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Selective-Repeat ARQ: The Joint Distribution of the
Transmitter and the Receiver Resequencing
Buffer Occupancies
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Abstract—Consider a communication network which regulates re-
transmissions of erroneous packets by a Selective-Repeat (SR) ARQ
protocol. Packets are assigned consecutive integers, and are transmitted
by the transmitter in order, until a NACK or a time out is observed. The
receiver, upon receipt of a packet, checks for errors and returns ACK /
NACK accordingly. Only packets for which either a NACK or a time
out have been observed are retransmitted.

The overall delay of a packet in a system that operates under the SR
ARQ protocol consists of the queueing delay at the transmitter and the
resequencing delay at the receiver. In this paper, we present a model for
the SR ARQ, and derive the joint distribution of the buffer occupancies
at the transmitter and at the receiver and compare the two types of
delay.

1. INTRODUCTION

THE procedures whereby computer communication networks
preserve the integrity of data sent from a transmitter to a
receiver over a noisy path are known as Automatic Repeat Request
(ARQ) protocols. In these protocols, the data are sent by packets,
each of which is encoded for error detection by the receiver. The
packets that arrive at the transmitter are assigned subsequent num-
bers that uniquely identify them and are referred to as identifiers.
Furthermore, the first time transmissions of packets occur in an
increasing order of the packet identifiers.

Based on the error detection results, positive/negative acknowl-
edgments (ACK/NACK) are sent by the receiver over a feedback
channel, arriving at the transmitter after a roundtrip propagation
delay. The acknowledgments carry the identifiers of the packets they
acknowledge. If no acknowledgment is received within a predeter-
mined interval, the transmitter interprets this as a NACK and
retransmits the packet. This event is referred to as a time out..

The retransmissions of erroneous packets depend on the particular
ARQ protocol being used. There are three basic ARQ schemes:
Stop-and-Wait, Go-Back-N, and Selective-Repeat [2], [12], [15],
{6]. Under the Selective-Repeat protocol, on which we focus in this
paper, the transmitter continuously sends new packets and the
receiver accepts every packet that arrives error-free. Upon receipt
of a NACK by the transmitter, only the corresponding packet is
retransmitted.

To maintain integrity, it is a common requirement in computer
networks that the receiver must send out/release packets (to the
user, to the next node, or to the upper layer of the network
architecture) in their original order. Under the Go-Back-N proto-
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col, packets that arrive out of order are ignored by the receiver,
which consequently does not have to allocate any buffers for them.
Under the Selective-Repeat protocol, those packets must be stored
in the receiver buffers until they can be sent out according to their
original order. The buffers needed for this purpose are referred to as
resequencing buffers, and the time that packets spend there is called
the resequencing delay.

There are several important performance measures that are asso-
ciated with the ARQ protocols: the throughput, the packet delay,
buffer occupancy at the transmitter, and buffer occupancy at the
receiver. In [4], the performance under Go-Back-1 has been ana-
lyzed, and the buffer occupancy distribution obtained when the
buffer capacity at the transmitter is unlimited. For a finite buffer
capacity, the overflow probability has been derived, from which
optimal time-out values have been obtained. In [18], [9], the distri-
bution of the packet delay and the buffer occupancy at the receiver
under Go-Back-N and SR were derived. A modified version of the
Go-Back-N, the Stutter Go-Back-N, has been presented in [17]. The
protocol has been proposed for links with high error rate or long
propagation delay, and its average buffer occupancy has been shown
to approach the corresponding value of an ‘‘idealized’’ ARQ proto-
col. The throughput under several variants of the Selective-Repeat
ARQ has been studied in [10] and [19]. In [3], it has been shown
that the throughput under the Selective-Repeat ARQ protocol out-
performs that of the Go-Back-N over a wide range of error rates.
Other related studies are [14], [7], [16], [1].

Every ARQ protocol requires the transmitter to buffer packets
since arrival instances are random and retransmissions might be
needed. Under the SR ARQ protocol, the receiver is also required
to buffer packets which arrived out of order. Thus, the overall delay
of a packet under the SR ARQ protocol consists of two parts:

1) queueing delay at the transmitter (i.e., the time between the
packet’s arrival and its successful transmission)

2) resequencing delay at the receiver.

The queueing delay and the buffering requirement at the transmit-
ter have been studied in [14], [18], [9], [1]. The resequencing delay
and the buffering requirement at the receiver have been studied in
[13] under a ‘‘heavy traffic’’ assumption, namely, the transmitter is
assumed to always have a packet to transmit. Therefore, this model
provides upper bounds on the expected resequencing delay and the
buffer requirement at the receiver.

In this study, we relax the ‘‘heavy traffic’’ assumption and
analyze a system where packets arrive at the transmitter according
to a general renewal process. The analysis of both queues enables us
to compare them and to explore the intriguing problem of which (if
any) of them is dominant.

Another feature of our analysis technique is the ability to evaluate
the transmitter queueing delay for large window sizes. Although the
statistics of this metric have been analytically derived in [9], compu-
tational complexity inhibits from obtaining results for windows
larger than four. The computational complexity has been eliminated
in [1] by considering an approximate solution of the model.

In this study, we analyze both the queuing delay at the transmitter
and the resequencing delay at the receiver. The queueing model that
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we consider is slightly different from the model in [9], [1] in that an
arriving packet is prohibited from transmission during the window
in which it has arrived. In the next section, we elaborate on that and
discuss how our model relates to the one in [91, [1]. Also, in Section
V, we present several numerical examples in which a comparison is
made between the results of our model and those obtained from a
simulation of the original one in [9].

In Section II, we formulate the system model and discuss how it
corresponds to the model in [9], [1]. In Section III, we analyze the
transmitter queueing statistics, and in Section IV the joint distribu-
tion of the transmitter and the receiver buffer occupancies. From the
latter, we derive the packet resequencing waiting time at the re-
ceiver. Numerical results that compare the queueing delay at the
transmitter and the resequencing delay at the receiver are presented
in Section V.

II. MoDEL FORMULATION

Consider a pair of nodes, a transmitter and a receiver, which
communicate data packets of fixed lengths through a slotted channel,
and where packet transmission times equal one slot. Moreover, the
forward channel and the feedback channel (through which acknowl-
edgments are transmitted) are both noisy. We assume that the nodes
are synchronized with the channel and packet transmissions start at
slot beginnings.

New packets that arrive at the transmitter are assigned consecu-
tive integers that serve as their identifiers. We assume that the
transmitter and the receiver have unlimited buffer capacities, and
that they regulate the retransmissions of the erroneous packets
according to the following Selective-Repeat ARQ protocol. The
transmitter transmits new packets in increasing order, as long as
ACK’s are received for the transmitted packets and new packets are
available. Upon receipt of a packet, the receiver checks for errors
and returns an ACK/NACK accordingly. Given the transmission of
a packet, say packet i, the transmitter waits for an acknowledgment
of that packet, until after M — 1 slots, 1 = M < oo. (Observe that
in a synchronized system, an acknowledgment is due to arrive
exactly at that moment; otherwise, a time out is assumed.) If an
ACK arrives, the corresponding packet is released from the trans-
mitter buffer and the next transmission is of a new packet (if
available). If a NACK or no acknowledgment has been observed
(time out), the next transmission is again packet /.

The value M is referred to in the literature as the window size.
In the receiver buffer, a packet is released if and only if all
preceding packets have been released. Thus, at any given time, the
receiver buffer holds all packets that have been received correctly,
but for which at least one packet with a lower identifier has not yet
been received. The set of packets held by the receiver is denoted as
the resequencing buffer occupancy. This model, commonly used
in the study of satellite channels, has been adopted in most of the
previous studies of the SR ARQ protocol, e.g., [9], [1].

For analysis tractability, we impose the following restriction. A4
newly arriving packet is inhibited from transmission during the
window in which it has arrived. It becomes available for transmis-
sion at the subsequent window. All packets that have been transmit-
ted at least once are always available for transmission.

Let A;, i = 1, be the number of new packets that arrive during
slot number /. We assume that (A;, /= 1) are independent and
identically distributed (i.i.d.) random variables, with finite first and
second moments A\ and &, respectively.

We consider the contents of the transmitter and the receiver
buffers at window boundaries. The windows are numbered and
denoted by ¢, t = 1,2,3,--- .

Let N(t) be the number of packets in the transmitter buffer at the
beginning of window f. To denote the packets that are being
transmitted during window £, it is mathematicaily convenient to
introduce dummy packets whenever N(f) < M. In that case, we
add M — N(¢f) dummy packets that assume the identifiers of the
subsequent packets yet to arrive. Every new arrival replaces its
corresponding dummy packet. Dummy packets are not transmitted,
and therefore are not subject to errors. This convention facilitates
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the description of the resequence buffer content and the evolution of
the underlying Markov chain.

Let X(f) = (X (8), X5(8)," ++, Xy,(£)) be the M smallest iden-
tifiers of the packets that are present at the transmitter at the
beginning of window ¢ (including the dummy packets whenever
N() < M). Without loss of generality, X,({) < X,(f) < +** <
X,,(£). Note that since new arrivals during window ¢ are inhibited
from transmission during that window, only the real packets among
(X,(8), X,(1),"*+, X,,(2)) are being transmitted during window ¢.
The process {(N(f), X(¢)), t = 1,2, -} governs the evolution
of the transmitter and the receiver buffer occupancies at window
boundaries. To illustrate our notation, suppose that M = 7, N(1)
=5, and X(1) = (1,2,3,4,5,6,7). That is, packets 6 and 7 are
dummy, and packets 1,2,---,5 are being actually transmitted dur-
ing window 1. Suppose also that the transmissions of packets 2 and
4 fail, i.e., the transmitter observes for them a NACK or a time out.
Under the SR ARQ protocols, packet 1 is released from the receiver
buffer, while packets 3 and 5 are held there. Packets 2 and 4 are
retransmitted in the next window. If four new packets arrive during
window 1, then N(2) = 6 and X(2) = (2,4,6,7,8,9, 10) where
packet 10 is a dummy packet.

Assume that the probability of a packet failure is p, 0 < p < 1,
and that failures are mutually independent.

Let

Di(t) = X, (1) - Xi(1),

i=1,2,,M-1;

M
Dy(t) = iand Wi (1) = 3 Di(¢), k=1,2,-"-, M.
i=k

Also let
P{(w,n) =Pr(W,(t) =w, N(t) =n) and

Gi(x, y) = E(x"kD . yNOy, x|, |y| =1

Note that W, (t) — (M — k + 1) is the number of packets that are
held by the receiver at the beginning of window ¢ due to the kth
packet at the transmitter. When 7 — oo, the limiting random vari-
ables, the probabilities, and the probability generating functions are
denoted by N, D;, W, P(w,n), and G, (x, y), respectively.
From [9] and [13], it follows that if A <1 — p, the system is
ergodic and the limits exist.

Let X (1) (X0 (1)) be the minimum (maximum) value of the
packet identifiers that have been transmitted up to and including
window ¢, but have not been yet released by the receiver. This
includes the dummy identifiers if N(¢) < M.

From the protocol description, it immediately follows (as in [13])
that for every ¢,

Xmin(t) :Xl(t) and Xmax(t) =XM(t)' (1)

These equations imply that during every window f, the packets
(including dummy ones, if present) with the global maximum identi-
fier and the global minimum identifier (not yet released by the
receiver) are transmitted.

It is clear that the number of packets in the receiver buffer at the
beginning of window ¢ is W,(¢) — M. For example, suppose that
M=17, N =35, and (X, (1), -+, X;(1)) = (7, 8, 11, 16,
17,20, 21). That is, packets 20 and 21 are dummies. From (1), this
state indicates that all packets whose identifiers are less than or
equal to 6 have been released from the receiver buffer. Further-
more, packets 9, 10, 12, 13, 14, and 15 have arrived at the receiver
and have been positively acknowledged by it. Moreover, packets 18
and 19 were also positively acknowledged by the receiver. Since
packets are released according to their identifier’s order, they have
to be stored at the receiver at the beginning of window ¢. Hence, the
receiver buffer occupancy is W (¢) - M = X, (D) + 1 ~ X_,.(D)
- M = (22 —-7) — 7 = 8 packets. We denote by B(¢) the rese-
quencing buffer occupancy at the beginning of window ¢, i.e.,

B(t) = W,(1) - M.

(2)
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The evolution of the transmitter buffer occupancy (N(#), t = 1)
is given by

N(t+ 1) =N(t) + A(1) - V(1), t=1,2,--+ (3)

where N(?) is the number of packets at the beginning of window ¢,
A(?) is the number of packets that arrive at the transmitter buffer
during window ¢, and V(¢) is the number of packets that are
successfully transmitted during window ¢£.

As one can see from (3), the main advantage of considering the
system at window boundaries is that the states at the transmitter
buffer are described by a one-dimensional Markov chain, not as in
191, [1] where an M-dimensional Markov chain is required. This
description is crucial when the joint distribution of the transmitter
and the receiver queueing processes are to be analyzed.

Notice that our model is not an exact description of the real SR
ARQ system as in [9], [1]. Therefore, it is necessary to compare the
results derived from the analysis of our model and the performance
of the real protocol. To that end, we carry out a simulation of the
real protocol whose results are presented in Section V. Here, we
discuss how the two models relate to each other.

Regarding the buffer occupancy at the transmitter, our model
implies that N(¢) has the same evolution as if packets arrive and
depart at window boundaries [see (3)], and all packets are transmit-
ted during the same time and each of them requires M slots.
Therefore, to evaluate the expected delay at the transmitter (exclud-
ing transmission time), we have to subtract M slots due to the
transmission time. Note that similarly to [9], [1], a packet whose
transmission fails stays in the transmitter queue until the end of the
window.

Using the interpretation above, the computed delay at the trans-
mitter is measured in whole units of window size. In particular,
packets in the real SR ARQ that experience a delay which is less
than a window size have a delay of zero in our model. Hence, our
model predicts smaller delays at the transmitter. To compensate for
that phenomenon, we add a corrective term to the expected delay at
the transmitter that is derived by our analysis. This term is heuristic
and approximates the average delay of packets whose delay is less
than one window size times the proportion of those packets. For
details, see Section IIl. Very good agreement with the real SR ARQ
is observed in all of our numerical examples.

Regarding the expected resequencing delay, it appears that our
model captures the correct behavior of the real system. This is
indeed verified in our examples in Section V.

In the next section, we shall derive the distribution of N(¢) under
stationary conditions, and in Section IV, we analyze the joint
distribution of the transmitter and the receiver buffer occupancies
under stationary conditions.

III. THE TRANSMITTER BUFFER STATISTICS

The chain (N(¢#), ¢t = 1) whose evolution is given in (3) is a
Markov chain. From our assumptions, ( A(¢), ¢t = 1) is a sequence
of independent and identically distributed random variables with
first and second moments of AM and £M + NM(M — 1), respec-
tively. Let F(y) be the generating function of A(#), i.e., F(y) =
E[yA"]. Obviously, F(y) = [f(»)]¥ where f(») is the generat-
ing function of the number of packets arriving in a slot. We restrict
our attention to generating functions F(y) such that E[(1 + €)*”]
< oo for an arbitrarily small ¢ > 0. (This is not a hard restriction,
and it is required for applying Rouche’s theorem below.) Also, let
V;, 0 < i < M, be independent Bernoulli numbers that assume the
value 0 with probability p and the value 1 with probability g = 1 ~
p. With the notation N(¢) = min{ N(t), M}, V(¢) is clearly given

M-1
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by
Nt

V() = 2 V. (@

From [9], the Markov chain (N(f), ¢ = 1) is irreducible and
aperiodic and is ergodic if and only if

A<l =p. (5)

We assume that condition (5) holds.

Let g; be the probability of having i packets at the transmitter at
the beginning of an arbitrary window under stationary conditions,
and let G(y) = lim,_ ., E[yV?] = £{2g;y". From (3) and (4),
we obtain

G(y) = F(y)[élgiy"(qy"‘ +p)’

M-1

G(y) - ;O giy"](qy“ +p)M]- (6)

+

By rearranging (6), we have

El [(q+py) ™~ (a+py)"y]e:

G(y) = F(y)-—= M _ F(y)(q+P)’)M

In (7), the probabilities g;,, i =0,1,2,: -+, M — 1 are unknown.
Yet, standard application of Rouche’s theorem and exploiting the
analyticity of G(y) within the unit disk | y| < 1 (for details, see
[5, pp. 121-124)) yields these probabilities. Specifically, using the
above condition on F(y), Rouche’s theorem implies that the de-
nominator of (7) has exactly M zeros, oy, 6,," ", 6y, Within the
unit disk. Furthermore, when condition (5) holds, all the zeros are
distinct. If they were not, then the first derivative of the denomina-
tor of (7) at one of the zeros would also vanish. It is easy to verify
that this contradicts the ergodicity condition (5). One root is clearly
1, and without loss of generality, let ,, = 1. Since G(») is analytic
within the unit disk, its numerator vanishes whenever the denomina-
tor vanishes (within the unit disk). Thus,

(7

M-1 ) ‘
> [(q + puj)'ajM -(g+ paj)Maj’] g;,=0,
i=0
l<j=M-1. (8)

Another equation is obtained from the normalization condition
G(1) = 1. By applying L’hopital’s rule in (7), we have

M(l—x—p)=(1—p)§1(M—i)gi- )

Equations (8) and (9) form a set of M independent linear equations
whose solution yields the M unknowns probabilities g;,, =
0,1,2,---, M — 1. The independence is verified by checking the
positivity of the corresponding determinant as in [5, pp. 121-124].
An alternative method to determine the unknown probabilities is via
the matrix-geometric approach [11].

Once the probabilities g;,, i =0,1,2,---, M — 1 are deter-
mined, G(») is known, and the expected number of packets in the
transmitter under stationary conditions E[N7] is given by G(y) =
dG(y)/dy at y = 1. By taking the derivative in (7) and using
L’hopital’s rule twice, we obtain,

(1-p2){ 3 [M(M-1)—i(i-1)]g;- M(M~ 1)} +M[£+MN2M - \M = X - 1)]

i=0

E[N] =

2M(1~p -2

(10)
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The expected holding time (in slots) of a packet at the transmitter
E[H ] is computed from (10) by Little’s law:

EN]

E[HT] = N

(11)

In our model, each packet that is ready to be transmitted in some
frame leaves the queue at the end of the frame. Hence, the expected
delay time (not including service) of a packet at the transmitter
E[D;]is

E[D;] = E[H7] - M. (12)
From the discussion in Section II, E[D;] predicts an expected
delay which is smaller than the one in the real SR ARQ. Therefore,
we introduce the following heuristic corrective term.

It seems promising to add the term

E[Dpyipp| Dyypp < M| “Pr[ Dy pp < M|

where Dy, is the delay of a packet in an M/D/1 queue. This
term attempts to take into account the events within a window that
generate delays. The term above is more complex to compute than
the corresponding one in the M/M/1 queue. Therefore, since
ElDy,pyl = %E[DM/M/I], we propose the following corrective
term:

1
EE[DM/M/, | Dpgyaapy < M| - Pr[Dyyjps < M|

A DN
=m”5(m

i)\)exp{—(l -NM}. (13)

1

This simple corrective term yields an excellent fit to the simula-
tion results of the real SR ARQ.

Remark 3.1: The expected time that is required for a packet to
reach the receiver is E] D] + E|S] where S is the transmission
time plus the propagation delay. In satellite communication systems,
E[S] is about half of the window size. In terrestrial networks, it is
about one slot. This observation is crucial when one compares the
resequencing delay to the delay at the transmitter.

1V. THE JOINT TRANSMITTER AND RECEIVER BUFFER
STATISTICS

In this section, we derive a finite recursive procedure for comput-
ing the joint probability generation functions (pgf) of (W, , N) and
E\W, ] for k = 1,2,--+, M under stationary conditions.

A. The Joint Probability Generating Function — Recursive
Procedure

Let m(r) be the number of NACK's received at the transmitter
during window ¢. Since NACK’s can be obtained only for real
packets, and no more than M packets can be transmitted during a
window, 0 < m(f) < N(r) where N(f) = min{ N(¢), M}.

From the definition, W, (r) = I. The evolution of (W,,_ (1),
t= 1), 1 <=i< M- 1isgoverned by the following cvents.

1) For N(1) < M — i (fewer than M — i packets in the trans-
mitter buffer at the beginning of window ), Wy, (t + 1) =i+ 1,
independently of the number of NACK’s that have been obtained.
The reason is that in this event, only new or dummy packets
contribute to W,,_;(t + ).

2) For N(t) = M — i (at least M — i packets in the transmitter
buffer at the beginning of window f), if m(t) < M — i (there were
fewer than (M — i) NACK’s), then W,, (¢ + 1) =/ + 1. Again,
only new or dummy packets contribute to W,,_,(t + 1).

3) For N(t) = M — i (at least (M — i) packets in the transmit-
ter buffer at the beginning of window ¢), if m(t) = M — i (there
were at least (M ~ 1) NACK's) and the (M — ijth NACK was of
packet X (), M —i=<[=M ~ i+ N(1) - m(1), then W,, (¢
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+ 1) = W,(1) + (N(t) — m(2)). The reason is that in this event,
the /th packet at the beginning of window ¢ becomes the (M — i)th
packet at the beginning of window f 4+ 1. In addition, there are
N(1) ~ m(t) packets with higher identifiers that were positively
acknowledged, and are held at the receiver due to the X,(¢) failure.
To illustrate the evolution described above, consider the follow-
ing example. Let M = 10, N(¢) = 7 (hence N(t) = 7), and X(¢)
= (6, 8, 11, 16, 17, 20, 21, 24, 25, 26). Therefore, W(¢) =
(21,19, 16, 11,10, 7,6, 3,2, 1), and we know that packets
7,9,10,12,13,14, 15, 18,19,22,23 are waiting at the receiver
(note that packets 24,25, 26 in the transmitter are dummy packets).
Assume that the transmissions of packets 8, 16, 17 fail, and that five
new packets arrive at the transmitter. Thus, N(¢ + 1) = 8, N(t +
1) =8, X(r+ 1) = (8,16, 17,24, 25,26, 27,28,29, 30), and W (¢
+ 1) = (23,15,14,7,6,5,4,3,2, 1). Note that packet 7 is released
from the receiver (since packet 6 arrived correctly), and packets
9-15 and 18-23 are held at the receiver at the beginning of window
£+ 1. Observe that Wiy(£) = 1, Wy(r + 1) = 2, and Wy(t + 1)
= 3 due to event 1) above. Also, W,(f + 1) = 4, W (t + 1) = 5,
Ws(t+ 1) =6, and W,(r + 1) =7 due to even 2) above; and
Wit + 1) =14, W,(t + 1) =15, and Wi (¢ + 1) = 23 due to
event 3) above. For instance, for W,(f + 1), we note that the
second (M — i =2) failure was of the fourth packet (/= 4);
hence, W,(¢t + 1) = W, (1) + N(t) — m(t) = 11 + 7 — 3 = 15.
From the above, we have

Wy (t+1) = (14)

M(t) =1,
and by using (3), we have for 1l < i< M — 1,
M—i—-1 n =3

Z Z Z Pz(/l—i(w,”)

n=0 m=0w=i+1

Gyli(x,y) =

. xwy”b(n, m)x—(w—i~1)y~(nvm)F(y)

=3 M—i—1 o
+ 3 X X Ph(wn)
n=M-i m=0 w=i+1

. wa”b()‘_l, Iﬂ)Xi(wkif l)y—(ﬁ—m)F(y)

o n M—i+n—m o
+ > X > > P/(w.n)
n=M-im=M-i I=M-i w=M-I+1

,wanCM_’_([,m’l—,l)xﬁ—myw(ﬁ-m)F(y) (15)
where 71 = min{n, M}, b(n, m) is the probability of obtaining m
NACK’s when n packets are transmitted (i.e., b(n, m)
= ("I‘I)p’"(l =p)"""™ and c¢,,_(/, m, n) is the probability of
obtaining m NACK’s when n packets are transmitted and the
(M — nth NACK is of the /th packet [i.e., ¢,,_;({, m, n) = b(l —
I M—-i~-1)p-bn—-101m-M+1)]

The first term on the right-hand side of (15) corresponds to event
1) above. In this event, if W,,_ .(f) = w, then it is reduced by
w — i — I, hence, we multiply x™ by x =D Also, with
probability b(n, m), there are n — m successful transmissions
(n — m packets leave the transmitter buffer); hence, we multiply
y" by y~'"""™. The second term on the right-hand side of (15)
corresponds to event 2) above, and it is derived similarly, with the
notification that the number of successful transmissions cannot
exceed the window size M. The third term on the right-hand side of
(I5) corresponds to event 3) above. Here, W,, (¢ + 1) is in-
creased [with respect to W, (1)] by 7 — m; hence, we multiply x*
by x”~". The term F(y) in (15) corresponds to new packets that
arrive at the transmitter during window ¢. Notice that the summa-
tions over w start from w = M — / + | since the minimum value
of W,is M -1+ 1.

When N < I — p. the limiting distribution of
(W (5), Wy(n),- - Wy (1), N(1)) exists (see [9] and [13]). and by
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letting ¢ — oo, it follows from (15) that for 1 = i< M — 1,

M-i~1 n

S Y Y Pu(wn)

n=0 m=0w=i+1
xi+l "’b(n m)F(y)

—i—1 o

+ Z Z 2 Pai(w,n)

M—-i m=0 w=i+1

Gy-i(x,y) =

cxIT yn Rt mp(h myF(y)
@ n M—it+i—m o
+ 2 X > 2 P(w,n)
n=M-im=M-i I=M-i w=M-I+l
wrnmmyn=ntme,, (I, m,m)F(y). (16)

From (14), we immediately obtain

Gu(x, y) = xG(y), (17)

and after tedious algebraic manipulations, we obtain from (16) (for
lsisM-~-1),
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Note that the probabilities g;, i =0,1,2,--+, M — 1 were deter-
mined in Section III and by definition Gﬁ‘;) ,(l) =g,

From (18) and (19), we see that G,,_,(x, y) is expressed in
terms of G(y) [which is known], G,(x, ¥) and G{"(x) for M ~ i
+i</=M, Isn<M-1,and of G\ {x) for M —i=<n
<=M - 1. We now show how to compute G _(x,»), i=
1,2,--+, M — 1 in a recursive manner. Suppose, for the moment,
that G,(x, y) and G{"(x) for M — i+ 1<I<M,l<sn=<=M
— 1 were determined. Then from (19), H,,_(x, ») is known. To
compute G,,_(x, y), we only need to determine Gy (x) for
M~ i<n=<M -1 [see (18)]. This is done by applymg Rouche’s
theorem again in a similar manner as in Section III. That is, we first
consider the denominator of (18):

(20)

By Rouche’s theorem, for any | x| = 1, (20) has exactly / roots
within the unit disk |y| = 1. Denote these roots by
Orr_i 1 X)s Opg i 2(X), 0+, Opg_; {(X). Since Gy, (x, p) is an an-
alytic function within the polydisk (| x| < 1, | y| < 1), its numer-
ator vanishes whenever the denominator vanishes (within this re-
gion). Thus,

y = F(»)p™ (py + qx)' = 0.

M-1 n .
Hy (x, )+ X ‘G%li(x) DY ,ymxnhmcM—i(M_ i,m,n) —p" i (py+ qx)lyn]
G- i(x,¥) = F(») no ,»m=Mﬂ M i (18)
y' = F(y)p" '(py + gx)
where Gip (x) = X5 _ i 1 Py_iw, m)x” and H,, (x, ) is M—1 ‘ n
given by > Gl odei (%) X o i (x)
n=M-i m=M-—i
Hy_(x, ) X"y (M — i, m,n)
M—i M- i n
o p Porri (X)) +ax] ol i (x
_.ylxl+l{ (q+py)"g" [ M=—i, j ] M ,J( )
n=0 +Hy (X000, (X)) =0, 1=sj=i (21)
M—1 M—i—1 -
+ Z g, Z b (n, m)y'" In( "()21), we have a set of / linear equations for the / unknowns
A it e Gyl {x), M —i=<n=< M — 1. By solving this set of equations,
' we obtam Gip(x)yfor M —i=n=<M- 1andthus G,, (x, y)
M1 M—i-1 is determined. ’
+G(y) - X gy"| X b(M, m)ymM ing wi i i
= En = »m)y Starting with (17), the procedure described above vyields
Grro (X, ), Gp_o(x, ¥),- -, Gy(x, y) in a recursive manner.
M—1  M-i+tM—-1-m M-1 Note that along with this procedure, we also compute G%)_,-(x),
+ Z yz+m Z Z x"_’"cM¥I. M-iSnSM—lfOI‘i=1,2,“',M~1.
m=M-i [=M—-i+1 n=m+I—-M+i
o B. The Expected Number of Packets in the Resequencing Buffer
(1, m, )G (x) + Y, ymoMriyM-om The expected number of packets in the resequencing buffer under
m=M—i stationary conditions is given by [see (2)]
-M—-i+M-m
Z cM_,-(l,m,M) E[B] =E[I'VI] -M (22)
I=M-i+1 and by Little’s law, the expected delay of a packet at the receiver
M-1 -1 E[Dpg] is
[oen) = e - ] £[ 5]
E[Dg] = N (23)
*Xi+lpM~i Py + gx i
( g ) To derive E[W,] recursively, we compute E[ Wy il, 1< is
M—i-1| Mogr 1 - M — 1. First note that E[W,,] = 1. Then, subsntutmg y=1i
Z g " — yMxitipM-ig, (19)  (18) and computing G,,_ (1, 1) = dG,,_,(x, 1)/dx at x = 1, we
obtain
M- n
B 10+ 5 600 S (M- iomn) -
Elw, ] = n=M-—i m:M—{
[ M l] 1 - pM*l
M-1 n
> gn[ > (n=m)ey (M =i m n)—ipMig| +ipM-ig
+ n=M-i m=M-—i

(24)

| — pM-i
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where G{P (1) = dG§P. (0)/fdx |, and Hy_,(1, 1) =
dH,,_ (x, 1) /dx| =1 Note that in the derivation of (24), we used
the fact that at x = y = 1, the denominator and the numerator in
(18) are equal. The computation of H,,_,(1, 1) is straightforward
from (19):

M—-i-1

. M-—i M-1
Hy_(1,1) = (i+ 1){ DS D DY
n=0 n=M-i+1 m=0

b(n, m)

+[1 - Mg gn]Mmél b(M, m)}

> [(n=m)ey (1. m, n)g,
n=m+I-M+i
+ep_ (1, m, n)GiP(1)]

M M—-i+M-m

+ >

~i+1

CM—i(l’m’M)

M-1

-<M—mp—g;&

+ E[w]]

-1

—MZ GP() - (M-1+ 1)1_2! g"]

n=1
M
- Y (M-m+i+1)
m=M-i
M—i-1
'CM—i(M"i’m’M) Zo &n
n=

(25)

—(i+1)pM gy i

From (24) and (25), it is seen that if G{? (1), 1 <i=<M — 1,
M — i< n=s M — 1 were known, then E[ W,,_ ] could have been
recursively computed for i = 1,2,--+, M — 1. The procedure for
computmgG(") W, 1<isM-1,M-isn<M- lisalso
recursive, and it is glven in the Appendlx The procedure for
computing G§{? ,(1) is simple and straightforward in principle.
However, it is numerically unstable. The source of the instability is
that for small error probabilities (which are of interest in practice),
the roots of (20) when x =1 are very small (their order of
magnitude is p M—i " and as a result, the solution of (34) in the
Appendix is unstable. To overcome this computational difficuity, we
develop upper and lower bounds for G{7 /(1) that are easily com-
puted. By replacing G§P (1) in (24) thh these bounds, one obtains
upper and lower bounds for E[W,,_;]. As will be seen in our
numerical examples, for error probabilities that are not too large,
the upper and lower bounds are 1ndlst1ngu1shable

A lower bound for G{? (1) is obtained by noting that the
minimum value that W,,_; may assume is / + 1. Therefore,

GA1) = T WPy (wn)
>(i+1) Z Py_i(w,n) = (i+1)g,. (26)

w=i+1

This lower bound can pe tightened by considering a system in
which at the end of every window, the packets that were present at
the beginning of the window are released; only packets that arrived
at the receiver out of order during the current window are kept at
the receiver. Since in our numerical examples we use the bound
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from (26), we present the result without its derivation. (The deriva-
tion goes along the same lines as the derivation of Section IV-A.)

(i+1)g,+ MX_:I

np=M-i+1

Prob{N(¢) = n/N(t — 1) = n,} f(n,)

M-1
- Z &

ny=0

‘Prob{ N(t) = n/N(t - 1) = n,} | f(M)

(27)

where f(n) = L3l Iy + M — i~ k)bn, k) -p- k-
bk —1,M ~i-1)] and Prob{N(¢#) =n/N(t - 1) =n}
easily computed from the arrival process.

An upper bound for G{7_,(1) is obtained by considering a system
in which dummy packets are perceived as real packets, i.e., a
system in which the transmitter always will have at least M real
packets. In this system, let W,;_; be the random variable that
corresponds to W,,_,. For every window ¢, W,,_ (1) < W)5_.(¢).
Therefore, under stationary conditions,

G1) =

&ny

G (1) = 3 wPy_(w,n)
w=i+1
= > wProb{W,,_(¢) = w, N(t) = n}
w=i+1

Prob{N(t) = n}

3> wProb{W,,_,(t) = w/N(t) = n}

< Prob{N(t) = n}E[W,_,(¢)/N(¢) = M]

=g, E[W3_(1)]. (28)
The last equality follows from the independence between N(f) and
W(t) in the new system. The quantities ET WM A{()] have been
derived in [13]. Quoting the results from there, we have

M
E[Wi_ ()] = 3 kw (29)
m=M-i
where
pp =1
M-1
B(M,i)+ > b(m, i)u,
m=i+1
L= - ; 0
Bi L= (30)
and B(M, i) = Y.\, _ob(M, m).

Note that E[W,;_;] can be derived from (24) and (25) by letting
A— 1 — p, in which case g, — 0, n < oo.
To conclude, we have

(31)

From the derivation of the bounds, it is clear that by replacing them
in (24), we obtain upper and lower bounds for E[W,,_;]. From
(23), we therefore obtain upper and lower bounds for the expected
waiting time at the receiver.

Remark 4.1: We have observed from our extensive computa-
tions for practical error probabilities ( p < 0.1) that the lower bound
in (26) and the upper bound in (29) are indistinguishable up to the
eighth decimal point.

(i + 1), = 6,(1) = E[W_ ()] e
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Fig. 2. Expected delays versus arrival rate.

V. NUMERICAL EXAMPLES

In the numerical examples that follow, we assume that the
number of arrivals during a single slot is Poissonian distributed
(i.e., F(y) = e~y and we consider error probabilities that
vary from 0.01 to 0.1. Within this range of parameters, the differ-
ences between the lower and the upper bounds of the resequencing
delay are extremely small (the order of magnitude of these differ-
ences is 1078-10719),

Our analytical results of the approximate model are compared to
simulation results of the exact model of an SR ARQ protocol as
defined in [9]. The simulation results (carried out by using the
batch means method [8, p. 296]) that are depicted in the figures
are, with probability of 0.95, at most 2% away from the real values.
As observed, the agreement between the analtyical results and the
simulation results is very good.

In Figs. 1 and 2, we depict the expected delays at the transmitter
[(12) plus the corrective term from (13)] and at the receiver (23) for
different windows and error probabilities, as a function of the
arrival rate A. The main conclusion from these figures is that the
resequencing delay is not negligible in comparison to the expected
delay at the transmitter. When the window size and the error
probability are small (M = 10, p = 0.01), the expected delay at
the transmitter is dominant. For larger windows or larger error
probabilities, one may observe the following interesting phenomena.
For low and high arrival rates, the expected delay at the transmitter
is dominant, whereas for a medium range of arrival rates, the
expected delay at the receiver is dominant.

The intuitive explanation of this phenomenon is as follows. For
low arrival rates, there is mainly at most one packet at the transmit-
ter, and therefore the expected delay there is of order M(p + p* +
p* + +++). Furthermore, there is almost no delay at the receiver.
As the arrival rate A approaches 1 — p, the expected delay at the
transmitter explodes to infinity, while the expected delay at the
receiver approaches a constant. The latter behavior is due to the fact
that the process (W(1), t = 1) is stable for every A (see [13]). Note
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that the limiting value of the resequencing delay when A = 1 — p is
the upper bound E[{WU].

Observe that in satellite systems where the window size repre-
sents half of the transmission delay, for a small error probability
(p = 0.01), the expected delay at the transmitter and the resequenc-
ing delay at the receiver are both small in comparison to the
transmission delay for a wide range of arrival rates A\. When the
transmitter delay becomes comparable to the transmission delay, the
resequencing delay is small with respect to both. When the error
probability is not too small (p = 0.05), the resequencing delay is
no longer small in comparison to the transmission delay.

In Fig. 3, we draw the expected number of packets in the
transmitter and in the receiver as a function of the arrival rate. Note
that for comparison purposes, we depict the expected number of all
packets in the transmitter buffer except those that were successfully
transmitted. The expected number of the latter packets is obviously
AM (Little’s law).

In Fig. 4, we depict the expected delays at the transmitter and at
the receiver for two different arrival rates, as a function of the error
probability p. Here, one may observe that the dominant component
of the expected delay depends not only on the arrival rate, but also
on the error probability. In this figure, we present two different
types of behavior. One is where the expected delay at the transmitter
is larger than that at the receiver (A = 0.75), and another is where
the expected delay at the receiver is smaller for low error rates and
larger for high error rates (A = 0.50).

Finally, in Fig. 5, we depict the expected delays as a function of
the window size M. It is interesting to note here that the resequenc-
ing delay grows much faster than the expected delay at the transmit-
ter. This holds for other values of error probabilities as well.

APPENDIX

The procedure for computing G\» (1), l =isM -1, M-
=n=M-1 is as follows. One recalls that o,,_, (x),
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3.0 T T T T =z < n < M — 1. Consequently, the quantmes G(") M, M—-i<n
A=050;p=001  / < M — 1 can be recursively computed for / = 1 2 e, M- 1.
25 ANAL SMUL ~ To simplify the expression for d/dx [Hy,_ (X, 0pg_; (XD y=1s
TRANS — o o we denote u = 6,,_; (1) and it = 6,,._; ;(1). From (19), one can
%20 REC =---= o [/ - compute
] /
o o d
815 / . a[HM—i(X’ oMfi,j(x))] | x=1
i e .
X 10 /U’ T = [~ a+ (i + 1)u]
050—"‘3 . M—i
. Pid = n
I '{Z(q+pu) &
00 L1 I Lo 1 n=0
Tio 15 20 25 30 35 40 M—1 M—i-1
WINDOW SIZE M + ) g 2. b(n,mu”
Fig. 5. Expected delays versus window size. n=M-i+l m=0
M- M-i-1 o
n -
Opp—i.2(X), ", 0py_; ) are the roots (within the unit disk) of +[G(“) - 2_:0 g"u ] mX_:O b(M, m)u }
(20), i.e., they satisfy the following equation: "= -
M—i
otr_i (%) = Fopy, j(x)) p™ + ui{ pu Y. n(qg+pu) g,
n=0
[ porsi, /(%) +qx]i=0, 1=j=<i (32) M—1 M—i-1
+u Y g, Y. mb(n, myum!
For every i (1 =i=<M—1), one can compute 0, ; (1), n=M-i+1i m=0
Opr-i2(1), 5 opg_; (1), and take the derivatives with respect to x M- M-i-1
in (32) at x = 1. The latter are denoted by 6, ; ;(1) and can be +[G(u) - U Z ngtu"" ‘] S b(M, myum M
expressed in terms of o,,_; ;(1): n= m=0
. Fop_; ;(1))iop_; (D1~ p _
GM-i,j(l) - ( M— j( )) M~ j( )( ) 1 <j <i (33)
F(UM i, /(1)) (1 _p) - (UM i, J(U)UM i, j(l)[paM i, 1(1) + q]
where F(ay,_ o D) =dF(»/dyl,,, i jn- BY taking the deriva- M-
tive with respect to x in (21) at x = 1, We obtain + [G(u) - > g"u"|a
n=0
M—1 n M—i-1 o
> G (1)[ > 01"’1n+'lj(1)cM—i(M_ i,m,n) © 2 (m—M)b(M, mju"" _1}
n=M-—i m=M-i m=0
—_pM-i . i M-1 )
M (poy; (1) + q) va Y (i m)utm
- n m=M-i
+ gn{ > ati(1) M—i+M—-1-m  M-1
neMei AmeM-i : > > err—i(1, m, n)GM(1)

I=M—-i+1 n=m+!-M+i

(n = m)ey_ (M~ i,m, n)
M—-i+M-1-m

n .
) i + uitm
+m§w‘i(m+l)al(lnjtj (1) m:zl\l—i I=1\;;i+l
. . M-1
(n—m)éy_; j(1)er_i(M ~ i, m, n) : 2 ey—i(l, m, n)
pM ; ( (1) - n=m+I/-M+i
o .
p M—i,j + q) '[(’1 - m)an)(l) + ng)(l)]

(Poy-i (1) + @)oo (1) M :
+ Y [(m= M+ i)am- M

_pM_i(poM_i-j(l) + q)indM—i,j(l) + q)UA"l{:},J(l)} e M—-i+M-m
it M
+(M—m)u’"‘M+i] S epoi(l,m M)
I=M—i+1

d
+:1';[HM_i(x’ GM—f,j(x))]|x=1 =0, l=j=<i.

(34) '[Gz(l’u) - i u"G"(1) - Z gt

n=1

The explicit expression for d/dx[Hy, (x, opp_; (XD oy 18 M M—i+M-m
somewhat complicated and is given at the end of the Appendix. The + 5 wmMr 3 ey (I, m, M)
gy I=M=i+1

crucial point that can also be seen from (19) is that it depends only m
on G"(1), M —i+1=<I<M~-1,l<n=<M -~ 1. Therefore, M-1 .

when these quantities are known, (34) forms a set of i . G,(l, u) - 3 [m’Au""‘Gﬁ")(l) + u"G}"’(l)]
equations whose solution yields the i unknowns G(") M, M n=1
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-1 -1
—(M—-1+1)Y gu" > ng,uu"""
n=0

n=0

[(m— M+ i)aum— M+

1

_:%

+(M = m+ iyum M+
M-i-1
(M —i,m, M) 3 gy"
n=0

M M-i-1
- > umMric, (M-i,m,M) Y ng,uu""!
n=0

m=M-—i
— [ Miw™= + (i + 1) u™] pMigy, (35)

In (35), G(u) and G(u) = dG(o,_, ;(x))/dx| ,_, are computed
directly from (7), and G, (1, u) and G,(1, u) =
dG/(x, ap_; j(x))/dx| = are computed from (17) and (18).
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