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Abstract

Gail, H.R., G. Grover, R. Guérin, S.L. Hantler, Z. Rosberg and M. Sidi, Buffer size requirements under longest queue first,

Performance Evaluation 18 (1993) 133-140.

A model of a switching component in a packet switching network is considered. Packets from several incoming channels
arrive and must be routed to the appropriate outgoing port according to a service policy. A task confronting the designer of
such a system is the selection of policy and the determination of the corresponding input buffer requirements which will
prevent packet loss. One natural choice is the Longest Queue First discipline, and a tight bound on the size of the largest
buffer required under this policy is obtained. The bound depends on the channel speeds and is logarithmic in the number of
channels. As a consequence, Longest Queue First is shown to require less storage than Exhaustive Round Robin and First

Come First Served in preventing packet overflow.

1. Introduction

Technological advancements have brought
about new switching fabrics that can support vari-
ous types of traffic, including real-time traffic
such as voice conversations, video sessions and
computer-to-computer data transfer. Some of
these switching fabrics employ packet switching
techniques. In order to reduce the nodal process-
ing overhead necessary for each packet in con-
ventional packet switching networks, part of the
switching functions are off-loaded onto high-
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speed specialized hardware that will be called the
switching component.

The need to support real-time and high-speed
traffic that has a delivery time bound suggests the
use of limited (finite) buffering in the switching
component. The reason is that with unlimited
buffers, the delay of a packet that enters the
system cannot be bounded. However, the limited
buffering may cause packet loss, which must be
minimized in order to provide a reasonable qual-
ity of service. The subject of this paper is the
analysis of service policies for the traffic coming
into a switching component in a packet switching
network and the determination of the size of the
finite buffers needed to insure operation without
packet loss.

The traffic arrives into the switching compo-
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nent from several incoming communication chan-
nels. Instead of using a standard stochastic model
for the entering traffic, we use a more adequate
model that reflects the continuous flow of bits
along the channels [4-6]. Thus, through every
active incoming channel, bits arrive at a constant
rate (the transmission channel capacity) and are
stored in the corresponding input buffer. The
task of the switching component is to serve these
bits and route them to the appropriate outgoing
ports. The service rate is assumed to be at least
as large as the aggregate arrival rate, since other-
wise arrival patterns that will cause at least one
of the finite buffers to overflow may be easily
constructed. The data unit is a variable length
packet that consists of not more than L bits.
Since packet switching is employed, there is a
restriction of serving only complete packets, and
for efficiency and practical purposes no preemp-
tion is allowed. This implies that a packet cannot
be switched to an outgoing port unless the whole
packet resides in the input buffer (i.e., the whole
packet has already arrived), and once the switch-
ing of a packet starts, it cannot be interrupted.
One problem that a designer of such a switch-
ing component faces is to determine the service
(switching) policy of the packets arriving through
each of the incoming channels, and the size of
the input buffers needed to reduce potential
losses. This problem was first considered in [4],
where the Exhaustive Round Robin (ERR) ser-
vice policy was proposed and analyzed. The ERR
discipline was also considered in [11], and in
addition a policy called Gated Round Robin
(GRR) was introduced in that paper. The First
Come First Served (FCFS) discipline was studied
in [2]. When the channel speeds are not equal,

both ERR and FCFS have been shown to require
that the size of the largest buffer increases with-
out bound linearly with the number of channels
in order to prevent packet overflow, not a very
desirable property.

In this paper we consider another service pol-
icy, the Longest Queue First (LQF) discipline.
According to this policy, when service of a packet
is complete, the next packet to be served is taken
from the buffer with the largest number of bits.
We derive an upper bound on the size of the
largest buffer required at the input channels to
guarantee no packet loss, and show that this
bound grows logarithmically (not linearly) with
the number of incoming channels. We also con-
struct an example that shows the bound is tight.

2. Model description and background material

Consider a switching component with N input
channels, each with a corresponding finite input
buffer. Let S;, 1 <i <N be the transmission rate
of channel i (in bits /s). Bits arriving through the
ith channel are stored in its buffer, and if the
buffer is full, they are lost. The channel can
either be on (receiving bits) or off, and bits arrive
gradually into the buffer instead of instanta-
neously. This gradual input or noninstantaneous
input model of arrivals has been used extensively
in the analysis of switching systems [1] as well as
dams [7]. The data unit is a packet rather than a
bit, and every packet consists of a variable num-
ber of bits with a maximal length of L bits. We
do not include any specific statistical assumptions
about the packet lengths or the on/off process of
arrivals. Such deterministic models have been
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used, not only for telecommunications applica-
tions [4—-6], but also in the analysis of various
service policies for real-time scheduling in manu-
facturing systems [8—10].

A server (switch) serves the packets residing in
the input buffers at a rate of § (bits/s). If § <
YN .S;, then arrival patterns can be constructed
so that given any set of finite buffer sizes at least
one of the buffers will overflow. Therefore, we
clearly require that S> XY S, The server is
restricted to serve only complete packets. Thus, if
a buffer contains only part of the packet, that
packet cannot be served. In addition, packets are
served in a nonpreemptive manner, i.e., once the
service of a packet starts, it cannot be inter-
rupted. Thus, packet fragments cannot be served.
Furthermore, we assume that the server is work-
conserving, I.e., it is not idle if there is a complete
packet at some buffer. Finally, we assume that
initially each buffer contains no more than L
bits, so that there are at most NL total bits in the
system at any time.

The problem of introducing a service policy
and determining the buffer sizes that insure oper-
ation without any packet loss was first studied in
[4]. The service policy considered there was Ex-
haustive Round Robin (ERR). Under this policy
the input buffers are served in a round robin
manner, and once the service of a buffer starts it
is exhaustive, i.e., every complete packet in the
buffer is served. It has been shown that if the bit
arrival rates on all channels are the same, input
buffers (for each channel) that can contain 3.35L
bits are sufficient to insure operation without
loss. When the rates are not the same, the size of
the largest buffer required depends on the arrival
rates and grows linearly with the number of in-
coming channels. Finally, it has been shown in [4]
that when the arrival rates are equal, the buffer
sizes should be at least 2 —1/N)L in order to
avoid loss.

Improvements in the bounds for ERR in the
equal speed case and bounds for a new policy
called Gated Round Robin (GRR) have recently
appeared (see [11]). Although GRR is similar to
ERR in that channels are served in a round robin
fashion, the service at each channel is given in a
gated rather than an exhaustive manner. In [11] it
is shown that the upper bound for ERR with
equal speed channels can be tightened to 3.307L,
while a lower bound for this case is 3.051L. In

the same paper an upper bound of 3L to prevent
packet loss was found for GRR, again in the case
of equal speed channels.

Another natural service policy to consider is
First Come First Served (FCFS). It is easy to
show that under FCFS the largest buffer storage
required also grows linearly with N. This was first
demonstrated in [2], and we now briefly review
that argument. Define Q,(¢) to be the amount of
bits in storage at time #> 0 at channel i. The
largest amount of bits in storage for a channel
will occur just before service begins at the chan-
nel. Consider an arbitrary packet of length § < L
whose final bit arrives at channel { when there
are B bits from other packets in the system. Thus
B + 8 < NL, since there are never more than NL
bits in the system. This packet must wait for a
time B/S until it is served, where S > .S, is the
speed of the server. The amount of bits accumu-
lating at channel i during this time is at most
S;B/S, so that the queue size at i just prior to
service of the packet at an instant ¢ is

S;B S;
Q(t)ys——+6< E(NL—S) +48

s
<L{1+(N— 1)%}.

Note that this upper bound is attained for B =
NL — L, 8 =L, and a continuous flow of bits into
the system. As is the case for ERR, linear behav-
ior with N occurs. With equal speed channels
(8,/2;8;=1/N) we obtain the upper bound
0()<2-1/N)L.

3. Longest queue first

In the previous section we have seen that two
natural choices for a service policy, ERR and
FCFS, exhibit behavior that is linear in terms of
the number of channels. That is, the size of the
largest buffer required increases linearly with N
without bound. Another promising candidate is
the Longest Queue First (LQF) policy. It seems
reasonable to want to serve the channel that has
the most bits in storage, and therefore decrease
its queue. In effect, this gives a higher priority to
channels with more bits in storage, which are
likely to be the faster input channels. We will
show that LQF does have better behavior than
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ERR and FCFS. The largest buffer storage
needed increases with N without bound, but the
behavior is logarithmic instead of linear. An up-
per bound on the queue size at each channel will
be derived, and then a particular choice of system
parameters will yield an example that shows the
upper bound is attained.

We now describe the operation of the LQF
policy. At the end of each service period, the
channel to be served is chosen by the following
rule.

The next channel to be served is any channel

that has the largest number of bits in storage

among those with a full packet. If no channel
has a full packet waiting, then the server be-
comes idle.

3.1. Queue size upper bound

We will analyze this policy by finding an upper
bound on the queue size for any set of channels
at any time ¢. For a set #c{l,..., N}=.,
define S, =Y, , S5, and Q (1) =L, ,Q,t). We
seek constants C , such that Q (1) < C, for >0
and ¢ Cc.#. Define

Ser= ir(lzz:; S,fork=|71,..., N (1)
| =k
(thus S, -, =S,). Note that if #C.% and k>
|7 |, then S, > S ,. Define
N-1 §_ /S
7k
C,=|;'IL{1+ r = } (2)
k=71
(thus C, =NL). Since S,, <XIN S;<S for all
& and k we have
N-1 1
C]<|/|L{1+ Y E}‘ 3)
k=71

Recall that the behavior of LQF will be exam-
ined under the assumption that each channel
initially has at most L bits in storage. Note that
this is also the case whenever a new busy period
begins after the server has been idle. This insures
that the total amount of bits in the system at any
time ¢ > 0 is at most NL. Another consequence
of this assumption is that the initial queue size
satisfies Q ,(0)<| #|L <C, for all Fc.//. We
will now prove the followmg lemma.

Lemma 3.1. Under the Longest Queue First policy
Q,(t)<C, for Fcy, t=0. (4)

Proof. Let 7,, n =1, 2,... be the time when the
nth packet is taken into service (7, = 0). We will
prove by induction on # that (4) holds for 0 <t <
7,. As noted above, the result holds for ¢ =0 =7,
So assume it holds for ,, and let 7, <t <7,
Let # c.y. If the server is idle at time ¢, then no
buffer can have L or more bits at this instant.
Thus, Q.(¢t) < | #|L <C,. Otherwise, the
server must be busy at time ¢, say serving channel
j. This channel must have been served continu-
ously during the interval (7, ), because ¢ <7, ;.

Therefore, 8d=eft -7,<L/S. If j €7, then

Q (1) <Qs(7,) +(5,=5)8<Q,(7,) <C
by the induction hypothesis.

Consider now the case of j €.7. Then Q ,(¢) <
Q (1,) + S 8. First suppose that no buffer at 7,
had more than L bits. Then

Sg/S

Q,()<| FIL+S8,8<| 7IL{1+ T
Since S),u,| Sy and Ifl < N —1, we conclude
from (2) that Q f(t) C,.

Next suppose that at least one buffer had
more than L bits at 7,. We need to show

Suppose not, S0 that
Q,(r,)>C,—S5,9. (6)

Since the channel with the longest queue at 7,
must have had more than L bits, it had a full
packet. Thus the channel, say j, chosen for ser-
vice at 7, under the LQF policy had the maximal
queue size among all channels. That is,

Q,(r,)>0(r,) fori=1,..., N. (7
Summing (7) over i €_¢, we obtain
| £10,(7,) = 0 (7,).
Using (6), we have
C,—S5,0
0() > ;- ®)

Define % =7 U {j}. Adding (6) and (8) and then
using 8§ < L /S yields

0u(s)> T (C-18,/5). )
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We now claim that

|7 |

From (2) we need only show

N—-1 S S
|5zf|L{1+ Y ;,;/}

k=|7|

S
—-|ZI|L
|71

Since S| - =S, the above inequality reduces
to

N—1 S S
|%|L{1+ v —’ii}

N-1 S S
>|;zf|L{1+ Y 7}:/ }

k=|7|

k-1l K
N—1 S S
>IﬁZIL{1+ y zk/ }
k=|7| k

which holds since _# C.%. This proves (10). From
(9) and (10), we obtain

Q%(Tn) > sz

contradicting the induction hypothesis. There-
fore, (5) holds, and the lemma follows. O

We can now prove the following theorem,
which gives an upper bound on queue size at
each channel.

Theorem 3.2. Under the Longest Queue First policy
N-11

Q(1)<L{l+ ¥ =} j=1,..., N,t>0.
k=1 k
(11)

Proof. This follows immediately by specializing
the results of (3) and Lemma 3.1 to the case of a
single channel, that is, #={j}. O

This theorem illustrates that the size of the
largest buffer increases at most. logarithmically
with respect to N for the LQF policy. In fact, if
the buffer at a channel is large enough to hold
L{2 + In(N — 1)} bits, then the buffer will never
overflow, regardless of the relative speeds of the
various channels. For equal - speed channels
(8,/X;S;=1/N), note that we obtain the bound
Q{(t) <2 —-1/N)L, which is identical with the
equal speed upper bound for FCFS. Thus a buffer

that can contain two maximal length packets will
suffice to prevent overflow. In addition, note that
the bounds for ERR, GRR, FCFS and LQF are
all independent of N in the equal speed case.

3.2. Queue size lower bound

In order to show that the buffer size behavior
is indeed logarithmic, we will exhibit a system for
which such behavior is attained. This example
will be constructed under the assumption of in-
finitesimal length packets, that is, the ratio be-
tween the length L of the longest packet and the
length of the shortest packet can be made arbi-
trarily large. In a recent extension of this work,
we have shown that similar examples exhibiting
logarithmic behavior can be constructed as long
as this ratio is “large enough”. However, in those
cases the examples become more complex, and
thus we will use the above simplifying assumption
here. For notational convenience, we order the
channels so that §;< -~ <S§,. We will find
time instants 0 <¢, <t, < --+ <ty such that at
t;, buffers i,..., N have an equal number of bits,
say X;. During the interval (¢, ¢,,,), the server
will first serve a packet from channel i of (maxi-
mum) length L bits, and then spend the remain-
der of the interval equalizing the queue length at
channels i+ 1,..., N by serving infinitesimal
length packets from channels i+2,..., N. Fi-
nally, for a specific choice of the speeds §;, the
amount of bits at time ¢, in the buffer of the
fastest channel will be shown to increase logarith-
mically with N.

Formally, we construct a worst case scenario as
follows. We assume that the channel speeds and
the server speed satisfy X,S; = S. We also assume
that at ¢ =0 each buffer has at most L bits in
storage and that there is a continuous flow of bits
into the system. Using infinitesimal length pack-
ets, we can construct a time ¢, > 0 such that all
channels have X, = L bits in queue, and the first
(slowest) channel has a maximum length packet.
The L bit packet at channel 1 is served, and then
queues 3,..., N are equalized with queue 2 by
serving infinitesimal length packets from these
queues. After equalization at time ¢, > ¢, buffers
2,..., N will have an equal number X, > X, of
bits, buffer 1 will have less than X, bits and
buffer 2 will have a maximal length packet of size
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L. Continuing in this manner, we see that chan-
nel i will never be served during the interval
(tiy 1 IN)-

To determine the value of X, we analyze the
behavior of the system during the interval
(¢;, t;,41). At ¢, queues i,..., N have X; bits, and
queues 1,..., i — 1 have less than that amount.
First, a packet of L bits from channel i is served,
which takes time L /S. The amount of additional
bits in queues i+ 1,..., N after this service is
S;.1L/S,...,SyL/S. We now spend a time T; to
equalize queues i+ 1,..., N. This may be done
under the LQF policy by serving infinitesimal
length packets, since the slower channels 1,..., i
have smaller queue length than the faster chan-
nels. Note that queue i + 1 is not served during
this time period. When equalization occurs, we
set t,,,=t,+L/S+ T. The total amount of bits
entering queue i + 1 during (¢;, ¢, ) is S;,((L/S
+ 7)), while the total number of bits entering
queues i+ 2 through N is T, ,S(L/S +T).
The total amount of bits leaving queue i+ 1
during (¢,, ¢, ;) is 0, while the total number of
bits leaving queues i+ 2 through N is S7;. At

t;.q queues i +1,..., N are equal, and so

YN ,.S(L/S+T) — ST,
S, (L/S+T)=—"—" : -
z+1( / z) N—(l+1)

Since 1,8, =S, we obtain
(N=i=1)8;((L/S+T)
i+1

=L- Y S(L/S+T)

j=1
or
(L/S+T){(N—i)S;, + X2 S;}=L.
j=1
Thus we have
Xi+1_Xi:Si+1(L/S+Ti)
L
(N=i)+Zi_i8;/Sis1

Summing for i=1,..., N—1 and using X, =L,
we obtain
N—-1 1

Xy=L{1+ ¥ .
N im1 (N=1) +X;18,/8,41

(12)

which is Q,(ty), the number of bits in buffer N
at time ¢,,.

We now make a particular choice for the chan-
nel speeds §;. Let C > 1 be a constant, Pick S; so
that S;,,>CXi.,S,. We see that this may be
done by choosing S,,...,Sy in turn in terms of
S, which satisfy the above inequalities, and then
determining the value of S, through the con-
straint .5, =S. For such a choice of channel
speeds we have Y:_,S./S;,, <1/C, so that (12)
becomes

N-1 1
QN(tN)>L{1+ igl (N—i)+1/C}

L1 Nil L lepe
= + = :
o it+t1/C ()
We have constructed an example of a system for
which the buffer size required at the fastest chan-
nel is at least LB(C), thus exhibiting the promised
logarithmic behavior. An interesting case is ob-
tained by letting C — «. Recall from (11) that an

upper bound on maximal buffer size is UB d=ch{1
+ X¥7"/i}. Noting that lim._ LB(C)=UB,
the above construction shows that the bounds we
have obtained are tight. That is, we have the
following theorem.

Theorem 3.3. Given € > 0, a set of channel speeds
can be chosen so that the corresponding system,
when operating under the Longest Queue First pol-
icy, requires a buffer size at the fastest channel of
at least UB — € to prevent packet overflow.

4. Discussion

In this paper we have introduced and analyzed
the Longest Queue First (LQF) policy for servic-
ing packets that reside in the input buffers of a
switch. According to this policy, when the service
of a packet is complete, the next packet to be
served is taken from any buffer with the largest
number of bits among those that contain a full
packet. If there is no full packet in any buffer,
then the server becomes idle. We derived an
upper bound on the size of the largest buffer
required at the input channels to guarantee no
packet loss, and we showed that this bound grows
logarithmically with the number of incoming
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channels. We also constructed an example that
shows this bound is tight.

The advantages of logarithmic growth for the
LQF service policy compared to the linear growth
for the ERR and FCFS service policies are obvi-
ous. The size of the largest buffer that guarantees
no loss is much smaller with LQF than with ERR
and FCFS. However, to gain this advantage, the
switch should be capable of determining the
number of bits in each of the incoming buffers at
the end of service of each packet. With ERR the
switch is a bit simpler, since data about queue
lengths of all buffers is not needed.

In a subsequent paper [3], a service policy is
introduced that guarantees no loss if each input
buffer can accommodate only two maximal length
packets, for any number of channels and for any
set of transmission rates. However, the imple-
mentation of this policy is more complicated than
LQF, since it requires knowledge of the transmis-
sion rates of the various channels in addition to
the capability of determining the number of bits
in each of the buffers at a service completion.
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