~(l) is
given by (26). For 1 E {n + 1,,. ., k – 1}, we have ~,(l) > ~~tl)(l) (see the
derivation of eq. (27)), so that U is admissible at 1. Next, by definition of k,

+~,k)(k) = @l(k) = o,(k) - 8~.Y(n) + b,(n) < q,,)(k).

Thus, U is admissible at k since T is,

We now consider step k + 1. For i #j, we have

@l(k + 1) = o,(k) = O,(k),

while for j we have

s,(8maJn) - ~,(d) = ~(k),

@,(k + 1) = O,(k) +
s] 1

This implies that ~(l) = 6(1 – 1) for 1 = k + 1, k + 2,..., and so U is admis-
sible for such 1. Therefore, U is an admissible triple such that I(U) = K. For
i= l,..., N, we have 6,(1) > +,(1),1 ==O,..., k – 1,and d,(i) = +,(1 + 1),1 =
k, k + 1, . . . . Thus, 0,(1) >0 by the induction hypothesis. This completes the
proof of Proposition 3.5.1. ❑

To describe the above proof in terms of the queueing model, recall that the
case when all channels remain on for the same percentage of time while
messages are being served is covered by Proposition 3.4.1. To handle the
general case, channel j is turned on for an additional length of time 8~~X(n) –
~,(n) during the n th service, so that the on periods of the channels are more
uniform. That is, Sj ( 8~~X(rz) – til(n )) < L “dummy bits” are added to the

buffer at channel j. Case 1 corresponds to channel j never being chosen for

service (for example, it may never contain a complete message). Case 2

corresponds to serving the dummy bits while keeping all channels turned off

during their service,
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4. Optimalip of LTRB

We now use the results of Section 3 to prove the optimality of the least time to
reach bound (LTRIB) class of service policies introduced in Section 2. Our
interest is in a service policy for which the buffer size required at each channel
to prevent overflow is independent of the number of channels and their speeds.
We will show that not only do the LTRB policies possess such a property, but,
in addition, the members of this class are optimal in terms of buffer size. Our
approach is to examine any instance of the evolution of the behavior of the
system and apply Proposition 3.5.1 of the previous section to conclude that no
overflow will occur. The proof will yield an upper bound of 2 L for the buffer
size at each channel to prevent overflow. However, as mentioned in Section 2,
the value 2 L is a lower bound for any policy that is work-conserving and for
which only complete messages are served. Thus, the proof of the upper bound
shows that LTRB is optimal among all such policies.

Recall that L is the maximum message length, and S,, i = 1,..., N, are the
relative speeds of the N channels. The number of bits in storage at channel i

at time t is denoted Q(t), and, for Q,(t) < 2L, O,(t)= (2L – Q,(t)) /S, is the
time for the queue size at channel i to reach 2L, assuming a continuous flow
of bits at rate S, and no service given to channel i, Since overflow occurs if and
only if it occurs at a decision epoch during a busy period, we may concentrate
on these instants of time, Now recall that the states O, at decision epochs
during a busy period satisfy difference equations of the form (7). Here u(n) is
the length of the message chosen for service at the nth epoch, F(n) is the
channel containing that message, and ~l(n), i = 1, ..., N, is the length of the
corresponding on period for channel i. Further, the queue size at channel i at
the beginning of a busy period is at most L, so that the initial state 9 satisfies
%lk L/S,, i= l,..., N. With these definitions, the sequence ( cr(n), a(n),
F(n)), n= O,l,..., represents a triple as defined in Section 3. It is also clear
that members of the LTRB class yield triples that are admissible, and so the
results of the previous section may be applied to these policies.

As mentioned before, certain restrictions on the triples arise naturally in the
queueing model. For example, the buffer size Q,(n) cannot be negative (the
value of O,(n) cannot go above 2 L), while this is allowed in the triples studied
in Section 3. Also, in the queueing model a message cannot be transmitted
until sufficient time has elapsed for it to arrive (e.g., it may not be possible for
a channel to transmit L bits in two successive steps). Thus, the set of triples
generated by the queueing model is a small subset of the set of all possible
triples considered in Section 3. However, we may apply the general result
obtained in that section to show that no overflow can occur for a system
operating under an LTRB policy which has buffers of size 2L.

THEOREM 4.1. Consider a system of N channels with channel speeds S,,
i=l ,..., N, and server speed S > XL ~S, operating under any member of the

class of LTRB policies. Then

Q,(t)<2L for i=l,..., N,t>O. (30)

PROOF. As discussed above, only decision epochs 7., n = O, 1,.. ., within a

particular busy period need to be considered. When all channels remain on for
the same percentage of time during the service of each message, then 8,(n) =
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i3,(n) for i,j =G?j n ==0,1, ..., which is the situation covered by Proposition
3.4.1. The more general case when input flow to the channels can be turned on
and off arbitrarily is handled in Proposition 3.5.1. ❑

Theorem 4.1 shows that the bound of 2 L is valid for any number of channels
and any set of channel speeds. However, in certain cases, an even smaller
bound may hold. For example, suppose all channel speeds are identical

(S,/XjS, = l/N). In this case, O,(t) = C(2L – Q,(t)), where C is a constant
independent of the channel. Thus, choosing the minimal 6, is equivalent to
choosing the buffer with the maximal queue size among all channels with a
complete message, which shows that the Longest Queue First policy (LQF) is
in the LTRB class. Using results from Gail et al. [1993] for LQF, the upper
bound on buffer storage for this case is, in fact, (2 – l/N)L < 2L.

We have shown that the policies from the LTRB class require buffer storage
of 2L, which is independent of the number of channels and their relative
speeds. These policies are also optimal in terms of storage. To see this, first
note that, in Cidon et al. [1988], an example was given to show that a buffer
size of 2L is a lower bound for any policy that satisfies the properties (a)–(c)
discussed in Section 1. Let us briefly review the lower bound example. Consider
an N buffer system with channel speeds that are identical and such that their
aggregate speed is equal to the server speed (S, = l/N for all i). Suppose that
initially all N buffers contain a maximal length message of L bits. After
serving all but one of the buffers at least once in an order dictated by the
policy (this takes time at least (N – l)L since N – 1 of the maximal length
messages must have been served and the server speed is unity), the final buffer
that has not yet been served will contain at least L + ( l/N)( N – l)L = L(2

– l/N) bits. As N ~ CO,we obtain the lower bound of 2L for any such policy.
Thus, the following is an immediate consequence of Theorem 4.1:

THEOREM 4.2. The L TRB class is optimal in terms of buffer storage for policies

that are work-conseming and for which only complete messages are serued.

5. Discussion

In this paper, we introduced a new class of service policies, called Least Time
to Reach Bound (LTRB), for servicing messages that reside in the input
buffers of a switch. According to this policy, once a message has completed
service, the next message to be chosen is taken from a buffer that would
overflow first assuming a continuous flow of bits to all input channels and no
further service. We proved that operating under this class of policies guaran-
tees no overflow (and thus no message loss) when the buffer storage at each
input channel is only twice the maximal length of a message for any number of

channels and any set of speeds. This class is optimal in the sense that any

nonoverflowing policy (satisfying conditions (a)–(c)) requires at least as much

storage as LTRB.

There are obvious advantages of storage requirements that do not increase

with the number of incoming channels when compared to the logarithmic

growth under the Longest Queue First (LQF) service policy or the linear

growth under the Exhaustive Round Robin (ERR) and Fh-st Come First Served

(FCFS) service policies. The buffer sizes are much smaller and need not be
changed every time an input channel is added to the switch, and thus the



An Optimal Service Policy for Buffer Systems 657

system is more robust. Yet, to gain these advantages, the switch must be able
to determine the number of bits in each of the incoming buffers at the end of
service of each message and must also know the speeds of the incoming
channels. With ERR the switch is simpler, since the queue lengths of other
buffers need not be observed while some buffer is served. The switch with LQF
is similar to that wil h LTRB, except that there is no need to know the speeds
of the incoming channels. In conclusion, we observe a trade-off between the
amount of storage required and the complexity of the switch.
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